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Abstract

We suggest a tractable algorithm for assigning probabilities to sentences of first-
order logic and updating those probabilities on the basis of observations. The core
technical difficulty is relaxing the constraints of logical consistency in a way that is
appropriate for bounded reasoners, without sacrificing the ability to make useful logical
inferences or update correctly on evidence.

Using this framework, we discuss formalizations of some issues in the epistemology
of mathematics. We show how mathematical theories can be understood as latent
structure constraining physical observations, and consequently how realistic observa-
tions can provide evidence about abstract mathematical facts. We also discuss the
relevance of these ideas to general intelligence.
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1 Introduction

1.1 Motivation

Probability theory provides a powerful framework for reasoning under uncertainty, and many
aspects of human cognition can be understood as probabilistic reasoning. Unfortunately, the
simplest models tend to be general but computationally intractable, while practically relevant
algorithms tend to rely on ideas which are ad hoc and more narrowly applicable.

One challenge in bridging the gap between theoretically simple models and practically rele-
vant algorithms is coping with logical uncertainty : any realistic agent is necessarily uncertain
not only about its environment or about the future, but also about the logically necessary
consequences of its beliefs. An agent might suspect that a particular physical theory is
correct, yet be uncertain about the predictions of that theory until it performs some com-
putation. To date there have been few conceptually clean proposals for algorithms which
handle such uncertainty in a general and principled way.

Related to this is the rich structure of human deductive reasoning, which appears to play
a central role in intellectual activity yet is typically either trivialized by or omitted from
probabilistic accounts of general cognition.

In this work we provide simple, general, and potentially tractable algorithms for reasoning
in the presence of logical uncertainty. These algorithms are probabilistic, not because the
environment is uncertain (though this may also be true) but because confidence about logical
propositions imposes unrealistic computational demands.

In addition to its potential algorithmic relevance, having a concrete yet general model of
bounded reasoning provides a setting for considering a wide range of epistemological problems
formally. We will pay particular attention to the epistemology of mathematics, and to the
relationship between abstract mathematical knowledge and reasoning about concrete finite
objects.

1.1.1 Metamathematics

Within the formal practice of mathematics, axioms are typically taken for granted and their
consequences are explored. Outside of formal mathematics, mathematicians reason about
those consequences and come to judgments about which axiom systems are reasonable, useful,
or “true.” Metamathematics has had considerable success in describing the formal process
of mathematics (though many of its most impressive results have been limitative), but has
largely stayed away from the “extra-formal” process by which mathematicians decide what
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axioms they ought to accept.

In this paper we consider Bayesian prior over “mathematical states of affairs,” and view
observations about the world as providing Bayesian evidence about underlying mathematical
facts. For example, if we observe the behavior of a calculator we may infer the laws of
arithmetic as an explanation for its behavior. Having made that inference, we can use
deduction to infer that if we enter “3 + 4 - 3” we will see “4.” But now the process can also
be turned on its head: when we type “134 * 345” and see “46230,” we can make inferences
about the mathematical state of affairs underlying reality.

When we observe a few values of a function f(0), f(1), . . . we can make inductive gener-
alizations about the behavior of f . After inferring many generalizations we can begin to
make generalizations about generalizations, and come to have well-grounded beliefs about
mathematical abstractions.

1.1.2 Bounded universal intelligence

There has been some recent interest in the idea of “universal” intelligence, i.e. single algo-
rithms which yield adequate or optimal behavior in a wide variety of situations. For example,
see [3, 5]. This work tends to bear little resemblance to practical work in AI or learning the-
ory. One reason for this divergence is that existing proposals for universal intelligence tend
to rest on on exhaustive searches over possible policies or explanations. The “finite” analogs
that have been considered additionally rely on mathematical proof as a basis for judgments.

The algorithms we present here can be used as a basis for universal intelligence (see the
discussion in section 5); though there is still a substantial gap between our techniques and
directly practical algorithms, our work much more closely resembles practical techniques for
learning than the brute force search that has characterized past efforts.

Moreover, past approaches to bounded universal intelligence have relied on the use of math-
ematical proofs of optimality as a guide for decision-making. These strike us as highly
unsatisfactory: most empirically successful policies cannot be supported by proofs of good
performance, and it is far from clear whether any policies even have provable bounds on
performance which would be satisfactory1. In light of this, it seems unlikely that such
proof-based approaches can properly be considered universal intelligence (even setting aside
computational issues).

1Ironically, proof-based techniques themselves typically fall into this category, and so such proposals for
universal intelligence are “optimal” only when compared to a class of agents which is too narrow to include
themselves:

1. The validity of proofs in a particular system cannot be verified by any proof within that system. In
practice, the soundness of human reasoning is accepted by humans either on the basis of inductive
reasoning or (though it seems less likely to the author) on the basis of some as-yet poorly understood
human capacity.

2. Even accepting that a theory T is sound, it appears to be essentially impossible to provably lower-
bound the performance of an agent which takes an action only if it provably has good consequences.
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An agent which makes decisions on the basis of probabilistic judgments can pursue the
action which they believe to be best, regardless of how complex the situation is. Such agents
are never “stuck” doing nothing because they cannot find a proof of any action-relevant
statements.

1.2 Guide to the paper

The remainder of Section 1 briefly discusses related work, and makes some notes on the
relationship between efficiency and computability.

In Section 2 we develop some logical preliminaries, and lay out notions of logical coherence
which are suitable for bounded reasoners.

In Section 3 we provide an explicit construction of a coherent prior distribution which reflects
a condition of ignorance.

In Section 4 we describe some examples of mathematical reasoning within our framework.

In Section 5 we describe how this prior can be extended and incorporated into a general
system for goal-oriented behavior.

In Section 6 we point to some open problems suggested by the formalism developed here,
and discuss the implications of this work.

1.3 Related work

The problem of logical non-omniscience has been considered at some length in formal epis-
temology; a central question in this area is under what conditions we might say that a
reasoner’s beliefs are consistent with the evidence they have received, when the reasoner is
not able to deduce all of the logical consequences of statements which they believe. Several
notions have been proposed, some of which, particularly [2], are quite similar to our own.
Our motivation is more algorithmic than philosophical, and our further contributions are to
provide notions of coherence that are plausibly suitable for efficient reasoning, to examine the
construction of priors under our coherence conditions, and to consider the application of the
resulting systems to mathematical reasoning and to goal-oriented behavior more generally.

