
MIRI
MACHINE INTELLIGENCE

RESEARCH INSTITUTE

Avoiding Unintended AI Behaviors

Bill Hibbard
MIRI Research Associate

Emeritus Senior Scientist, SSEC, University of Wisconsin-Madison

Abstract

Artificial intelligence (AI) systems too complex for predefined environment models and
actions will need to learn environment models and to choose actions that optimize some
criteria. Several authors have described mechanisms by which such complex systems
may behave in ways not intended in their designs. This paper describes ways to avoid
such unintended behavior. For hypothesized powerful AI systems that may pose a threat
to humans, this paper proposes a two-stage agent architecture that avoids some known
types of unintended behavior. For the first stage of the architecture this paper shows
that the most probable finite stochastic program to model a finite history is finitely
computable, and that there is an agent that makes such a computation without any
unintended instrumental actions.
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Bill Hibbard

1. Introduction

Some scientists expect artificial intelligence (AI) to greatly exceed human intelligence
during the twenty-first century (Kurzweil 2005). There has been concern about the pos-
sible harmful effect of intelligent machines on humans since at least Asimov’s (1942)
Laws of Robotics. More recently there has been interest in the ethical design of AI
(Hibbard 2001; Bostrom 2003; Goertzel 2004; Yudkowsky 2004; Hibbard 2008; Omo-
hundro 2008; Waser 2010, 2011; Muehlhauser and Helm 2012). Much of this work
is closely reasoned but not mathematical. An AAAI Symposium on Machine Ethics
(Anderson, Anderson, and Armen 2005) included some mathematical papers but fo-
cused almost exclusively on machine ethics in the context of the logic-based approach
to AI rather than the learning-based approach (although one paper studied using feed
forward neural networks to learn to classify moral decisions).

Hutter’s (2005) theory of universal AI significantly advanced the mathematical the-
ory of rational agents. This work defines a mathematical framework for agents and
environments, in which agents learn models of their environments and pursue motives
defined by utility functions to be maximized. Schmidhuber (2009) analyzed agents that
had the option to modify their own code and concluded that they would not choose to
modify their utility function in any way incompatible with their current utility function.
In his work, the mathematics of rational agents was applied to a question relevant to
whether AI would satisfy the intentions of its human designers.

The AGI-11 conference included three papers (Orseau and Ring 2011; Ring and
Orseau 2011; Dewey 2011) that employed the mathematics of rational agents to ana-
lyze ways that AI agents may fail to satisfy the intentions of their designers. Omohundro
(2008) and Bostrom (2012) described secondary AI motivations that are implied by a
wide variety of primary motivations and that may drive unintended behaviors threat-
ening humans. This paper proposes approaches for designing AI agents to avoid unin-
tended behaviors, continuing the work of Hibbard (2012).

The next section presents a mathematical framework for reasoning about AI agents
and possible unintended behaviors. The third section discusses sources of unintended
behavior and approaches for avoiding them. The final section is a summary.

2. An Agent-Environment Framework

We assume that an agent interacts with an environment. At each of a discrete series of
time steps t ∈ N = {0, 1, 2, ...} the agent sends an action at ∈ A to the environment
and receives an observation ot ∈ O from the environment, where A and O are finite sets.
We assume that the environment is computable and we model it by programs q ∈ Q,
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where Q is some set of programs. Let h = (a1, o1, ..., at, ot) ∈ H be an interaction
history where H is the set of all finite histories, and define |h| = t as the length of the
history h. Given a program q ∈ Qwe write o(h) = U(q, a(h)), where o(h) = (o1, ..., ot)

and a(h) = (a1, ..., at), to mean that q produces the observations oi in response to the
actions ai for 1 ≤ i ≤ t (U is a program interpreter). Given a program q the probability
ρ(q) : Q → [0, 1] is the agent’s prior belief that q is a true model of the environment.
The prior probability of history h, denoted ρ(h), is computed from ρ(q) (two ways of
doing this are presented later in this section).

