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Abstract

Economic growth has so far come from human minds. The future could bring soft-
ware minds: AIs designed from scratch, or human brains transferred to computer hard-
ware. Such minds could substitute for humans in a wide range of economic activities—
including the research and development that are essential to economic growth. Once
minds are software products, they can be copied, accelerated, and improved by eco-
nomic activity. Our goal in the present manuscript is to explore the implications of a
mathematical model of an economy heading toward a technological singularity due to
such feedback effects. Specifically, we start from a classic endogenous model of eco-
nomic growth from Romer (1990), which models the technology level A as represent-
ing the number of available designs for different producer durables with additively sep-
arable effects on output, and which includes a fixed stock of human capital allocated
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endogenously to either the production of goods or the research of new designs. We
modify this model by assuming that beyond some level of technology Aθ, the durables
produced can substitute for human capital H as H = Hθ + h

∑
i>Aθ

xi, where h is
the marginal rate of substitution of product i for human capital and xi is the amount
of durable i produced. Our findings are as follows. First, the model reaches a verti-
cal asymptote in finite time for all of the growing variables (capital, technology level,
consumption, etc.). Second, the asymptote has the nature of a simple pole of the form
A(t) = a

exp(bt)−c
for constants a, b, and c. Third, an explicit bound is calculated for

the time required to reach the vertical asymptote from the time when Aθ is reached.
Fourth, the conclusions remain qualitatively unchanged even if Romer’s main assump-
tion regarding the growth of technology Ȧ = δ ·HA ·A is weakened to Ȧ = δ ·HA ·Aγ ,
where HA is the amount of human capital devoted to research and γ is any positive
constant.
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1. Introduction

Our goal in the present manuscript is to explore the implications of a mathematical
model of an economy capable of manufacturing human-equivalent minds, including
the implication of a possible technological singularity. As reviewed in Sandberg (2010),
there have been many previous models of this development (Sandberg 2010; Hanson,
forthcoming, 1994). Our present effort differs from these previous models by using the
growth model of Romer (1990), which is arguably the current standard paradigm for
endogenous economic growth.

Romer’s endogenous growth model assumes optimal behavior of every facet of an
economy. Loosely speaking, this means that the price of anything exactly pays for the
value it produces, with the exception that inventors capture only the direct value of their
invention, and not the value their invention adds to others’ future research. The model
predicts exponential growth once the amount of human capital H exceeds a threshold
value (see Figure 1). Below this value, no research is performed and growth equals

Figure 1: Figure adapted from Romer (1990). The vertical axis shows the exponent for the growth of the economy
and the amount of human capital devoted to research, HA as a function of the total amount of human capital.

zero; above this value, the exponential growth rate increases linearly with H . Thus, it
is not surprising that our hypothesis of creating additional human capital H results in
super-exponential growth—we move up the line as we produce H . We find that even
rather mild hypotheses allowing production ofH cause economic output to reach infinity
in finite time, provided such production increases H with no upper bound. As argued
in Sandberg (2010), such blow-up is not to be taken literally, but rather means that the
model predicts a transition to some other regime where the assumptions underlying the
model no longer apply.

The main part of Romers model responsible for the blow-up is also present, and
also causes a blow-up, in several of the papers reviewed by Sandberg (Sandberg 2010;
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Heylighen 2007; Kremer 1993)
dA

dt
= δHAA (1)

where δ is a constant of proportionality, A is the level of technology, and HA is the
amount of human capital devoted to research. For Romer, human capital H is constant.
For constant HA, A grows exponentially, and can be viewed as the driving force behind
the exponential growth of the whole economy. This growth dynamic, however, would be
completely changed by the possibility of software minds that add to human capital, or
even significantly weaker technologies that merely enhance human productivity in such
a way as to increase H without bound. Once HA starts growing as some power v of A,
dA
dt

grows as A1+v with v > 0, and knowledge A, and the total economic output with it,
go to infinity in finite time.

2. Reviewing Romer’s Model

Technology is modeled by Romer as a sequence of “recipe” indexed by i, i = 1, ..., A.
The final output Y is

Y = Hα
YL

β
A∑
i=1

x1−α−β
i (2)

where HY is the human capital used in production, L is labor, and xi is the number
of units of output produced according to recipe i and used in production of durables.
Thus, the more recipes that have been produced (via research), the greater the total
economic output. The production of consumer goods is modeled only implicitly, by
relating production of durables to foregone consumption. Finally, the production of the
research sector is given by a slightly rearranged form of equation 1:

∆A = δHAA∆t (3)

As stated in Romer (1990):

An equilibrium for this model will be paths for prices and quantities such
that (i) consumers make savings and consumption decisions taking interest
rates as given; (ii) holders of human capital decide whether to work in the
research sector or the manufacturing sector taking as given the stock of total
knowledgeA, the price of designs PA, and the wage rate in the manufacturing
sector wA; (iii) final-goods producers choose labor, human capital, and a list
of differentiated durables taking prices as given; (iv) each firm that owns a
design and manufactures a producer durable maximizes profit taking as given
the interest rate and the downward-sloping demand curve it faces, and setting
prices to maximize profits; (v) firms contemplating entry into the business of
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producing a durable take prices for designs as given; and (vi) the supply of
each good is equal to the demand.