The problem of assigning prior probabilities to logical sentences has also received some re-
cent attention [1, 4]. Our work differs primarily by offering constructions which are in closer
concordance with existing techniques, and which are more appropriate for use by bounded
reasoners. We also take more interest in the application of these systems to understanding
mathematical reasoning (in this section we could just as well substitute our proposed algo-
rithms for finite approximations to those of Hutter or Demski), and to goal-oriented behavior
(in this section we make more use of the distinctive properties of our proposal).

There is a massive literature on practical probabilistic reasoning. This work typically con-
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siders the problem of constructing practically useful models and on finding algorithmic ap-
proaches to reasoning about models in which exact inference is intractable. We suspect
that, properly understood, mathematical reasoning provides a rich source of challenges for
researchers working on approximate inference. Our goal is to help fortify this connection
by providing a formal model of the problem and an example of how algorithmic techniques
might be applied.

Some philosophers working on mathematical epistemology have considered more explicitly
the interaction between probabilistic reasoning and mathematical reasoning. We hope to
contribute to this research program by providing clearer formal models for probabilistic
reasoning about mathematics, which allow us to arbitrate between conflicting intuitions and
to focus our attention on those aspects of mathematical reasoning which currently elude our
formal models.

Finally, as alluded to in section 1.1.2, there has been a small amount of research on algorithms
which can reproduce intelligent behavior (at least in theory) in as broad a range of domains
as possible[5, 3]. In some sense our work can be seen as a continuation of this program,
and an effort to design more realistic and efficient algorithms for universal intelligence. Our
work differs from existing research by providing an explicit account of probabilistic reasoning
given bounded resources, which seems likely to be a key ingredient in any approach to general
intelligence.

1.4 Efficient, finite, and infinite

Throughout this paper we will consider three domains: learners which are efficient, learners
which are computable but not necessarily efficient, and learners which make use of a halting
oracle. We imagine each type of algorithm as observing and interacting with a world which
is somewhat more complicated than itself: the finite learners interact with an environment
which is finite but more computationally complex than they are, while the infinite learner
interacts with an environment that is even more infinite than it (either by making more calls
to the halting oracle, or by lying even farther up the arithmetical hierarchy).

As we move from infinite to finite to efficient algorithms, we are able to enforce weaker and
weaker consistency conditions on the probability distributions we maintain. Each step seems
to present significant additional difficulties, and so in general we will first present an idea
in the context of an infinite learner and only later show how to scale it down to a finite or
efficient learner.

Crudely speaking, we might see the infinite domain as analogous to traditional metamathe-
matics or to recursion theory, while the efficient domain is analogous to proof complexity or
computational complexity. Though the latter domains share much of the technical machinery
from the former, the situation has proven to be qualitatively more complex.

The role of mathematical reasoning in the case of finite versus infinite reasoning is also
conceptually different. The infinite agents we consider know all first-order consequences of
anything they know—i.e., if ϕ ` ψ and they believe ϕ, then they believe ψ. For them, the
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difficulty is that they are interested in infinite statements whose truth is not pinned down
by any enumerable list of axioms, and they reason about the truth of stronger mathematical
theories as an explanation for these complex statements.

The finite agents we consider are interested in strictly finite statements about the world.
So in principle they may be able to infer everything they care about from a very short list
of axioms—they have no intrinsic interest in statements like ∀x : ϕ (x). But this inference
might take an extremely long time. For these finite agents, the machinery of logic is useful
as a computational expedient. (A similar situation obtains in the field of proof complexity,
where in some sense cut-elimination and Herbrand’s theorem show that the use of quantifiers
is extraneous. Quantifiers still play an important role, however, in controlling the complexity
of a proof. Our situation is similar in spirit though technically quite different.)

The importance and non-trivial structure of mathematical reasoning do not appear to be
unique to any of these domains (finite, infinite, and efficient). Rather, it is characteristic
of situations in which a learner’s environment is more complex than the learner itself. We
suggest that building any agent which successfully reasons about an environment more com-
plex than itself is a useful “first step” for a formal account of epistemology or universal
intelligence.

2 Coherence

2.1 Logical preliminaries

For concreteness, and to keep the exposition simple, we will consider a single first-order
language L containing:

• An unlimited supply of variables: x1, x2 . . ..

• An unlimited supply of constant symbols: c1, c2, . . .,

• For each k ≥ 1, an unlimited supply of k-ary predicate symbols: Ak1, A
k
2, . . .,

• For each k ≥ 1, an unlimited supply of k-ary function symbols: fk1 , f
k
2 , . . ..

We will work with classical logic, and choose a Hilbert-style deductive system in which modus
ponens is the only rule of inference. This will greatly simplify our algorithms, since in our
context modus ponens is a consequence of additivity for probability distributions.

In general, we are interested in learners who take no axioms for granted other than those of
first-order logic with equality: everything else is to be learned from experience2. We will often

2In fact it is also possible to consider systems for which the axioms of first-order logic are themselves
merely inductive generalizations, and the laws of probability theory are the only built-in epistemic principles.
But taking such an extreme position at the outset would complicate the exposition considerably, and so we
leave fleshing out this position to future work.
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discuss agents who accept some stronger set of axioms, particularly Robinson arithmetic3.
We are interested in the behavior of an agent who axiomatically accept Robinson arithmetic
primarily as a simple approximation to the behavior of an agent who provisionally accepts
Robinson arithmetic as an explanation for some observations (we will discuss this much more
in section 4). However, the skeptical reader can just as well imagine that we sometimes work
with an agent who accepts the axioms of Robinson arithmetic along with first-order logic.

Recall that Robinson Arithmetic Q is axiomatized by the following 8 axioms, where S is one
of the unary function symbols, + and ∗ are two of the binary function symbols (we write
them in infix notation for convenience), and 0 is one of the constant symbols:

1. ∀x : Sx 6= 0.

2. ∀x, y : Sx = Sy → x = y.

3. ∀x : x 6= 0→ ∃y : x = Sy.

4. ∀x : x+ 0 = x.

5. ∀x, y : x+ Sy = S(x+ y).

6. ∀x : x ∗ 0 = 0.

7. ∀x, y : x ∗ Sy = (x ∗ y) + x.

2.1.1 Equivalent sentences

Though we will talk about probabilities of sentences, we are really interested in the probabil-
ities of events defined by sentences. We would like to define our probability distributions over
such events rather than needing to pay attention to the details of the way in which an event
is represented by a sentence. It will therefore be useful to have a notion of “trivial” equiv-
alence between logical sentences, and to define our probability distributions on equivalence
classes of sentences. This allows us to move freely between equivalent representations.

However, because we are ultimately interested in efficient algorithms, we need to ensure
that there is an efficient algorithm to judge whether two sentences are equivalent. So for
example, it would be inappropriate to consider two sentences equivalent if their equivalence
is a propositional tautology, because identifying propositional tautologies is computationally
intractable.

