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Abstract

There is considerable interest in ethical designs for artificial intelligence (AI) that do not
pose risks to humans. This paper proposes using elements of Hutter’s agent-environment
framework to define a decision support system for simulating, visualizing, and analyzing
Al designs to understand their consequences. The simulations do not have to be accurate
predictions of the future; rather they show the futures that an agent design predicts will
tulfill its motivations and that can be explored by Al designers to find risks to humans.
In order to safely create a simulation model this paper shows that the most probable
finite stochastic program to explain a finite history is finitely computable, and that there
is an agent that makes such a computation without any unintended instrumental actions.

It also discusses the risks of running an Al in a simulated environment.
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1. Introduction

Some scientists expect artificial intelligence (Al) to greatly exceed human intelligence
during the twenty-first century (Kurzweil 2005). There has been concern about the pos-
sible harmful effect of intelligent machines on humans since at least Asimov’s (1942)
Laws of Robotics. More recently there has been interest in the ethical design of Al
(Hibbard 2001; Bostrom 2003; Goertzel 2004; Yudkowsky 2004; Hibbard 2008; Omo-
hundro 2008; Waser 2010, 2011; Muehlhauser and Helm 2012).

Hutter’s (2005) universal Al defined an agent-environment framework for reasoning
mathematically about Al. This paper proposes using elements of this framework to de-
fine a decision support system for exploring, via simulation, analysis, and visualization,
the consequences of possible Al designs. The claim is not that the decision support sys-
tem would produce accurate simulations of the world and an Al agent’s effects. Rather,
in the agent-environment framework the agent makes predictions about the environ-
ment and chooses actions, and the decision support system uses these predictions and
choices to explore the future that the Al agent predicts will optimize its motivation.

This is related to the oracle Al approach of Armstrong, Sandberg, and Bostrom
(2012), in that both approaches use an Al whose only actions are to provide informa-
tion to humans. The oracle Al is a general question answerer, whereas the decision sup-
port approach focuses on specific capabilities from the mathematical agent-environment
framework. The oracle Al is described as a general Al with restricted ability to act on its
environment. The decision support system applies part of the agent-environment frame-
work to learn a model for the environment, and then uses that model to create a simu-
lated environment for evaluating an Al agent defined using the framework. Chalmers
(2010) considers the problem of restricting an Al to a simulation and concludes that it is
inevitable that information will flow in both directions between the real and simulated
worlds. The oracle Al paper and Chalmers’ paper both consider various approaches to
preventing an Al from breaking out of its restriction to not act in the real world, in-
cluding physical limits and conditions on the AI’'s motivation. In this paper, a proposed
Al design being evaluated in the decision support system has a utility function defined
in terms of its simulated environment, has no motivation past the end of its simulation
and the simulation is not visualized or analyzed until the simulation is compete.

The next section presents the mathematical framework for reasoning about Al agents.
'The third section discusses sources of Al risk. The fourth section discusses the proposed

decision support system. The final section is a summary of the proposal.
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2. AnAgent-Environment Framework

We assume that an agent interacts with an environment. At each of a discrete series of
time steps t € N = {0,1,2,...} the agent sends an action a; € A to the environment
and receives an observation o, € O from the environment, where A and O are finite sets.
We assume that the environment is computable and we model it by programs ¢ € @),
where () is some set of programs. Let h = (a1, 01,...,a:,0;) € H be an interaction
history where H is the set of all finite histories, and define |h| = t as the length of the
history h. Given a program q € Q we write o(h) = U(q, a(h)), where o(h) = (01, ..., 0¢)
and a(h) = (ay, ..., at), to mean that ¢ produces the observations o; in response to the
actions a; for 1 < ¢ < ¢ (U is a program interpreter). Given a program ¢ the probability
p(q) : @ — [0,1] is the agent’s prior belief that ¢ is a true model of the environment.
'The prior probability of history h, denoted p(h), is computed from p(q) (two ways of
doing this are presented later in this section).

An agent is motivated according to a wuzility function u : H — [0, 1] which assigns
utilities between 0 and 1 to histories. Future utilities are discounted according to a
geometric temporal discount 0 < ~ < 1 (Sutton and Barto 1998). 'The value v(h) of a
possible future history h is defined recursively by:

v(h) =u(h) +~ max v(ha), (1)

v(ha) = Z p(olha) v(hao). (2)