Within Romer’s model, all durables i < A face the same demand and supply functions,
resulting in equal amounts fix of all durables, fetching a price p and profit π = (α+β)px.
This profit just pays for the interest on the cost of the invention PA with PA = π/r,
where r is the discount rate. Wages for the two sectors are equal, wY = wA, and
determine the allocation of total human capital H = HA + HY , with HA = aH − b,
where

α =
1

δΛ + 1
;Λ =

α

(α + β)(1− α− β)
(4)

with δ equaling the parameter of a Ramsey consumer with utility function

U(C) =
C1−δ − 1

1− δ
(5)

In particular, note that this has the growth in HA proportional to growth in H ,

∆HA = a∆H (6)

3. Modifying Romer’s Model

We extend Romer’s model to include the possibility that beyond some level of tech-
nology Aθ, the durables produced can substitute for human capital H . Thus, H is no
longer constant, but depends on the production levels of those durables that can sub-
stitute for human capital. The simplest dependence, and one that calculus assures us
must hold for small changes, is a First order Taylor series H(x) = H0 +

∂H
∂x

x. For
simplicity, we assume that this local linear approximation holds even for large values of
x; thus, our chosen modification of Romer is to take H = Hθ + h

∑
i>Aθ

xi, where
h = hi = ∂HY

∂xi
> 0 is the marginal rate of substitution of any product i > Aθ for

human capital and xi is the amount of durable i produced. As our initial state, we as-
sume an economy following the endogenous exponential growth path solving the classic
Romer model. We further assume that the technology reaches a threshold level Aθ, at
which we reach designs i > Aθ that provide recipes for durable goods that increase H by
substituting for educated humans in manufacturing and research. We assume also that
equation 6 stays valid. While this may not be the optimal allocation for the social plan-
ning problem Romer considers, once many recipes i > Aθ exist, it is enough to make
the objective function reach infinity, and thus is as good as any other allocation with
this property. The model does not distinguish true software minds from any technolo-
gies that extend effective human capital; this may be interpreted as including existing
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technologies such as Google, Mathematica, etc. insofar as these extend the effective
education of researchers.

Once recipes that can be used to increase H have been discovered, all goods are no
longer equivalent. Romer’s production function implies that smart goods have greater
quantities, greater prices and result in greater profits. Thus they are more profitable to
develop recipes for and the research sector only develops smart new recipes.

One surprising finding follows from the relationship between PA and the wage w =

wA. In Romer, the entire profit of the research sector becomes wages to the human
capital HA used in this sector. Thus

wA =
PA∆A

HA

=
∂Ȧ

∂HA

= δPAA (7)

Since both PA and A are growing, Romer’s model predicts a growing wage rate. Despite
the fact that the amount of human capital tends to infinity, H → ∞, the profitability of
each hour of human capital expended toward research also tends to infinity!

A second finding concerns the assumptions required for blow-up. Within Romer’s
model with constant H , the sustained exponential growth of the economy depends on
the assumption that the rate of innovation is proportional to both the amount of human
capital and the amount of existing knowledge: ∆A ∝ HAA. Romer notes that this is
an assumption rather than a result of his model, and that sustained exponential growth
disappears if we do not assume proportionality to A. However, once Romer’s model
is modified to allow for inventions that substitute for human capital, the assumptions
required for unbounded growth become much weaker. Specifically, consider replacing
Romer’s growth equation with the more general form

dA

dt
= δHv

AA
γ (8)

Any time v + γ > 1, the economic output reaches infinity in finite time. Specifically,
this is the case for v = 1 and γ > 0, so it holds even if “low-hanging fruit” for research
is depleted much more quickly than in Romer’s model. If v + γ = 1, the production
of the research sector shows constant returns to scale and we see exponential growth for
the economy, while, if v + γ ≤ 1 (indicating both the exhaustion of low-hanging fruit
for research, and limited parallelizability of research), the economic output stays finite
and does not blow up. Using v = γ = 1 as in Romer, and HA = u + v(A− Aθ), with
constants u and v, we find the solution

A(t) =
Aθ(−u+ vAθ)

vAθ − ueδ(−u+vAθ)t
(9)

which reaches infinity for

t = ln(
vAθ

u
)δ−1(−u+ vAθ)

−1 (10)
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The case of interest has u = Hθ which is indeed constant while v = h(1− a)
∑

i>Aθ
xi

is not. In fact v is increasing but such increase merely serves to increase HA faster and A

reaches its vertical asymptote more quickly. It follows that the time t given in equation
10 is only an upper bound and the model actually blows up before t reaches this value.
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