We opt for a fragment of logic which lacks the distributivity laws for conjunction and disjunc-
tion but which is otherwise complete. This is motivated by the observation that although
(ϕ ∨ ψ) ∧ ξ is equivalent to (ϕ ∧ ξ) ∨ (ψ ∧ ξ), this operation increases the representational
complexity of the sentence and so corresponds to a non-trivial representational transforma-
tion.

3A minimal set theory would serve an identical role; we have sacrificed some conceptual simplicity for
greater familiarity.
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Note that although this notion will allow us to more comfortably manipulate sentences, it is
primarily a technical convenience and does not play an essential conceptual role.

Definition 1 (Trivial equivalence). We define ∼ as the minimal equivalence relation satis-
fying the following conditions: For each ψ, ϕ, ξ:

(ψ ∧ ϕ) ∼ (ϕ ∧ ψ).(
ψ ∧ (ϕ ∧ ξ)

)
∼
(
(ψ ∧ ϕ) ∧ ξ

)
.

(ϕ ∧ ϕ) ∼ ϕ.

(ϕ ∧ ¬ϕ) ∼ ⊥.

(¬¬ϕ) ∼ ϕ.

(ϕ ∧ ⊥) ∼ ⊥

(ϕ ∧ >) ∼ ϕ

¬⊥ ∼ >

(ψ ∨ ϕ) ∼ ¬ (¬ψ ∧ ¬ϕ)

(ψ → ϕ) ∼ (ϕ ∨ ¬ψ)

∃x : ϕ (x) ∼ ¬∀x : ¬ϕ (x)

If xj is not free in ϕ, then (∀xi : ϕ) ∼
(
∀xj : ϕ

[
xi = xj

])
.

And whenever ϕ ∼ ψ:

¬ϕ ∼ ¬ψ (∀x : ϕ) ∼ (∀x : ψ) (ϕ ∧ ξ) ∼ (ψ ∧ ξ).

If ϕ ∼ ψ, we say that ϕ and ψ are trivially equivalent.

The important fact about trivial equivalence is that it is easy to determine whether two
sentences are equivalent:

Theorem 1. It is possible to determine whether ϕ ∼ ψ in n log2 n time, where n is the total
length of ϕ and ψ.

Essentially, we can greedily apply the rules defining ∼ until we arrive at the simplest rep-
resentation of some ϕ, which is unique. The proof is not difficult but involves a tedious
structural induction and is deferred to the appendix. In fact, this proof technique shows
that given a set of sentences with total length N , we can divide them into equivalence
classes under trivial equivalence in time N log2N .

2.2 Coherence

Now we will define what we mean by a probability distribution over logical facts. We follow
the definition of Gaifman[2].

Rather than thinking in terms of models, we will think about a probability distribution as
a map P : L → R. There are coherence conditions imposed on this map by the logical
relationships amongst sentences, together with the usual probabilistic laws.
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Definition 2 (Coherence). We say that a map P : S → R is coherent with respect to a set
of sentences S if it satisfies the properties:

1. Normalization: P (>) = 1.

2. Preservation of axioms: For any axiom ϕ ∈ S, P (ϕ) = 1.

3. Non-negativity: P (ϕ) ≥ 0.

4. Weak consistency: if ϕ ∼ ψ, then P (ϕ) = P (ψ).

5. Additivity: P (ϕ) = P (ϕ ∧ ψ) + P (ϕ ∧ ¬ψ).

Let ∆ (S) be the set of all maps P : S → R which are coherent with respect to S.

The axioms may be taken to be only the axioms of first-order logic, or may include the
axioms of some theory of interest T .

If S is the set of all sentences, then we simply say that P is coherent. Otherwise we say that
P is locally coherent.

Many similar definitions have appeared recently all of which are essentially equivalent in
the case of S = L to Kolmogorov’s formulation. Our presentation differs slightly from
the traditional presentation for the sake of computational convenience: we use preservation
of axioms and weak consistency in place of preservation of theorems because of its nicer
computational properties, and adopt a purely syntactic formulation of additivity.

To justify our definition, we reproduce the following standard theorem which shows that
these conditions are exhaustive, modified for our alternative axiomatization. It is worth
noting that the result makes no use of the fact that P assigns probability 1 to axioms of
first-order logic, except in the conclusion that the theories T are theories of first-order logic.
If we weakened the preservation of axioms condition, we would obtain a similar theorem but
with respect to some broader class of assignments L → {⊥,>} than consistent theories of
first-order logic.

Theorem 2. A distribution P is coherent if and only if there is some probability measure µ

on the space of complete consistent theories such that for all ϕ, P (ϕ) = µ
({
T |T ` ϕ

})
.

Proof. It is easy to verify that for any µ, the function P : L → R defined by µ is co-
herent. It remains to show that for any coherent P, we can find a measure µ such that

P (ϕ) = µ
({
T |T ` ϕ

})
. We will describe a process which generates a theory, such that the

distribution of theories generated by the process reproduces P in the appropriate way.

The first step is showing that if ` ϕ, then P (ϕ) = 1. Let S be the set of sentences that are
assigned probability 1. Since P preserves axioms, each axiom is in S. So it suffices to show
that S is closed under modus ponens. First we make some preliminary observations:
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• By additivity and non-negativity, P (ϕ ∧ ψ) ≤ P (ϕ).

• By weak consistency P (> ∧⊥) = P (⊥), P (> ∧>) = P (>). By normalization and
additivity, P (⊥) = 0.

• By weak consistency, P (ϕ ∧ ¬ϕ) = 0. By additivity and normalization, it follows that
P (ϕ) = 1− P (¬ϕ).

• By weak consistency and the previous observation, P (ϕ→ ψ) = 1 if and only if
P (ϕ ∧ ¬ψ) = 0.

Now suppose that ϕ ∈ S and ϕ→ ψ ∈ S. Then by the preceding observations and additivity:

P (ψ) ≥ P (ϕ ∧ ψ) = P (ϕ ∧ ¬ψ) + P (ϕ ∧ ψ) = P (ϕ) = 1,

hence S is closed under modus ponens and contains all theorems of first-order logic. We
conclude that if ` ϕ, then P (ϕ) = 1.

Now, fix some enumeration ϕ1, ϕ2, . . . of all of the sentences of L. Let T0 = ∅ and iteratively
define Ti+1 in terms of Ti as follows. If Ti is complete, we set Ti+1 = Ti. Otherwise, let ϕj
be the first statement in our enumeration which is independent of Ti.

