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Abstract

This is a brief technical note summarizing some work done at the May
2014 MIRI workshop. We consider expected utility maximizers making
a staged series of sequential choices, and replacing themselves with suc-
cessors on each time-step (to represent self-modification). We wanted to
find conditions under which we could show that a staged expected utility
maximizer would replace itself with another staged EU maximizer (rep-
resenting stability of this decision criterion under self-modification). We
analyzed one candidate condition and found that the “Optimizer’s Curse’
implied that maximization at each stage was not actually optimal. To
avoid this, we generated an extremely artificial function η that should
allow expected utility maximizers to tile. We’re still looking for the exact
necessary and sufficient condition.

1 Setup

All maximization will be assumed to take place on a tree X with root x0.
xn+1 ∈ xn will range over the children of node xn. U(xN) is the utility of the
leaf node xN . E[f] is the expected value of the function f given some assumed
probability distribution P. E[U ∣φ] is the expected utility if the proposition φ is
true. E[U ∣xi] is the expected utility of choosing node xi in the tree, presumably
after already arriving at xi’s parent. The agent An will be at some node xn
occupying level n of the tree and be choosing from among its options xn+1 ∈ xn.

Informally, what we want to show is that if An is also choosing to construct
its successor agent An+1, then expected utility maximizers with well-calibrated
probabilistic beliefs ought to construct expected utility maximizers with the
same utility function and well-calibrated probabilistic beliefs. A key issue in
showing this formally is that the expected utility of choosing xn depends on what
sort of agent will choose at xn+1—which node has greatest expected utility now
depends on whether you expect your successor to choose optimally, pessimally,
randomly, etc. Ideally, we would also would like An to reason about offspring
An+1 that have updated on additional information, or possibly even thrown
away low-value information (like not remembering every pixel of a webcam
input) while still maintaining well-calibrated beliefs.
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Most of our thinking before this workshop focused on probabilistic reflection
principles in which E0[f] relates to E1[f] in some fashion that lets an agent
using E0 conclude that if an agent using E1 expects high utility, then E0 expects
high utility.

This paper is about a different angle in which we try to construct one partic-
ular probability distribution and expected utility function which will be apt to
tiling maximizers reasoning about it, instead of trying to start from the general
properties of E. This should let us construct at least one tiling maximizer for
the special case, which we can then examine further, although this has not yet
been done formally. First, however, we’ll introduce the problem and show why
other distributions don’t work.

2 Vingean blinders

In discussions prior to the workshop, the following equation was suggested:

E[ max
xn+1∈xn

E[U ∣xn+1]] = max
xn+1∈xn

E[U ∣xn+1]

This says that the expected utility of a node xn is the maximum of the
expected utilities of xn’s children. This is how a traditional maximization tree
search would work on the parts of the tree that had been exhaustively searched.

The problem with this equation is that if it is true over every part of the
search tree, it means that an expected utility maximizer is guaranteed to find
the global maximum of the tree, i.e., the leaf with the highest expected utility
among all leaves. Bounded agents will not have enough computing power to
search the whole tree; they cannot globally maximize. Even if the leaf is an
uncertain estimate, a bounded agent will usually not be able to search the
whole tree to find the maximum among all uncertain estimates at leaf nodes.

We generally term the Vingean principle the notion that an agent should
not be able to predict the exact actions of its successors. (Otherwise the first
agent in a sequence of self-improvers would be able to predict out all the policies
of all its successors out to the end of time).

We therefore want to evaluate staged subjective expected utility maximizers
in which each node is only a subjective estimate of the maximum subjective
expected utility available at the next stage, if the agent goes down that branch
of the tree. Subjective estimates at one stage should be updated on additional
information at the next stage, and sometimes be wrong. Bounded agents should
not be guaranteed to find the global maximum; they should do what they guess
to be the best thing at each next step (taking into account that their future
selves will likewise do the apparently best thing on each successive step while
taking into account that their successors will do the same, etc.) That this is a
guess implies that it should not be assumed to be perfectly accurate.

A requirement that expresses this principle is:

E[ max
xn+1∈xn

E[U ∣xn+1]] ≠ max
xn+1∈xn

E[U ∣xn+1] (1)
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(note the not-equals sign). Another way of expressing the principle is that
within the calculations of an agent at level n, maxes ranging over all n+ 1-level
children of an n-level node should only appear inside expectation operators, not
outside them as in the right-hand-side of (1). The expectation operator acts as
Vingean blinders—the ’parent’ is not allowed to know the exact maximum EU
of the next level down at the point that it chooses, only an expectation of this
maximum.

This corresponds to a realistic, bounded agent which deals with a large
search space by slicing up the problem into staged categories. At each stage,
the best category of possible decisions is selected, that branch is then further
investigated, the best category within that branch is taken, and so on until
a leaf node is reached. (This corresponds well to sequential game playing in
which the opponent’s move is learned after each of our own moves, but it is also
a potentially general way of slicing up search spaces.)

3 The Optimizer’s Curse

An obvious next avenue of investigation is to hypothesize a function φ(xn)
which is an unbiased but noisy estimator of the maximum of the estimates
available at the next stage:

E[φ(xn)] = max
xn+1∈xn

φ(xn+1) .

To generate an example φ(n) with this property, we can start by labeling
all leaves of the tree with their true utilities U(xN). We then add normally dis-
tributed random noise to obtain φ(xN) = U(xN)+N(0,1). We then recursively
obtain φ of the parent nodes xn−1 by taking

φ(xn−1) = max
xn∈xn−1

φ(xn) + N(0,1)

φ has the desired property that φ(xn) is an unbiased estimator of the max-
imum over φ(xn+1), with the leaf nodes φ(xN) being unbiased estimators of
the utility of xN . An even weaker condition also fulfilled by φ(xn), which was
previously proposed as a possible sufficient condition for tiling, is:

E[φ(xn) − max
xn+1∈xn

φ(xn+1)] = 0

Note that in accordance with the Vingean principle, no maximization operators
appear outside of expectation functions in the above equation.

