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Abstract
Sophisticated autonomous AI may need to base its behavior
on  fuzzy  concepts  such  as  well-being  or  rights.  These
concepts cannot be given an explicit formal definition, but
obtaining desired behavior still requires a way to instill the
concepts in an AI system. To solve the problem, we review
evidence  suggesting  that  the  human  brain  generates  its
concepts  using  a  relatively  limited  set  of  rules  and
mechanisms. This suggests that it might be feasible to build
AI systems that use similar criteria for generating their own
concepts, and could thus learn similar concepts as humans
do. Major challenges to this approach include the embodied
nature of human thought, evolutionary vestiges in cognition,
the  social  nature  of  concepts,  and  the  need  to  compare
conceptual representations between humans and AI systems.

 Introduction 

Autonomous AI systems need to make decisions without
immediate  human  guidance,  according  to  instructions,
goals and guidelines that have been provided beforehand
but  which  may  need  to  be  applied  in  novel  and
unanticipated situations. Future systems may be intended
to deal  with complicated  situations involving constraints
that  cannot  be  specified  rigorously,  but  instead  involve
inherently  fuzzy  human  concepts  such  as  well-being,
rights,  due diligence,  reasonable doubt, or,  in military or
law enforcement contexts, proportionate force. 

For the AI system to behave correctly in such situations,
its understanding of the concepts involved has to closely
resemble that of the humans that gave it its instructions. An
AI that is applying its instructions to a novel situation will
only display  desired  behavior  if  the  AI  has  an  accurate
understanding of the motivations behind the instructions.

Similarly,  if  the  system  is  to  qualify  as  an  Artificial
Moral Agent (Allen, Varner, and Zinser 2000), capable of
determining  the  morally  correct  behavior  in  a  given
situation, it needs to have some level of understanding of
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morally  relevant  concepts,  such  as  the  previously
mentioned concepts of rights and well-being.

The need  for  the  AI’s  concepts  to  match  those  of  its
human  designers  increases  the  more  autonomous  and
powerful  the  AI  is.  The most  extreme case  is  that  of  a
superintelligent AI,  which may become powerful  enough
to  be  immune  to  human  attempts  to  shut  it  down
(Yudkowsky 2008, Chalmers 2010, Bostrom 2014).

This need has been highlighted in some previous work.
For  example,  Armstrong,  Sandberg,  and Bostrom (2012)
discuss  the  possibility  of  limiting  an  AI’s  behavior  via
rule-based motivational control, such as forbidding it from
leaving a boxed area. They argue that this is a harder task
than  it  might  initially  seem,  for  it  requires  rigorously
defining intuitive concepts such as “this lead box here” and
“the AI’s physical location”.

Armstrong, Sandberg, and Bostrom (2012) mention the
possibility  of  an  AI  internalizing  complex  concepts
through feedback, learning them in a way that resembles
that  of  human  children.  Similar  suggestions  have  been
made by a number  of  other  authors  (Allen,  Varner,  and
Zinser  2000,  Guarini  2006,  Goertzel  &  Bugaj  2008,
Wallach  and  Allen  2009,  Goertzel  and  Pitt  2012;  for  a
review,  see  Sotala and  Yampolskiy 2013).  For  example,
Goertzel  and Pitt  (2012) and Goertzel  and Bugaj  (2008)
argue  that  human  ethical  judgement  relies  on  the
combination of a number of human faculties, and that an
AI system could be made to learn ethical behavior if the
correct set of analogous faculties was implemented in an
AI.

However, Armstrong, Sandberg, and Bostrom (2012) are
skeptical  of  teaching  AI  complex  concepts  through
feedback,  as  humans  are  biologically  similar  and  thus
predisposed  to  learn  similar  concepts,  whereas  an  AI
system with a different cognitive architecture might learn
very different concepts.

This  paper  proposes and  examines  a  strategy  for  AI
engineering  which  builds  on  a  hypothesis  about  human
cognition. The hypothesis is that the human brain generates



its  concepts  using  a  relatively  limited  set  of  rules  and
mechanisms,  which  we  are  making  good  progress  on
reverse-engineering.  If  this  were  the  case,  it  could  be
feasible to design AI systems that used similar criteria and
mechanisms for generating their own concepts, and would
thus learn similar concepts as humans did.

We begin by reviewing some of the research on human
concept formation.

Research on human concept generation

One school  of  research  views  human  concepts  as  being
created  by a  process  of  optimizing  for  a  specific  set  of
constraints.  Prince  and  Smolensky (1997)  suggest  that  a
sentence  in  a  human  language  is  grammatical  if  it
optimally satisfies a conflicting set of constraints, and that
differences between grammars can be traced to differences
in how the constraints are ranked. For example, the English
sentence “it rains” is “piove” (literally, “rains”) in Italian.
In English, the constraint forbidding subjectless sentences
outranks the constraint forbidding meaningless words, and
vice versa in Italian.  The authors suggest  that  the set  of
constraints  is  universal  for  every  language,  and  that  the
constraints emerge from an underlying neural optimization
dynamic.  A  grammar  is  a  set  of  relative  strengths,  and
learning a grammar involves adjusting those strengths. 