Let Ti+1 = Ti ∪ ϕj with probability P
(
ϕj
∣∣ Ti)4 and Ti+1 = Ti ∪ ¬ϕj with probability

P
(
¬ϕj

∣∣ Ti). Because ϕj was independent of Ti, the resulting system remains consistent in
either case. Define T = ∪iTi. Since each Ti is consistent, T is consistent by compactness.
For each i, ϕi or ¬ϕi will eventually be included in the theory so T is complete.

By additivity and weak consistency

P (ϕ | Ti) = P
(
ϕ
∣∣ Ti ∧ ϕj)P (ϕj ∣∣ Ti)+ P

(
ϕ
∣∣ Ti ∧ ¬ϕj)P (¬ϕj ∣∣ Ti) ,

thus the sequence P (ϕ | Ti) is a martingale.

Since P (T ) = 1 if T is a theorem, if T ` ϕ then P (ϕ | T ) = 1. Since Ti ` ϕ or Ti ` ¬ϕ
for large enough i, P (ϕ | Ti) stabilizes at either 0 or 1. Moreover, T ` ϕ iff this sequence
stabilizes at 1. The martingale property then implies that T ` ϕ with probability P (ϕ | T0) =
P (ϕ).

2.2.1 Impossibility

Ultimately we are interested in understanding finite agents. Unfortunately, a finite agent
cannot find any coherent mapping P ∈ ∆ (S), even implicitly.

Theorem 3. There is no recursively approximable coherent map P : L → R which assigns
non-negligible probability to the axioms of Q.

4 By definition P (T ) = P
(
∧ϕ∈Tϕ

)
, which is defined uniquely by weak consistency, and P

(
ϕj

∣∣ Ti

)
=

P(ϕj∧Ti)
P(Ti)

. It is easy to verify by induction that P (Ti) > 0 with probability 1, over the random choices of our
process.
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Proof. Suppose P′ was such a map. Then we can define a new coherent map P which assigns
probability 1 to Q, via

P (ϕ) = P′ (ϕ | Q) .

Note that P is also recursively approximable. It is coherent, because it is obtained by
conditioning the distribution over theories corresponding to P′ on the event that the theory
entails Q.

Thus there is a Turing machine M such that M halts on input pϕq and outputs 0 if P (ϕ) = 0
and 1 if P (ϕ) = 1—M can simply compute increasingly accurate approximations to ϕ until
it either proves P (ϕ) < 2

3
, in which case it outputs 0, or P (ϕ) > 1

3
, in which case it outputs

1. One of these is guaranteed to happen eventually.

Since P (Q) = 1, by diagonalization we can construct a sentence ϕ such that P (ϕ) =
P
(
M (pϕq) = 0

)
. Since M always halts, it is either a theorem of Q that M (pϕq) = 0

or M (pϕq) = 1. Thus one of these statements is true and has probability 1. Suppose that
M (pϕq) = 1 and hence P

(
M (pϕq) = 1

)
= 1. Then P (ϕ) = 0, and so by construction of

M M (pϕq) = 0, a contradiction. If instead M (pϕq) = 0, then P
(
M (pϕq) = 0

)
= 1. Then

P (ϕ) = 1, so by construction of M M (pϕq) = 1, a contradiction.

In light of this impossibility result (and the even more serious difficulties when we try to
design efficient algorithms), we rely on a weaker notion of coherence.

2.3 Local coherence

For any finite set S, it is possible to find locally coherent distributions P ∈ ∆ (S) in an
amount of time polynomial in the size of S.

One remaining question is what class of sentences to take. Representing a larger class
introduces significant computational complexity, but allows us to represent more complex
hypotheses and perform more complex deductive reasoning. This is simply the traditional
tension between accuracy and complexity.

For now, we will assume that we have already identified a reasonably-sized set S0 containing
some sentences of interest to us—descriptions of what we may observe or decide, statements
about what we value, explanatory hypotheses which might account for our observations, and
so on.

Two considerations seem important when selecting S:

1. Even if we are only interested in S0, we may want to consider a distribution which is
coherent over a larger set in order to constrain our beliefs about S0 further.

2. If ϕ, ψ ∈ S0 and P ∈ ∆ (S0), it isn’t clear how to define P (ϕ | ψ). Typically this would
be defined in terms of P (ϕ ∧ ψ), but if S0 isn’t closed under conjunctions then ϕ ∧ ψ
need not be in the domain of S0. Requiring S to be large enough to form arbitrary

13



conditional probabilities for observations in S0 is typically prohibitive (it requires S to
be as large as all possible subsets of S0).

In this section we describe finite but radically impractical notions of coherence, which are
comparable with those that have been presented in the literature. In the following section,
we turn our attention to tractable notions of coherence, which prove to be substantially more
challenging.

2.3.1 Preserving propositional tautologies

One approach to relaxing logical omniscience is to assume that propositional tautologies are
assigned probability 1, while allowing tautologies of first order logic to be uncertain [2].

Define cl (S0) to be the closure of S0 under conjunctions and negations: cl (S0) consists of
every sentence of the form

∧
i

ϕi, where each ϕi is either a sentence of S0 or its negation.

Coherence with respect to cl (S0) is the minimal criterion necessary for being able to condition
on arbitrary sentences of S0 arbitrarily many times. Indeed, we have:

P (ϕ | ϕ1 ∧ · · · ∧ ϕk) =
P (ϕ ∧ ϕ1 ∧ · · · ∧ ϕk)
P (ϕ1 ∧ · · · ∧ ϕk)

,

and so if a probability distribution is not coherent with respect to cl (S0), there is no clear
approach to conditioning on observations in S0 while remaining coherent.

Although cl (S0) contains only conjunctions of sentences in S0, if P is coherent with respect
to cl (S0) we can straightforwardly extend it to sentences of the form ϕ ∨ ψ by using the
principle of inclusion and exclusion.

Because the size of cl (S0) is 2|S0|, coherence with respect to cl (S0) is typically too demanding
for a tractable algorithm. This is not a rectifiable deficiency; coherence with respect to cl (S0)
implies that propositional tautologies receive probability 1, and identifying propositional
tautologies is NP-hard and generally believed to require exponential time.

2.3.2 Bounded quantifier rank

If we are only interested in producing finite algorithms without concern for computational
efficiency, we can enlarge the set S0 far beyond cl (S). In this section we will lay out a
considerably stronger notion of coherence. For simplicity, the reader uninterested in com-
putational complexity can use this as a model for our “idealized mathematical reasoner” in
our discussions of mathematical epistemology.

Coherence with respect to cl (S0) allows us to make any purely logical arguments concerning
the sentences in S0, but it causes us to treat quantified statements as if they were atoms,
constrained only by whatever relationships appear in the set S0 itself.