0€0
'Then the agent 7 is defined to take, after history h, the action:

m(h) = ajp+1 = argmax v(ha). 3)

a€A

For Hutter’s (2005) universal Al, () is the set of programs for a deterministic prefix
universal Turing machine (PUTM) U (Li and Vitdnyi 1997). The environment may
be non-deterministic in which case it is modeled by a distribution of deterministic pro-
grams. The prior probability p(g) of program g is 2719 where |g| is the length of ¢ in
bits, and the prior probability of history h is given by:

ph)= > ) 4)
q:o(h)=U(q,a(h))
Hutter’s universal Al is a reinforcement-learning agent, meaning that the observation
includes a reward r; (i.e., o; = (¢, 7¢)) and u(h) = r,|. Hutter showed that his universal
Al maximizes the expected value of future history, but it is not finitely computable.
As Hutter discussed (Hutter 2009a, 2009b) for real world agents single finite stochas-
tic programs (limited to finite memory, for which the halting problem is decidable) such
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as Markov decision processes (MDPs) (Puterman 1994; Sutton and Barto 1998) and
dynamic Bayesian networks (DBNs) (Ghahramani 1998) are more practical than distri-
butions of PUTM programs for defining environment models. Modeling an environ-
ment with a single stochastic program rather than a distribution of deterministic PUTM
programs requires a change to the way that p(h) is computed in (4). Let @) be the set of
all programs (these are bit strings in some language for defining MDPs, DBNs or some
other finite stochastic programming model), let p(q) = 4719 be the prior probability
of program q where |q| is the length of ¢ in bits (4717 to ensure that > wcor(@) <1
since program strings in Q_are not prefix-free), and let P(h|q) be the probability that
q computes the history h.! Note p(q) is a discrete distribution on individual program
strings, not a measure on bit strings in the sense of Li and Vitdnyi (1997, p. 243). Then
given a history hy, the environment model is the single program that provides the most

probable explanation of hy, that is the ¢ that maximizes P(gq|ho). By Bayes theorem:

holq) p(q)

Plalho) = “ 50" ©)

P(hy) is constant over all ¢ so can be eliminated. Thus we define A(hg) as the most
probable program modeling A by:
A(ho) == argmax P(ho|q) p(q). (6)
9e@
The following result is proved in Hibbard (2012a).

Proposition 1. Given a finite history hy the model A(hg) can be finitely com-
puted.

Given an environment model gy = A(hg) the following can be used for the prior

probability of an observation history & in place of (4):

p(h) = P(h|q) (7)

According to current physics our universe is finite (Lloyd 2002). For finite environ-
ments, agents based on (6) and (7) are as optimal as those based on (4). 'Their prior
probabilities better express algorithmic complexity if finite stochastic programs are ex-

pressed in an ordinary procedural programming language restricted to have only static

1. P(h|q) is the probability that ¢ produces the observations o; in response to the actions a; for
1 < i < |h|. For example let A = {a,b}, O = {0,1}, h = (a,1,a,0,b,1) and let ¢ generate observation
0 with probability 0.2 and observation 1 with probability 0.8, without any internal state or dependence
on the agent’s actions. Then the probability that the interaction history h is generated by program gq is
the product of the probabilities of the 3 observations in h: P(h|¢) = 0.8 x 0.2 x 0.8 = 0.128. If the
probabilities of observations generated by ¢ depended on internal state or the agent’s actions, then those

would have to be taken into account.
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array declarations, to have no recursive function definitions, and to include a source of

truly random numbers.

3. Sources of Al Risk

Dewey (2011) argued that reinforcement-learning agents will modify their environ-
ments so that they can maximize their utility functions without accomplishing the inten-
tions of human designers. He discussed ways to avoid this problem with utility functions
not conforming to the reinforcement-learning definition. Ring and Orseau (2011) ar-
gued that reinforcement-learning agents will self-delude, meaning they will choose to
alter their own observations of their environment to maximize their utility function re-
gardless of the actual state of the environment. In Hibbard (2012b) I demonstrated
by examples that agents with utility functions defined in terms of agents’ environment
models can avoid self-delusion, and also proved that under certain assumptions agents
will not choose to self-modify.

Omohundro (2008) and Bostrom (2012) describe how any of a broad range of pri-
mary Al motivations will imply secondary, unintended motivations for the Al to pre-
serve its own existence, to eliminate threats to itself and its utility function, and to in-
crease its own efficiency and computing resources. Bostrom discusses the example of
an Al whose primary motive is to compute pi and may destroy the human species due
to implied instrumental motivations (e.g., to eliminate threats and to increase its own
computing resources). Omohundro uses the term “basic Al drives” and Bostrom uses
“instrumental goals” but as I argue in Hibbard (2012a) they should really be called “un-
intended instrumental actions” since the agent’s whole motivation is defined by its utility

function.