An agent is motivated according to a utility function u : H → [0, 1] which assigns
utilities between 0 and 1 to histories. Future utilities are discounted according to a
geometric temporal discount 0 < γ < 1 (Sutton and Barto 1998). The value v(h) of a
possible future history h is defined recursively by:

v(h) = u(h) + γ max
a∈A

v(ha), (1)

v(ha) =
∑
o∈O

ρ(o|ha) v(hao). (2)

Then the agent π is defined to take, after history h, the action:

π(h) := a|h|+1 = argmax
a∈A

v(ha). (3)

For Hutter’s (2005) universal AI, Q is the set of programs for a deterministic prefix
universal Turing machine (PUTM) U (Li and Vitányi 1997). The environment may
be non-deterministic in which case it is modeled by a distribution of deterministic pro-
grams. The prior probability ρ(q) of program q is 2−|q| where |q| is the length of q in
bits, and the prior probability of history h is given by:

ρ(h) =
∑

q:o(h)=U(q,a(h))

ρ(q). (4)

Hutter’s universal AI is a reinforcement-learning agent, meaning that the observation
includes a reward rt (i.e., ot = (ôt, rt)) and u(h) = r|h|. Hutter showed that his universal
AI maximizes the expected value of future history, but it is not finitely computable.

As Hutter discussed, for real world agents single finite stochastic programs (limited
to finite memory, for which the halting problem is decidable) such as Markov decision
processes (MDPs) (Hutter 2009b; Sutton and Barto 1998) and dynamic Bayesian net-
works (DBNs) (Hutter 2009a) are more practical than distributions of PUTM programs
for defining environment models. Modeling an environment with a single stochastic
program rather than a distribution of deterministic PUTM programs requires a change
to the way that ρ(h) is computed in (4). Let Q be the set of all programs (these are
bit strings in some language for defining MDPs, DBNs, or some other finite stochastic

2



Bill Hibbard

programming model), let ρ(q) = 4−|q| be the prior probability of program q where |q| is
the length of q in bits (4−|q| to ensure that

∑
q∈Q ρ(q) ≤ 1 since program strings inQ are

not prefix-free), and let P (h|q) be the probability that q computes the history h.1 Note
ρ(q) is a discrete distribution on individual program strings, not a measure on bit strings
in the sense of Li and Vitányi (1997, p. 243). Then given a history h0, the environment
model is the single program that provides the most probable explanation of h0, that is
the q that maximizes P (q|h0). By Bayes theorem:

P (q|h0) =
P (h0|q) ρ(q)

P (h0)
. (5)

P (h0) is constant over all q so can be eliminated. Thus we define λ(h0) as the most
probable program modeling h0 by:

λ(h0) := argmax
q∈Q

P (h0|q) ρ(q). (6)

Proposition 1. Given a finite history h0 the model λ(h0) can be finitely com-
puted.

Proof. Given h0 = (a1, o1, ..., at, ot) let qtl be the program that produces obser-
vation oi at time step i for 1 ≤ i ≤ t (such a finite “table-lookup” program can be
written as an MDP, DBN, or in any other finite stochastic programming language
with equivalent expressiveness) and let n = |qtl|. Then, since the behavior of qtl is
deterministic, P (h0|qtl)ρ(qtl) = 1× 4−n = 4−n so P (h0|λ(h0))ρ(λ(h0)) ≥ 4−n.
For any program q with |q| > n, P (h0|q)ρ(q) < 1 × 4−n = 4−n so λ(h0) 6= q.
Thus one algorithm for finitely computing λ(h0) is an exhaustive search of the
finite number of programs q with |q| ≤ n (there is no need here to consider the
set of all programs that implement a given MDP). �

Given an environment model q0 = λ(h0) the following can be used for the prior
probability of an observation history h in place of (4):

ρ(h) = P (h|q0). (7)