14



Unfortunately, if we allow ourselves to construct new terms arbitrarily, it is not clear what
stops our problem from again becoming uncomputable. For example, if we accept the axioms
of arithmetic and are able to reason about the term x + 1 whenever we are able to reason
about the term x, then we must assign probability 1 to every true Σ1 arithmetical sentence.
This is impossible, as per the argument in 3.

Our approach is to allow ourselves to construct new terms of limited complexity. This yields
a set of sentences which has strong closure properties, yet is still finite. This notion is very
closely related to quantifier rank, and indeed we could make use of quantifier rank directly if
we worked with a purely relational language. We present the definition here for convenience:

Definition 3 (Functional quantifier rank). The functional quantifier rank qr (·) of a formula
ϕ or term t is defined inductively as follows:

• qr (t) = 0 if t is a constant symbol or variable.

• qr
(
f(t1, . . . , tk

)
) = max

(
qr (t1) , . . . , qr (tk)

)
+ 1.

• qr
(
A(t1, . . . , tk

)
) = max

(
qr (t1) , . . . , qr (tk)

)
.

• qr (ϕ ∧ ψ) = qr (ϕ ∨ ψ) = max
(
qr (ϕ) , qr (ψ)

)
.

• qr (¬ϕ) = qr (ϕ)

• qr
(
∀x : ϕ (x)

)
= qr

(
∃x : ϕ (x)

)
= qr

(
ϕ (x)

)
+ 1

Write L [k] for the set of ϕ ∈ L with qr (ϕ) ≤ k.

It is easily verified by induction on k that each L [k] contains only finitely many non-
equivalent sentences.

So given a set of sentences of interest S0, we can work with P ∈ ∆
(
L [k]

)
, where k is much

larger than the maximum quantifier rank of any ϕ ∈ S0. These distributions not only assign
probability 1 to propositional tautologies, they respect any deduction in first order logic
which requires manipulating terms of bounded complexity. It is possible to interpret these
distributions as distributions over stratified models, in which each quantifier ranges over
elements of some specified complexity ≤ k and every nested quantifier must range over a
larger set.

2.4 Tractable notions of coherence

When moving to the domain of tractable notions of coherence, we face the two difficulties
mentioned earlier:

1. An efficient reasoner cannot infer all consequences of their beliefs over propositional
logic, and so must make use of some approximate scheme to draw as many useful
inferences as possible.
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2. It is unclear how to update a compactly represented probability distribution on a
sequence of observations.

The first problem is a standard challenge in algorithms; for example, it is identical to the
problem faced in constraint satisfaction. We propose addressing it with standard tech-
niques from these domains. In particular, we propose applying the well-understand positive-
semidefinite relaxation of the marginal polytope to obtain a relaxation of ∆

(
cl (S0)

)
.

The second problem is more technical, but also appears to be quite important. We propose
considering P (· | ϕ) as the distribution which assigns probability 1 to ϕ and which has
minimal KL divergence to P. We can then estimate the KL divergence as the Bregman
divergence associated to a certain estimate of the entropy of P. The resulting algorithm is
conceptually simple, has a simple interpretation, and can be proven to be effective in simple
cases.

We will explain both these ideas in more depth over the following sections.

The effectiveness of this approach in general remains an open question. Indeed, we expect
that more sophisticated approaches are possible and will have more desirable properties.
However, this does appear to be a plausible, tractable algorithm for assigning probabilities
to mathematical claims, and we believe it might serve as a useful model for how this problem
can be approached.

In this section we will concern ourselves only with defining a notion of coherence which is
appropriate for bounded reasoners. In future sections we will turn our attention to actually
computing probability distributions which satisfy this notion of coherence.

2.4.1 Relaxing ∆
(
cl (S0)

)
Since S0 includes all of the sentences that we are interested in, our primary concern is
obtaining estimates for the probabilities of sentences in S0; it is only for the sake of accuracy
that we would like these probabilities to be extensible to a distribution in ∆

(
cl (S0)

)
. Write

M for the set of distributions in ∆ (S0) which can be extended in this way, i.e. the set
of projections of distributions in ∆

(
cl (S0)

)
to the coordinates in S0. Essentially, we are

interested in finding and updating distributions in M .

Unfortunately, it is easily seen to be impossible to optimize functions over M , or to determine
whether M is compatible wfrom ith some constraints of the form P (ϕi) = 1 (this is equivalent

to Boolean satisfiability). So our task amounts to finding some set M̃ which approximates
M well.

This is a problem which has been well-studied in the literature on probabilistic inference,
as well as the literature on constraint satisfaction and approximation algorithms. We will
consider the strongest relaxation typically considered, which appears to have some charac-
teristics that make it suitable for our setting. More powerful relaxations are possible and
are sometimes considered, but little can yet be said about their general usefulness.
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As usual, we stress that our work serves more as a demonstration of how these problems
could be addressed, and it is extremely unlikely that the actual implementations we provide
are the final say on the subject.

2.4.2 Sum-of-squares relaxations

One of the most widely successful paradigms in optimization has been the use of semidef-
inite programming relaxations. In this section we describe their application to the present
problem.

Write S0×S0 for the set of sentences of the form ϕ∧ψ, where ϕ, ψ are sentences in S0 or their
negations. Consider some P ∈ ∆ (S0 × S0). If P can be extended to a coherent distribution
on L, or even on cl (S0), then its restriction to S0 × S0 must satisfy some simple positivity
conditions. In particular, let αϕ ∈ R be a variable for each ϕ ∈ S0, and consider the sum∑

ϕ,ψ∈S0

αϕαψP (ϕ ∧ ψ) .

This sum is the expectation of a certain random variable, E
[
f 2
]
, where f is defined by

f =
∑
ϕ∈S0

{
αϕ if ϕ

0 else

Since f 2 is always non-negative, its expectation should also be non-negative. Thus for any
choice of α, we should have ∑

ϕ,ψ∈S0

αϕαψP (ϕ ∧ ψ) ≥ 0.

If we let ΣP be the matrix with rows and columns indexed by S0 and with (ϕ, ψ) entry given
by P (ϕ ∧ ψ), then this condition is precisely equivalent to the positive semi-definiteness of
ΣP (written ΣP ≥ 0). Write ∆+ (S0) for the set of P ∈ ∆ (S0 × S0) satisfying this constraint.