We can consider the process of learning the concept of
“a valid English sentence” to be equivalent to learning a
grammar, thus making the process of grammar learning an
instance of concept learning. Many procedural skills seem
to similarly involve mutually conflicting rules that all have
to be satisfied: consider for instance a social skill such as
“being  funny without  offending  anyone present”.  An AI
might need to similarly learn various concepts that  were
implicit in procedural  skills, and which might be learned
by a process of optimizing for the mutual satisfaction of a
set of constraints.

More  explicit  concepts  may also  be  the  results  of  an
optimization  process.  Regier,  Kemp,  and  Key (in  press)
argue  that  although  different  languages  have  somewhat
different  concepts,  the  variation  is  constrained  by
simplicity  on  one  hand,  and  a  need  for  precisely
communicating different  concepts  on the other.  Drawing
on  work  in  the  domains  of  color,  kinship,  and  binary
feature vectors, they propose that human languages tend to
develop  concepts  that  achieve  a  near-optimal  tradeoff
between simplicity and efficient communication. Khetarpal
et al. (2013) find similar results for the domain of spatial
terms.

Other modeling approaches  have also found rules that
produce  human-like  concepts.  Kemp  and  Tenenbaum
(2008)  developed  a  structure  learning  approach  that
considered  a  number  of  different  kinds  of  structures

including  trees,  linear  orders,  multidimensional  spaces,
rings,  cliques,  and  others.  When  applied  to  different
physical,  biological,  and  social  domains,  it  produced
similar classifications as humans would.

Tenenbaum  (2011)  reviews  work  on  probabilistic
concept  learning  and  mentions  the  example  of  a  child
seeing  three  examples  of  different  kinds  of  horses  and
correctly learning to generalize the word “horse” based on
this information. Why does the child learn this hypothesis
and not some other,  such as “all  animals” or “all  horses
except  Clydesdales”?  Tenenbaum  argues  that  Bayesian
likelihood favors the smaller sets, “horses” and “all horses
except Clydesdales”, since it would be less likely for three
random samples to fall within the smaller sets if they were
actually drawn from the larger set of “all animals”. At the
same  time,  there’s  a  reasonable  prior  belief  distribution
that favors “all animals” and “all horses” for being more
coherent and distinctive categories; “all horses” is then the
only  hypothesis  favored  by  both  the  prior  and  the
likelihood.  

Other  approaches  also  create  similar  classifications  as
humans  tend  to  do,  even  though  they  have  not  been
explicitly designed with the intention of mimicking human
thought.  For  example,  Shamir  and  Tarakhovsky  (2012)
used  a  classification  scheme  originally  developed  for
biomedical image analysis, and found that it could classify
artists by their artistic movements in a manner that agreed
with the analysis of art historians.

Engineering human concepts in AI systems

In the previous section, we reviewed some work that has
studied  human  concept  learning,  and  which  has  either
identified potential rules or constraints that humans follow
while learning different  concepts,  or which has come up
with explicit algorithms that produce similar concepts and
classifications as humans do.

Our proposal is for a research and engineering program
that would 1) map the rules behind human concept learning
in more  detail  and 2)  use  the  results  of  that  learning  to
build AI systems that follow the same rules to produce the
same concepts.

It should be noted that it may be very important to get
the learning rules exactly right: a minor-seeming difference
in a concept may turn out to be crucial (Yudkowsky 2011).
Among  humans,  minor  differences  between  concepts
already  lead  to  strongly  differing  moral  judgments.  For
example, the question of whether unborn fetuses or brain-
dead patients on life support count as humans worthy of
protection has caused considerable controversy. In humans
this  is  arguably  caused  by differences  in  the  concept  of
“human”; similarly, a relatively minor difference between
an AI's  and a human's  understanding of a concept  could



lead the AI to take actions that humans considered clearly
wrong.

Although  the  preceding  sections  have  suggested  that
human  concept  learning  may  be  reducible  to  relatively
straightforward  mathematical  problems,  it  needs  to  be
noted  that  the  full  picture  is  likely  more  complex.  One
complicating factor is the question of embodiment: human
concepts and thought may be deeply rooted in our physical
body. 

A particularly relevant form of embodiment is that many
of our moral judgments may be based on physical feelings
of  disgust  and  intuitions  that  were  originally  related  to
physical  purity  (Schnall  et  al.  2008).  Correctly
incorporating these intuitions might in principle require a
simulation of the body’s disgust responses.