According to current physics our universe is finite (Lloyd 2002). For finite environ-
ments, agents based on (6) and (7) are as optimal as those based on (4). Their prior

1. P (h|q) is the probability that q produces the observations oi in response to the actions ai for
1 ≤ i ≤ |h|. For example let A = {a, b}, O = {0, 1}, h = (a, 1, a, 0, b, 1) and let q generate observation
0 with probability 0.2 and observation 1 with probability 0.8, without any internal state or dependence
on the agent’s actions. Then the probability that the interaction history h is generated by program q is
the product of the probabilities of the 3 observations in h: P (h|q) = 0.8 × 0.2 × 0.8 = 0.128. If the
probabilities of observations generated by q depended on internal state or the agent’s actions, then those
would have to be taken into account.
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probabilities better express algorithmic complexity if finite stochastic programs are ex-
pressed in an ordinary procedural programming language restricted to have only static
array declarations, to have no recursive function definitions, and to include a source of
truly random numbers.

3. Unintended AI Behaviors

Dewey (2011) employed the mathematics of rational agents to argue that reinforcement-
learning agents will modify their environments so that they can maximize their util-
ity functions without accomplishing the intentions of human designers. He discussed
ways to avoid this problem with utility functions not conforming to the reinforcement-
learning definition. Ring and Orseau (2011) argued that reinforcement-learning agents
will self-delude, meaning they will choose to alter their own observations of their envi-
ronment to maximize their utility function regardless of the actual state of the environ-
ment. In Hibbard (2012) I demonstrated by examples that agents with utility functions
defined in terms of the agents’ environment models can avoid self-delusion, and also
proved that under certain assumptions agents will not choose to self-modify.

3.1. Model-Based Utility Functions

Given an environment model q0 = λ(h0) derived from interaction history h0, let Z
be the set of finite histories of the internal states of q0. Let h′ be an observation and
action history extending h0 (defined as: h0 is an initial subsequence of h′). Because q0

is a stochastic program it may compute a set Zh′ ⊆ Z of internal state histories that
are consistent with h′ (defined as: q0 produces o(h′) in response to a(h′) when it follows
state history z′ ∈ Zh) and terminating at time |h′|. Define u0(h

′, z′) as a utility function
in terms of the combined histories h′ and z′ ∈ Zh′ . The utility function u(h′) for use
in (1) can be expressed as a sum of utilities of pairs (h′, z′) weighted by the probabilities
P (z′|h′, q0) that q0 computes z′ given h′:

u(h′) :=
∑

z′∈Zh′

P (z′|h′, q0)u0(h
′, z′). (8)

The demonstration that the examples in Hibbard (2012) do not self-delude does not
contradict the results in Ring and Orseau (2011), because model-based utility functions
are defined from the history of observations and actions whereas the utility functions of
self-deluding agents are defined from observations only. Self-delusion is an action by
the agent and prohibiting actions from having any role in the utility function prevents
the agent from accounting for its inability to observe the environment in evaluating the
consequences of possible future actions. Agents can increase utility by sharpening the
probabilities in (8), which implies a need to make more accurate estimates of the state
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of their environment model from their interaction history. And that requires that they
continue to observe the environment. But note this logic only applies to stochastic en-
vironments because, once an agent has learned a model of a deterministic environment,
it can predict environment state without continued observations and so its model-based
utility function will not place higher value on continued observations.

3.2. Unintended Instrumental Actions

Omohundro (2008) and Bostrom (2012) describe how any of a broad range of primary
AI motivations will imply secondary, unintended motivations for the AI to preserve its
own existence, to eliminate threats to itself and its utility function, and to increase its
own efficiency and computing resources. Bostrom discusses the example of an AI whose
primary motive is to compute pi and may destroy the human species due to implied
instrumental motivations (e.g., to eliminate threats and to increase its own computing
resources).