Example 1. Suppose S0 consists of three propositions p, q, r. Then there is a P ∈ ∆ (S0 × S0)
such that

P (p) = P (q) = P (r) =
1

2

P (p ∧ q) = P (q ∧ r) =
1

2
P (p ∧ r) = 0

Of course this distribution cannot be extended to a coherent distribution over S0 × S0 × S0.
We can detect this failure of extensibility by taking αp = αr = 1 and αq = −1, and noticing∑

αϕαψP (ϕ ∧ ψ) = −1

2
< 0.

Thus P /∈ ∆+ (S0). This provides a simple example of how ∆+ (S0) can impose “global”
constraints on P. It is well known that there are distributions P : S2

0 → [0, 1] which are
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not in ∆+ (S0) but which nevertheless have extensions in ∆
(
Sk0
)

for k = θ (n), where Sk0 =
S0 × S0 × · · · × S0.

Of course, there are also distributions P ∈ ∆+ (S0) which have no extension to cl (S0), or
even to ∆

(
S4
0

)
. So one must take care when describing such an objection as a “distribution”

(the expression “psuedodistribution” is sometimes used in the literature).

In addition to being testable in polynomial time (for example by computing the smallest
eigenvalue of ΣP), this constraint is particularly interesting for the following reason: if ΣP ≥ 0,
then there are random variables Aϕ such that P (ϕ ∧ ψ) = E

[
AϕAψ

]
. For example, we can

take A to be a multivariate normal distribution with covariance matrix ΣP. This provides
us with a way to understand P as a global description of S0, even though it only assigns
probabilities to sentences in S0 × S0. This is typically the property of interest in constraint
satisfaction, where this global description can be used to extract a solution to a constraint
satisfaction problem.

2.4.3 Entropy and updating

One special consequence of this global description of distributions in ∆+ (S0) is that we
can use it to obtain a measure of the information content of a P ∈ ∆+ (S0). Namely, we
can consider the differential entropy of some continuous distribution which has the same
moments as P. One natural candidate is the Gaussian with covariance matrix ΣP. This is
also the maximum achievable variance, and it has the very simple form log

(
|ΣP|

)
.

Inspired by the understanding of Bayesian inference in learning theory, there is a very close
connection between notions of entropy and Bayesian updating. The relative entropy (or KL
divergence) of one distribution P from another Q is given by

D (P‖Q) =
∑

outcomes x

P (x) log
P (x)

Q (x)
.

Intuitively, this measures how well Q approximates P.

An equivalent description of the distribution P (· | ϕ) is as the distribution which assigns
probability 1 to ϕ and minimizes the KL divergence from P. In fact, in the setting of online
learning theory this is the more natural way to describe a Bayesian update, which can be
more readily generalized and analyzed. So as long as we have an appropriate notion of KL
divergence, we can define an analog of Bayesian updating.

In fact the KL divergence can be calculated directly from the entropy as a Bergman diver-
gence, and so an analog of entropy naturally yields an analog of the KL divergence. In this
case, the resulting quantity is the KL divergence between the Gaussians with covariance
matrices ΣP and ΣQ, which is given by:

D
(
ΣP
∥∥ΣQ

)
=

1

2

(
log
∣∣ΣQ

∣∣− log |ΣP|+ tr
(

ΣPΣ−1Q − I
))

.
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This quantity is also called the logdet divergence between ΣP and ΣQ, and it has been used
successfully for matrix online learning in a number of contexts, most notably kernel and
metric learning.

Now we would like to define the distribution P (· | ϕ) as the distribution in ∆+ (S) which
assigns probability 1 to ϕ and minimizes D

(
ΣP(· | ϕ)

∥∥ΣP
)
. There is one more subtlety before

we can complete our definition. If P is coherent, then ΣP will necessarily not be of full rank
(for example, if ϕ is the negation of an axiom then P (ϕ ∧ ψ) = 0 for every ψ, so ΣP has a zero
row). So we will typically have log |ΣP| = log

∣∣ΣQ
∣∣ = −∞. We can extend the definition of

the logdet divergence to these cases as follows: let (ui, θi) be the eigenvectors and eigenvalues
of ΣP, and (vi, λi) be the eigenvectors and eigenvalues of ΣQ, sorted in decreasing order. Then
we can define

D
(
ΣP
∥∥ΣQ

)
=
∑
i,j

θi
λj
ui · vj +

∑
i

log
θi
λj
− r

where r is the rank of ΣQ, log 0
0

is taken to be 0 by convention in the second sum, and 0
0

= 0
in the first sum.

Now for P,Q ∈ ∆+ (S), define D (P‖Q) = D
(
ΣP
∥∥ΣQ

)
, and for ϕ ∈ S define P (· | ϕ) as the

distribution which assigns probability 1 to ϕ and which has minimum KL divergence from
P. It is easy to check that this function is concave in the first argument, and that it achieves
its minimum at D (Q‖Q) = 0. Hence this minimization is well-defined.

Moreover, we can implement perform convex optimization over ∆+ (S). Thus we can com-
pute P (· | ϕ) efficiently.

It is easy to verify the following theorem:

Theorem 4. If ψ ∈ S and P (ψ) = 0, then P (ψ | ϕ) = 0 as well. Thus conditioning on a
sequence of observations ϕi ∈ S results in a distribution which assigns probability 1 to each
of them.

Proof. If the range of ΣP is not equal to the range of ΣQ, then there is some v with vTΣQv = 0
but vTΣQv 6= 0, so D

(
ΣP
∥∥ΣQ

)
=∞.

So if ΣP has a range contained in the subspace with Pϕ = 0, then ΣP(· | ψ) must as well, i.e.
we must have P (ϕ | ψ) = 0.

Unfortunately, though the analogy with learning theory suggests that this notion of updating
might have desirable features, it lacks some of the familiar characteristics of updating. For
example, P (ϕ | ψ)P (ψ) 6= P (ϕ) in general. It seems very unlikely that it will be the final
say on the subject, but again we hope primarily to give a sense of how it might even be
possible for a bounded agent to accept Bayesian epistemology in full generality. Of course,
we could also enforce further properties of P (· | ψ), and only perform the minimization of
KL divergence over P’s that satisfied those extra properties. For example, we could enforce
P (ϕ | ψ) = P(ϕ∧ψ)

P(ψ) whenever ϕ, ψ ∈ S.
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2.4.4 Lift and project

To define ∆+ (S), we first extended P to S2 and then imposed a constraint on the extension.
Similarly, we could extend P to S2k, and consider ∆+

(
Sk
)
. Even if we are only interested in

sentences in S, this extension imposes additional constraints on P and may allow it to capture
additional inferences. This is the lift and project method. The set ∆+

(
Sk
)

corresponds to
k rounds of the Lasserre hierarchy of relaxations for ∆

(
cl (S0)

)
. This approach allows us

to spend more computational resources in exchange for a “more consistent” assignment of
probabilities.