φ however is subject to the Optimizer’s Curse described by Smith and Win-
kler (2006). The Optimizer’s Curse means that it is probably not prudent to
choose the option with greatest φ at every stage.

Intuitively, the problem is that the max operator selects for positive noise.
Suppose one node xn,i had a thousand children all with true utilities 0, while an-
other node xn,j had ten children all with true utilities zero. Our expectation of
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φ(xn,i) is much higher than our expectation of φ(xn,j) because our expectation
of the maximum of a thousand draws from a normal distribution is higher than
our expectation of the maximum of ten draws from a normal distribution, even
though all this variance is pure noise and the true values are zero in every case.
So if φ(xn,i) were only slightly higher than φ(xn,j), the prudent choice would be
to go down the branch for φ(xn,j). This means that a prudent expected utility
maximizer that understands how the noise in the unbiased estimator interacts
with its own tendency to maximize, will not always go down the path of greatest
φ. (This also shows why there are nontrivial issues with tiling subjective maxi-
mizers that pick the best action conditional on their successors also maximizing,
rather than doing something else like taking the average action, etc.)

4 The η-distribution: Unbiased estimates instead
of unbiased estimators.

One way of viewing the problem with φ is that if our estimator is noisy, then
when we see a φ with high value, we expect to some degree that it has had high
noise added. So when we follow the φ we are predictably disappointed. Smith
and Winkler’s suggested solution to the Optimizer’s Curse for the special case
they considered is to regress their Gaussian-noisy estimates toward the mean,
which they show is equivalent to treating the “unbiased estimator” as evidence
that combines with a Bayesian prior. Once this is done, Smith and Winkler
show that expected disappointment after choosing the highest estimate is zero.

To generalize, the problem with a standard “unbiased estimator” V of a true
value µ is that it merely has the property:

∀x ∶ E[V ∣µ = x] = x

But this is an insufficient condition for plugging V into decision-making—
e.g., for treating V as an estimate of expected utility. A sufficient condition
is:

∀x ∶ E[µ∣V = x] = x (2)

although this is a very strong condition (see below).
The distribution η was constructed to fulfill this condition and make ηxn

an unbiased estimate (not estimator) of maxxn+1∈xn η(xn+1) regardless of which
value of ηxn is observed. It is constructed as follows:
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η(x0) ∶= N(0,1)

for xn+1,k ∈ xn ∶

i ∶= Random(K(xn))

η(xn+1,i) ∶= η(xn) +N(0,1)

η(xn+1,j≠i) ∶= η(xn+1,i) − ∣N(0,1)∣

U(xN) ∶= η(xN) +N(0,1)

We start with the root node and generate a random value of η. Then we
generate children recursively as follows: For a parent with a known value, add
noise with mean zero to this known value to get the maximum child that will
appear on a random branch beneath that parent. Then assign random values
less than the maximum child’s value to all other children of that parent. When
a leaf node is reached and assigned a value of η, assign it a random utility equal
to η plus noise with mean zero.

Although this probability distribution over η and U was constructed in a
somewhat perverse way (starting from the map and generating the territory),
it makes η(xn) a correct estimate of the U which will be achieved by further
staged maximization down the branch xn. To achieve maximum expected U ,
assuming you can only look ahead to the nodes immediately below you, it is
always wisest to choose the node with maximum η at your current stage. This
remains true even if noise is much greater in some parts of the tree than others,
or some parts of the tree are much wider or deeper than others.

η demonstrates one property a probability distribution or expectation func-
tion can have that seems like it should suffice for staged maximizers to tile over
it. Equation (1) is fulfilled by η and thus it does not usually find global maxi-
mums of η or U . So η is a fair model of staged, subjective maximization rather
than global, objective maximization.

A next step is to write out a tiling of a staged subjective EU maximizer for
the first time, using η. This has not yet been done but looks easily reachable
from here.

5 Problem: η obeys overly strong conditions.

A problem with η is that the condition (2) which η fulfills is extremely strong.
(2) states that for every possible estimate x, conditioning on the estimator V

returning the value x, we believe that x is in fact the best expected estimate for
the underlying value µ. Suppose you were about to construct an offspring similar
to yourself. Do you, considering the hypothetical case that your offspring has
come to believe the best estimate of the mass of an electron is a million grams,
believe that your own best estimate of the mass of the electron, conditioning
on this fact, is a thousand grams? The condition (2) can be seen as demanding
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that, in whatever distribution we have over (impossible) possible worlds, the
possibility of our offspring assigning an estimate V = x corresponds to a group
of possible worlds in which V = x and the true value µ has an average value of
x. This is a counterintuitively strong condition on possible worlds, if µ is the
true mass of an electron and x is a million grams.

Note that by construction of η, the probability distribution for η(xn) has
finite probability density at every possible real value η(xn) = y,−∞ < y < +∞.
Even if η(x0) = 106 or some other value with extremely tiny probability, nonethe-
less, among possible worlds where η(x0) = 106, the expected maximum η(x1)
that is found is 106.

The property (2) is also proving difficult to obtain from Christiano-style
reflective probability distributions (Christiano et al. 2013), even with error terms
added in.

Thus a key question is whether there’s some intermediate guarantee between
the too-weak

E[φ(xn) − max
xn+1∈xn

φ(xn+1)] = 0

and the very strong

∀y ∈ R ∶ E[ max
xn+1∈xn

η(xn+1)∣η(xn) = y] = y ,

that will also enable staged EU maximizers to tile.
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