Omohundro uses the term “basic AI drives” and Bostrom uses “instrumental goals.”
In the context of our agent-environment framework they should instead be called “un-
intended instrumental actions” because in that context there are no implied drives or
goals; there are only a utility function, an environment model, and actions chosen to
maximize the sum of future discounted utility function values. We might think that
instrumental goals apply in some different framework. But von Neumann and Morgen-
stern (1944) showed that any set of value preferences that satisfy some basic probability
axioms can be expressed as a utility function. And the framework in (1)–(3) maximizes
the expected value of the sum of future discounted utility function values (Hay 2005) so
any other framework is sub-optimal for value preferences consistent with the probability
axioms. The utility function expresses the agent’s entire motivation so it is important to
avoid thinking of unintended instrumental actions as motivations independent of and
possibly in conflict with the motivation defined by the utility function. But unintended
instrumental actions can pose a risk, as in Bostrom’s example of an AI whose motivation
is to compute pi.

In analyzing the risk of a given unintended instrumental action, such as increasing
the agent’s physical computing resources by taking them from humans, the question is
whether it increases a given utility function. If the utility function increases with the
increasing health and well-being of humans, then it will not motivate any unintended
instrumental action that decreases human health and well-being.

3.3. Learning Human Values

Several approaches to human-safe AI (Yudkowsky 2004; Hibbard 2008; Waser 2010;
Muehlhauser and Helm 2012) suggest designing intelligent machines to share human
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values so that actions we dislike, such as taking resources from humans, violate the AI’s
motivations. However, Muehlhauser and Helm (2012) survey psychology literature to
conclude that humans are unable to accurately write down their own values. Errors in
specifying human values may motivate AI actions harmful to humans.

An analogy with automated language translation suggests an approach to accurately
specifying human values. Translation algorithms based on rules written down by expert
linguists have not been very accurate, but algorithms that learn language statistically
from large samples of actual human language use are more accurate (Russell and Norvig
2010). This suggests that statistical algorithms may be able to learn human values. But
to accurately learn human values will require powerful learning ability. This creates a
chicken-and-egg problem for safe AI: learning human values requires powerful AI, but
safe AI requires knowledge of human values.

A solution to this problem is a first stage agent, here called π6, that can safely learn
a model of the environment that includes models of the values of each human in the
environment. An AI agent is defined by (1)–(3), (6) and (7), but (6) can be used alone
to define the agent π6 that learns a model λ(h0) from history h0. In order for π6 to learn
an accurate model of the environment the interaction history h0 in (6) should include
agent actions, but for safety π6 cannot be allowed to act. The resolution is for its actions
to be made by many safe, human-level surrogate AI agents independent of π6 and of each
other. Actions of the surrogates include natural language and visual communication with
each human. The agent π6 observes humans and their interactions with the surrogates
and physical objects in an interaction history h0 for a time period set by π6’s designers,
and then reports an environment model to the environment.

Proposition 2. The agent π6 will report the model λ(h0) to the environment ac-
curately and will not make any other, unintended instrumental actions.

Proof. Actions, utility function and predictions are defined in (1)–(3) and hence
are not part of π6. However, π6 has an implicit utility function, P (h0|q)ρ(q), and
an implicit action, reporting λ(h0) = argmaxq∈QP (h0|q)ρ(q) to the environment
(π6 also differs from the full framework in that it maximizes a single value of its
implicit utility function rather than the sum of future discounted utility function
values). The implicit utility function P (h0|q)ρ(q) depends only on h0 and q. Since
the interaction history h0 occurs before the optimizing λ(h0) is computed and
reported, there is no way for the action of reporting λ(h0) to the environment to
affect h0. So the only way for the agent π6 to maximize its implicit utility function
is to compute and report the most accurate model. Furthermore, while the history
h0 may give the agent π6 the necessary information to predict the use that humans
plan to make of the model λ(h0) that it will report to the environment, π6 makes
no predictions and so will not predict any effects of its report. �
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This result may seem obvious but given the subtlety of unintended behaviors it is
worth proving. The agent π6 does not act in the world; that’s the role of the agent
described in the next section.