3 Logical priors

3.1 Motivation

We are interested in understanding and designing agents which make good predictions. Our
goal will be to show that if a learner can express an assumption, then the learner will
eventually make predictions as well as if it accepted that assumption. Since first order logic
is an extremely expressive language, this implies that our learner can make good predictions
in a wide variety of situations.

We will typically measure prediction performance by the log score, i.e. the logarithm of the
probability that a learner assigns to an outcome. Given a sequence of observations ϕ1, ϕ2, . . .,
the total score received by the agent is

log
(
P (ϕ1)

)
+ log

(
P (ϕ2 | ϕ1)

)
+ log

(
P (ϕ3 | ϕ1 ∧ ϕ2)

)
+ · · ·

This scoring rule has many nice properties and is often used in statistical learning theory.
For example, it doesn’t matter whether we score the total performance of a learner over a
sequence of data, or whether we score the learner on each prediction and then add up the
results.

To construct a distribution which makes “good” predictions (as measured by the log score),
we make extensive use of the following simple observation:

Theorem 5. Let ϕ1, ϕ2, . . . be a sequence of sentences such that T ` ϕi for each i, and let
P be any coherent probability distribution. Then

∞∑
i=1

log
(
P (ϕi | ϕ1 ∧ · · · ∧ ϕi−1)

)
≥ log

(
P (T )

)
.

Proof. For every k, T →
k∧
i=1

ϕk. Thus

P (T ) ≤ P

 k∧
i=1

ϕk

 =
k∏
i=1

P (ϕi | ϕ1 ∧ · · ·ϕi−1)
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as desired.

This theorem says that if we want to be able to predict almost as well as if we assumed
T , it is sufficient to assign T a high prior probability. Thus our goal will be to define a
distribution P which simultaneously assigns a reasonably high probability to many theories
T . A probability distribution which assigns a very low (or zero) probability to a sentence ϕ is
said to be dogmatic, while a prior which avoids this characteristic is said to be non-dogmatic.

3.2 Parsimony

Unfortunately, it is not possible to assign all consistent sentences a reasonable probability.
Indeed, if I supply an uneducated conjecture about the first 100 digits of π, you should
assign this conjecture a prior probability which is on the order of 10−100—after all, there are
about that many similar yet mutually exclusive alternatives. So if a formal notion of non-
dogmatism is to be satisfiable, it needs to avoid judging such low probabilities as dogmatic.

In order to define our prior, we will first introduce a function µ : L → [0, 1] indicating the
least probability which would be reasonable to assign to a sentence ϕ ∈ L. This gives a
measure of how quick we should be to infer ϕ given some evidence in its favor, i.e. µ encodes
a choice about which explanations should be quickly inferred. Our view is that the simple
explanations are the ones that should be quickly learnt; we will not provide philosophical
justification for this view here, but note that the issue is a common topic of discussion in
formal epistemology.

First we will provide a formal notion of complexity.

Define the complexity of a non-negative integer n as K (n) = n+ 1.5 Extend K (·) to terms
via:

• K (xi) = 2 +K (i)

• K (ci) = 2 +K (i)

• K
(
fki (t1, t2, . . . , tk)

)
= 1 +K (k) +K (i) +

∑
j K
(
tj
)

Finally, extend K (·) to formulas via:

• K (t1 = t2) = K (t1 6= t2) = 3 +K (t1) +K (t2)

• K (∀xi : ϕ) = K (∃xi : ϕ) = 3 +K (i) +K (ϕ)

• K
(
Aki (t1, t2, . . . , tk)

)
= K

(
¬Aki (t1, t2, . . . , tk)

)
= 3 +K (i) +K (k) +

∑
j K
(
tj
)

5We’ve made this choice for simplicity, but the notion would be improved by taking the complexity of n
to be the length of n in some more efficient encoding than unary. In this case, we would want to change the
definitions of K

(
fk
i (t1, . . . , tk)

)
and K

(
Ak

i (t1, . . . , tk)
)

depend on k +K (i).
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• K (ϕ ∧ ψ) = K (ϕ ∨ ψ) = 3 +K (ϕ) +K (ψ)

Amongst the sentences with complexity k, there are families of about 2k mutually inconsistent
sentences, and so 2−θ(k) is the strongest lower bound we can give for the probability of k bit
sentences using their complexity alone.

Theorem 6. For every k there are 2k inconsistent sentences ϕi with K (ϕi) = θ (k).

Essentially, we can consider the theory of k bit strings; there are 2k distinct models each
of which can be pinned down by a set of axioms of complexity θ (k). The proof is in the
appendix.

In light of this, we will take µ (ϕ) = 2−K(ϕ). It is straightforward to verify that
∑

ϕ µ (ϕ) = 16,
and this will be important in the sequel.

3.3 A simple prior

A number of very direct approaches to this problem have been proposed, each of which
aims to ensure P (ϕ) ≥ µ (ϕ) for some distribution µ (ϕ) over sentences. For example, Hut-
ter et al. define a prior by choosing a model Mϕ of each sentence ϕ, and then setting

P (ψ) = µ
({
ϕ :Mϕ |= ψ

})
. This approach is satisfactory, but rests on arbitrary choices

and is needlessly computationally inefficient in the finite case. They also have a philosoph-
ically different motivation and so restrict attention to separable models, thereby obtaining
a distribution which cannot even be approximated with a halting oracle (they also are not
concerned with the speed of learning). of how quickly a generalization is learned).

Similarly, Demski has proposed generating a compete theory T , starting from T0 = ∅, iter-
atively forming Ti+1 from Ti by adjoining a random sentence ϕ consistent with Ti (sampled
with probability proportional to µ (ϕ)). This proposal appears to some theoretically desir-
able properties and to be less arbitrary, but does not lead to tractable algorithms in the
finite case.

Our approach is to simply consider the (convex) set of coherent distributions P and to
optimize an appropriate convex function over this set. This more closely mirrors methods
which have proven to be practically successful, in particular maximum-entropy priors, and
is extremely straightforward to generalize to the finite case. Our function will be chosen
to ensure that an optimum is sufficiently far from any boundary, i.e. such that P (ϕ) is
reasonably large for each ϕ.

For any P : L→ [0, 1], define

Ψ (P) =
∑
ϕ∈L

µ (ϕ) log
(
P (ϕ)

)
.

6The sum here is taken over formulas, though we could consider each formula as a sentence by considering
the unbound variables as implicitly universally quantified
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We would like to take P to be the coherent probability distribution which maximizes Ψ (P).