Other thought processes also seem to have fewer purely
abstract  components  than  a  mathematical  analysis  might
suggest.  For  example,  imagining  an  action  involves  a
partial  activation  of  the  same  neural  systems  that  are
involved in actually performing that action. Niedenthal et
al. (2005) argue that the brain contains few to no abstract,
amodal  representations,  and that  concepts  are formed by
combining  modality-specific  features  of  different
categories. This suggests that an AI might not be capable
of  learning  human-like  concepts  unless  it  had  similar
sensory  modalities  as  humans  did.  Lakoff  and  Núñez
(2000) argue that even abstract mathematics is grounded in
specific features of the human body, such as some of the
axioms of set theory being derived from the structure of the
human visual system.

Human cognition may also include other properties that
are at their core evolutionary vestiges and which cannot be
naturally  derived  from  mathematical  principles.  Human
writing systems may be constrained by the properties of
the evolutionarily older circuits in the visual system that
have been recruited for  the task deciphering written text
(Dehaene  and  Cohen  2007),  and  human  reasoning  may
employ specialized modules  (Barrett  and Kurzban 2006)
evolved  for  specific  evolutionarily  useful  tasks  such  as
detecting cheaters (Cosmides and Tooby 1992).

Another  factor  which  may  complicate  the  task  of
concept learning is the social nature of concepts. Humans
do not  learn concepts  in isolation, but rather  in a  social
environment where they gain rich feedback on both their
communication  and  general  behavior.  More  detailed
concepts  are learned if they are useful  for some specific
task, and human attention is guided towards noticing subtle
differences  in the domains that  we are  interested  in and
encouraged to attend to. 

Goertzel  and  Pitt  (2012)  recommend  teaching  AI
systems morality by "[p]rovid[ing] rich ethical interaction
and instruction, respecting developmental stages", and this
may  indeed  be  necessary.  In  addition,  it  may  also  be
necessary  to  understand  the  reward  system  that  guides

human attention and learning, and build the AI in such a
way that the reward system is sufficiently similar.

Verifying conceptual equivalence

Building  an  AI  which  does  actually  have  human-like
concepts  requires  an  ability  to  inspect  and  verify  its
internal  concepts  and  compare  them  to  human  ones.
Although  testing  the  AI  in  different  situations  to  see
whether it behaves as expected given the desired concepts
may be of some use, the AI also needs to behave correctly
in entirely unanticipated situations. Particularly an AI that
becomes more powerful than its programmers may end up
in  completely  novel  situations,  and  manifest  unintended
behavior  outside  its  training  and  testing  environment
(Yudkowsky 2008), but the danger applies to less powerful
AI  systems  as  well.  Furthermore,  if  the  AI’s  concepts
cannot be directly examined, there exist the possibility of a
“treacherous  turn”  (Bostrom  2014),  with  the  AI
intentionally  acting  in  ways  that  misguide  its  examiners
about its intentions.

This may require not only understanding the rules that
generate human concepts, but also mapping out the actual
concepts that humans have so that they can be compared
with those of the AI. For this purpose, there needs to be a
format that both human and AI concepts can be mapped
into, so that they could be compared with each other.

Gärdenfors  (2000)  proposes  a  general  theory  of
representation,  representing  concepts  as  geometrical
structures within a multidimensional space. Some work has
built  on  this  foundation  and  discussed  communication
between  agents  that  have  differing  conceptual  spaces
(Honkela et al. 2008), as well as comparing the conceptual
differences  between  individuals  (Honkela  et  al.  2010,
Honkela et al. 2012). 

A number of  brain imaging studies  have  also tried to
understand  how the  brain  represents  information  and  to
uncover  the  representational  geometry  of  different
concepts  (Davis  and  Poldrack  2013,  Kriegeskorte  and
Kievit  2013):  possibly  some  of  this  research  could
eventually be leveraged for creating a way to compare the
concepts of a particular group of humans with those stored
in an AI’s reasoning systems.

Discussion

Above, we have reviewed work that is aimed at uncovering
the way the human brain generates concepts, and suggested
that an AI system might come to have human-like concepts
if it implemented similar mechanisms.

The project of designing such an AI involves at least the
following  components:  (1)  discovering  the  logical  and
mathematical  criteria  used  in  concept  learning  (2)



incorporating  the  effects  from  the  embodied  nature  of
human thought (3) incorporating any evolutionary vestiges
that influence our concept formation and which cannot be
naturally  derived  from  mathematical  principles  (4)
incorporating the social learning mechanisms which guide
concept  formation  in  humans  (5)  creating  the  means  to
directly  compare  conceptual  representations  between
humans and AI systems.

The effort involved with these different steps is unclear.
In particular, the effort involved with each of the stages of
2-4 might range between “trivial” and “insurmountable”.  

There  is  also  the  possibility  that  an  AI  that  were  to
reason about concepts in a human-like way would require a
design that was itself almost human, and an AI design that
was very close to human might be easily outcompeted by
AIs that were not so constrained (Sotala and Yampolskiy
2013).

On  the  other  hand,  the  results  from  existing  concept
learning research suggests that there might be room to be
optimistic,  since  relatively  simple  principles  seem
sufficient  for  learning  many  human  concepts  correctly.
Whether or not this remains true once the field moves past
toy models remains to be seen.
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