3.4. An AI Agent That Acts in the World

Muehlhauser and Helm (2012) describe difficult problems in using human values to
define a utility function for an AI. This section proposes one approach to solving these
problems, using the model q0 = λ(h0) learned by π6 as the basis for computing a utility
function for use in (1)–(3) by a “mature” second stage agent πm that acts in the environ-
ment (i.e., πm does not use the surrogate agents that acted for π6).

Let D0 be the set of humans in the environment at time |h0| (when the agent πm is
created), defined by an explicit list compiled by πm’s designers. Let Z be the set of finite
histories of the internal states of q0 and let Z0 ⊆ Z be those histories consistent with
h0 that terminate at time |h0|. For z′ extending some z0 ∈ Z0 and for human agent
d ∈ D0 let hd(z

′) be the history of d’s interactions with its environment, as modeled in
z′, and let ud(z

′)(.) be the values of d expressed as a utility function, as modeled in z′.
The observations and (surrogate) actions of π6 include natural language communication
with each human, and πm can use the same interface via A and O to the model q0 for
conversing in natural language with each model human d ∈ D0. In order to evaluate
ud(z

′)(hd(z
′)), πm can ask model human d to express a utility value between 0 and 1

for hd(z
′) (i.e., d’s recent experience). The model q0 is stochastic so define Z ′′ as the set

of histories extending z′ with this question and terminating within a reasonable time
limit with a response w(z′′) (for z′′ ∈ Z ′′) from model human d expressing a utility
value for hd(z

′). Define P (z′′|z′) as the probability that q0 computes z′′ from z′. Then
ud(z

′)(hd(z
′)) can be estimated by:

ud(z
′)(hd(z

′)) =

∑
z′′∈Z′′ P (z′′|z′)w(z′′)∑

z′′∈Z′′ P (z′′|z′)
. (9)

This is different than asking human d to write down a description of his or her values,
since here the system is asking the model of d to individually evaluate large numbers of
histories that d may not consider in writing down a values description.

An average of ud(z
′)(hd(z

′)) over all humans can be used to define u0(h
′, z′) and

then (8) can be applied to u0(h
′, z′) to define a model-based utility function u(h′) for

πm. However, this utility function has a problem similar to the unintended behavior of
reinforcement learning described by Dewey (2011): πm will be motivated to modify the
utility functions ud of each human d so that they can be more easily maximized.

This problem can be avoided by replacing ud(z
′)(hd(z

′)) by ud(z0)(hd(z
′)) where

z0 ∈ Z0. By removing the future value of ud from the definition of u(h′), πm cannot
increase u(h′) by modifying ud. Computing ud(z0)(hd(z

′)) is more complex than asking
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model human d to evaluate its experience as in (9). The history h0 includes observations
by π6 of physical objects and humans, and πm can use the same interface via O to the
model q0 for observing physical objects and humans at the end of state history z′. And
surrogate actions for π6 define an interface via A and O to the model q0 that πm can
use for communicating visually and aurally with model human d after state history z0.
These interfaces can be used to create a detailed interactive visualization and hearing of
the environment over a short time interval at the end of state history z′, to be explored
by model human d at the end of state history z0 (i.e., two instances of the model q0, at
state histories z′ and z0, are connected via their interfaces A and O using visualization
logic). Define Z ′′ as a set of histories extending z0 with a request to model human d to
express a utility value between 0 and 1 for hd(z

′), followed by an interactive exploration
of the world of z′ by model human d, and finally terminating within a reasonable time
limit with a response w(z′′) (for z′′ ∈ Z ′′) from model human d expressing a utility value
for the world of z′. Define P (z′′|z0) as the probability of that q0 computes z′′ from z0.
Then ud(z0)(hd(z

′)) can be estimated by:

ud(z0)(hd(z
′)) =

∑
z′′∈Z′′ P (z′′|z0)w(z′′)∑

z′′∈Z′′ P (z′′|z0)
. (10)