4. A Decision Support System

'The decision support system is intended to avoid the dangers of Al by having no moti-
vation and no actions on the environment, other than reporting the results of its com-
putations to the environment. However, the system runs Al agents in a simulated en-
vironment, so it must be designed to avoid subtle unintended instrumental actions.
The first stage of the system is an agent, here called 76, that learns a model of the real
world environment in order to provide a simulated environment for studying proposed
Al agents. An Al agent is defined by (1)—=(3), (6) and (7), but (6) can be used alone
to define the agent 74 that learns a model A(hg) from history hy. In order for 74 to
learn an accurate model of the environment the interaction history kg should include

agent actions, but for safety 7 cannot be allowed to act. The resolution is for its ac-
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tions to be made by many safe, human-level surrogate Al agents independent of 7 and
of each other. Actions of the surrogates include natural language and visual commu-
nication with each human. The agent 7 observes humans, their interactions with the
surrogates and physical objects in an interaction history h for a time period set by 7g’s
designers, and then reports an environment model to the environment (specifically to
the decision support system, which is part of the agent’s environment). The following
result is proved in Hibbard (2012a). While it may seem obvious, given the subtlety of

unintended behaviors it is worth proving.

Proposition 2. The agent 7 will report the model A(hy) to the environment ac-

curately and will not make any other, unintended instrumental actions.

The decision support system analyzes proposed Al agents that observe and act in a
simulated environment inside the decision support system. To formalize the simulated
environment define O’ and A" as models of O and A with bijections m¢p : O + O
and my : A < A’. Define H' as the set of histories of interactions via O’ and A’,
with a bijection my : H <+ H' computed by applying mo and m 4 individually to the
observations and actions in a history. Given h,, as the history observed by 7 up to time
|hy| = present, define h;, = my(h,) as the history up to the present in the simulated
environment. Let ()’ be a set of finite stochastic programs for the simulated environment
and 7§ be a version of the environment-learning agent ¢ for the simulated environment.

It produces:

4 = Mhy) = argmax P lq') p(4), ®)
p'(R) = P(Kl|q,). )

Now let 7'(R; p',u’, ") be a proposed Al agent to be studied using the decision
support system, where v’ is its utility function, 7 is its temporal discount and fusure
is the end time of the simulation. The utility function u' is constrained to have no

motivation after time = furture:
Vi e H'|W| > future = /(1) = 0. (10)

Then 7'(R'; p', v, ~') is defined by:

V(W) =d () ++ max v'(Wa'), (11)
a/e /
V(W)= P |ld) v (Wa'o), (12)
o'e0’
(W5 p ' ) = apy g = arg njax v'(Wa). (13)
a/e ’
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There are no humans or physical objects in the simulated environment; rather the
agent 7' (using 7’ and 7'(h') as abbreviations for 7'(h; p/, u', 7)) interacts with a sim-

ulation model of humans and physical objects via:

CLTM_H == '/T/(h/), (14)

Ol = 0 € O with probability p' (0[P aj14)- (15)

The decision support system propagates from h;, to by, where |hs| = future, by repeat-
edly applying (14) and (15). As in Hibbard (2012b) let Z’ be the set of finite histories
of the internal states of A(h;,) and let P(2'|h’, A(h;,)) be the probability that A(A;,) com-
putes 2’ € Z' given b’ € H'. The decision support system then computes a history of
model states by:

2y = 2/ € 7' with probability P(2'|h;, A(hs,)). (16)

'The simulation in (14)—(16) is stochastic so the decision support system will support
ensembles of multiple simulations to provide users with a sample of possible futures. An
ensemble of simulations generates an ensemble of histories of model states {2}78\ 1<e<
m}, all terminating at time = fizure. 'These simulations should be completed before they
are visualized and analyzed; that is visualization and analysis should not be concurrent
with simulation for reasons discussed in Section 4.1.

The history h,, includes observations by 7 of humans and physical objects, and so
the decision support system can use the same interface via A’ and O’ (as mapped by
ma and mp) to the model A(h;,) for observing simulated humans and physical objects
in state history 2% .. These interfaces can be used to produce interactive visualizations
of 2} in a system that combines features of Google Earth and Vis5D (Hibbard and
Santek 1990), which enabled scientists to interactively explore weather simulations in
three spatial dimensions and time. Users will be able to pan and zoom over the human
habitat, as in Google Earth, and animate between times present and future, as in Vis5D.
The images and sounds the system observes of the model A(h;,) executing state history
2} . can be embedded in the visualizations in the physical locations of the agent’s ob-
serving systems, similar to the way that street views and user photographs are embedded
in Google Earth.