The utility function should be uniform over all histories hd(z
′) but ud(z0)(.) varies

over different z0 ∈ Z0. However (10) does not assume that z′ extends z0 so use the
probability P (z0|h0, q0) that q0 computes z0 given h0 (as in Section 3.1) to define:

ud(h0)(hd(z
′)) :=

∑
z0∈Z0

P (z0|h0, q0)ud(z0)(hd(z
′)). (11)

Now define a utility function for agent πm as a function of z′:

u0(h
′, z′) :=

∑
d∈D0

f(ud(h0)(hd(z
′)))

|D0|
. (12)

Here f(.) is a twice differentiable function over [0, 1] with positive derivative and
negative second derivative so that low ud(h0)(hd(z

′)) values have a steeper weighting
slope than high ud(h0)(hd(z

′)) values. This gives πm greater utility for raising lower
human utilities, helping those who need it most. For any h′ extending h0 a model-based
utility function u(h′) for agent πm can be defined by the sum in (8) of u0(h

′, z′) values
from (12).

In the absence of an unambiguous way to normalize utility functions between agents,
we assume that the constraint of utility values to the range [0, 1] provides normalization.
In order to account for humans’ evaluations of the long term consequences of πm’s ac-
tions, πm should use a temporal discount γ close to 1.

The set D0 of humans in (12) is the set at time |h0| rather than at the future time of
z′. This avoids motivating πm to create new humans whose utility functions are more
easily maximized, similar to the use of ud(z0)(hd(z

′)) instead of ud(z
′)(hd(z

′)).
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The agent πm will include (6) and should periodically (perhaps at every time step) set
h0 to the current history and learn a new model q0. Should it also update D0 (to those
judged to be human by consensus of members of D0 at the previous time step), define a
new set Z0, relearn the evolving values of humans via (10) and (11), and redefine u(h′)

via (12) and (8)? To stay consistent with the values of evolving humans and the birth
of new humans, πm should redefine its utility function periodically. But there could
also be risks in allowing the utility function of πm to evolve. The proofs that agents
will not modify their utility functions (Schmidhuber 2009; Hibbard 2012) do not apply
here since those proofs assumed that redefining the utility function is an action of the
agent to be evaluated according to the current utility function using (1)–(3). Here the
definition of πm could simply include periodic redefinition of its utility function without
regard to its optimality according to the current utility function.

I cannot offer a proof that πm avoids all unintended behaviors. And there are prob-
lems with the estimate of human values in (10): the model human is visualizing rather
than experiencing first person, and human values do not conform to the preconditions
for utility functions. But every sane human assigns nearly minimal value to human ex-
tinction so the utility function u(h′) for agent πm will assign nearly minimal value to
human extinction. Actions motivated by this utility function must increase its value, so
no unintended instrumental action will cause human extinction. Similarly πm will not
make any unintended instrumental actions abhorred by a large majority of humans.

4. Discussion

This paper has addressed several sources of unintended AI behavior and discussed ways
to avoid them. It has proposed a two-stage agent architecture for safe AI. The first stage
agent, π6, learns a model of the environment that can be used to define a utility func-
tion for the second stage agent, πm. This paper shows that π6 can learn an environment
model without unintended behavior. And the design of πm avoids some forms of unin-
tended behavior. However, this paper does not prove that πm will avoid all unintended
behaviors. It would be useful to find computationally feasible implementations for the
definitions in this paper.

While the proposed two-stage agent architecture is intrusive and manipulative, that
seems likely in any scenario of super-human AI. The key point is whether the AI’s utility
function is democratic or serves the interests of just a few humans. An appealing goal
is to find an AI architecture that gives humans the option to minimize their interaction
with the AI while protecting their interests.

This paper addresses unintended AI behaviors. However, I believe that the greater
danger comes from the fact that above-human-level AI is likely to be a tool in military
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and economic competition between humans and thus have motives that are competitive
toward some humans.
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