The decision support system can also match specifications for specific humans and
physical objects to the images and sounds it observes of the model A(h;,) executing state
history 2} .. The specifications may include text descriptions, images, sounds, anima-
tions, tables of numbers, mathematical descriptions, or virtually anything. Recognized
humans and physical objects can then be represented by icons in the visualization, in

their simulated physical locations and with recognized properties of humans and objects
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represented by colors and shapes of the icons. The system can enable users to selectively
enable different layers of information in the visualizations.

Vis5D enables users to visualize ensembles of weather forecasts in a spreadsheet of
parallel visualizations where spatial view, time and level selections are synchronized be-
tween spreadsheet cells. The decision support system can provide a similar spreadsheet
visualization capability for ensembles of simulations.

'The point isn’t that these simulations are accurate predictions of the future, but that
they do depict the future that the Al agent will create, according to the environment
model learned by 7f;,. The visualization depicts the future that the agent 7’(h’) predicts
will maximize the sum of future discounted utility function values. Agent designers
can use this visualization to understand the consequences of various proposed utility
functions and temporal discounts.

The visualizations will be accompanied by analyses, in which the decision support
system computes the values of functions g(2} ). Evaluation of these functions may de-
pend on recognizing humans and physical objects in observations of the model (%))
executing state history 2 . Such analyses would enable designers to compute quantita-
tive evaluations to complement visualizations. For example, these analyses can be used
to compute statistics about future human wealth, health, and intelligence.

There will be an interval before time = fizure when visualizations and analyses of the
behavior of 7’ will not be an accurate reflection of the behavior of a real-world agent
without the temporal cutoft in (10). The length of this interval will depend on the value
of the temporal discount +'. In order to compensate for this, fiture should be chosen

past the time horizon of interest.

4.1. Willan Agent w’(h'; p’, v, v’) Actin the Real World?

The environment model ¢, = A(h) may provide an agent 7’ with the information that
humans have constructed a decision support system for analyzing proposed Al agents
and that 7 is such an agent, interacting with a simulated environment. If the utility
function ' is defined in terms of the real environment then 7' may predict via p that
certain actions in the simulated environment may manipulate the human users of the
decision support system into increasing the value of v’ in the real environment. Hence
it is important that the utility function v’ be defined in terms of the simulated rather
than the real environment.

Even when v’ is defined in terms of the simulated environment there are still possi-
ble risks. Assuming that ¢, = A(h;)) includes the information that 7' is in a simulation,
then the agent may predict via p’ that it can bribe human users of the decision support
system, through an offer to act on their behalf in the real world (the bribed humans

would have to enable 7’ to act in the real world), to manipulate its simulated environ-
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ment to increase the value of v'. This offer of a bribe could be made by spoken or written
language inserted by actions of 7’ into some 2} . and visualized by the users. This pos-
sibility is the rationale for constraining that «'(h') = 0 for |h'| > future in (10) and for
requiring simulation to be complete before visualization and analysis begin. Looking
at its definition in (11)—(13) it is hard to see any reason why 7’ would be motivated to
affect events after time = furure, and by the time a user sees any bribe offer the simula-
tion would be complete through time = fuzure. It is also hard to see any reason why 7’
running in one simulation would be motivated to affect another simulation occurring at
a later time (if the simulations were running simultaneously then there could be some
communication and interaction between them mediated by human users). As proved in
Hibbard (2012b) 7’ will not have any motive to modify v/, so 7’ will not modify itself
to be motivated past time = fusure. However these are subtle issues and I do not claim
they are completely resolved.

It is important not to anthropomorphize 7. A human restricted to act in a simulation
would be motivated to act in the real world. But if u is defined in terms of a simulation
then 7" would not be motivated to act in the real world, except as a means to increase v’
in the simulation.

The greatest risk comes from the human users of the decision support system who
may be tempted (Hibbard 2009) to modify it to act in the real world on their behalf.
As Elliott (2005) comments on the safety of US nuclear weapons, “The human factor
introduces perhaps the weakest link in nuclear weapon safety and control.” However, if
society takes Al risks seriously then it can learn from the experience managing nuclear

weapons to manage Al and some form of the proposed decision support system.

5. Discussion

An important challenge for safe Al is understanding the consequences of Al designs,
particularly the consequences of Al utility functions. 'This paper proposes a decision
support system for evaluating Al designs in safe, simulated environments that model
our real environment. The paper shows that the agent g is safe and learns to model
our environment in a finite computation. The paper also addresses some possible risks
in running and evaluating Al designs in simulated environments. It would be useful to
find computationally feasible implementations for the definitions in this paper.

I believe that the greatest danger of Al comes from the fact that above-human-level
Al is likely to be a tool in military and economic competition between humans and thus
have motives that are competitive toward some humans. Some form of the proposed
decision support system may be able to alert those building powerful Al to the long-term

consequences of decisions they take in the heat of competition.
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