Unfortunately, for any coherent P we will have Ψ0 (P) = −∞. This is because some ϕ are
contradictions in first order logic, and so will be assigned probability 0 by P. We could
exclude these sentences, and in the case of bounded reasoners discussed below this will be
adequate. But this doesn’t fix the problem in the case of unbounded reasoners; if µ has
infinite entropy it might still be the case that all P have Ψ (P) = −∞.

Nevertheless, we can compare different candidates P to see which are better or worse. Namely,
for any P and Q, consider the sum:

Ψ (P‖Q) = Ψ (P)−Ψ (Q) =
∑
ϕ∈L

µ (ϕ) log

(
P (ϕ)

Q (ϕ)

)
where we consider log

(
0
0

)
= 0. We say that P > Q if the set of negative terms in this sum

is absolutely convergent, and sums to less than the set of positive terms. If neither P > Q
nor Q > P, we say that P and Q are incomparable. The key observation is that there is a
unique maximal P, and that P > Q for all Q 6= P.

Theorem 7. There exists a coherent distribution P such that for every coherent distribution
Q, P ≥ Q.

We show in the appendix that it is possible to compute P using a halting oracle. The key
observation is that we can use a halting oracle to optimize Ψ over the set of restrictions of
coherent P to any S ⊂ L. As S → L, these approximations converge to the global optimum
very quickly, and so we can approximate the global optimum by taking a large sets S.

It seems unlikely this is the final say on a choice of logical priors, but it is simple, does the job,
and illustrates a general approach towards constructing logical priors which helps the close
the gap between this setting and contemporary work in machine learning. This approach
also suggests a path forward for several of the open problems we raise in section 6.1.

3.4 The Gaifman condition

A common coherence condition for probability distributions is the so-called Gaifman condi-
tion:

Definition 4. P satisfies the Gaifman condition if for any ϕ,

P
(
∀n : ϕ (n)

)
= inf

k
ϕ (0) ∧ · · · ∧ ϕ (k).

This is an intuitive condition for a probability distribution P which we take to represesent the
truth of the matter, but it is not a natural condition for a subjective probability distribution.

The distribution we have described does not satisfy the Gaifman condition. This is inevitable:
the Gaifman condition is stronger than ω-completeness, which cannot be achieved by any
definable distribution.

23



Theorem 8. For any definable, coherent distribution P over L which assigns non-zero prob-
ability to Q, there is a formula ϕ (n) such that

P
(
∀n : ϕ (n)

)
6= lim

k→∞
P
(
ϕ (0) ∧ · · · ∧ ϕ (k)

)
In particular, this holds for any P which lies in the arithmetical hierarchy.

Proof. Suppose we have any P which satisfies the Gaifman condition. Consider the set S of
sentences ϕ such that P (ϕ | Q) = 1. If P is definable, so is this set. We claim that this is
the set of all true statements about the integers, which is not definable.

Note that all theorems of Q, and hence all Σ1 sentences that are true of the integers, are
necessarily in S by coherence.

By applying the Gaifman condition to the sentences ψ (n) = ϕ (n) ∧ Q, we see that if
P
(
ϕ (k)

∣∣ Q
)

= 1 for each k, then P
(
∀n : ϕ (n)

∣∣ Q
)

= 1. Thus all Π2 sentences that are true
of the integers are necessarily in S. Continuing by induction we find that all Σk sentences
that are true of the integers are in S, and hence S contains all true sentences, contradicting
its definability.

This impossibility result can be considerably expanded, to deal with narrow classes of ϕ (in
fact it has been proved even for Π1 sentences, at least for distributions which don’t assign
probability 0 to true Σ2 sentences) or to deal with weaker convergence conditions.

Moreover, our results on the learnability of universal generalizations seem like an accept-
able practical substitute—our algorithm predicts as well as if it had learned the universal
generalization in the long run.

3.5 Scaling down

Extending the prior we have described to the finite case requires essentially no modification.
That is, for any set S, we can define a prior PS : S → [0, 1] as the locally coherent map
which maximizes

ΨS (PS) =
∑
ϕ∈S

µ (ϕ) logPS (ϕ).

Because the set of locally coherent distributions is defined by a polynomial list of linear
inequalities, we can compute this PS in time polynomial in the size of S.

Using standard techniques for semidefinite programming, we can similarly find the PS which
is sum-of-squares coherent and maximizes this regularizer. Note that in this setting we
need not be concerned with convergence issues, as long as we excluded sentences which are
contradictions from the sum (since those sentences will necessarily receive probability 0).
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3.6 Beyond non-dogmatism

In reality “ignorance” means more than non-dogmatism, and we would like our prior to
satisfy further intuitive properties. For example, when a hypothesis isn’t in conflict with
every other conceivable hypothesis, we should be able to assign it a higher probability than
µ (ϕ). Statements which have little logical bearing on each other ought to have little mutual
information (and if two statements are logically related, conditioning on a natural interpolant
ought to reduce the mutual information between them). And so on.

It is easy to check that none of the distributions that have been proposed so far (ours in-
cluded) matches all or even many of our strong intuitions about an ignorance prior. The
recent proposal of Abram Demski appears to come closest; especially interesting is its repro-
duction of an intuitive conditional independence structure. Unfortunately, as mentioned, his
proposal is fundamentally prohibitively computationally expensive. We feel that approaches
based on entropy maximization are particularly likely to have such desirable characteristics,
and we have presented our solution largely to provide an indication of how a future weighted
entropy-maximization approach might work.

4 Learning mathematical facts

We have described a prior over mathematical states of affairs, but haven’t yet said much
(aside implicitly in theorem 5) about what happens when we use this prior to actually reason
about mathematics. In this section we will introduce a model for the process of mathematical
reasoning, and then make some observations about the results of such reasoning.

All of the discussion in this section is intended to apply equally to any of the priors discussed
in sections 3 and 2. But the arguments are easiest to make and the conclusions are most
intuitively plausible in the setting of section 2.3.2, and so for concreteness the reader may
want to keep this example in mind. (Extending some of the results to the setting of sec-
tion 2.4.2 would require proving some further facts about the conditioning process proposed
there.)

4.1 Modeling reasoning

In this section we will turn our attention to passive reasoning. That is, we consider a reasoner
who is exposed to a sequence of observations ϕ0, ϕ1, . . ., and conditions on each one in turn.
We will be interested qualitative statements about what an agent would come to believe
after observing “enough” statements of a certain type. The implicit analogy with human
reasoning is normally clear, though we are far from being able to pin down the quantitative
aspects of the situation (nor even model the situation for humans well enough that such
quantitative statements would be meaningful).

The sentences ϕ0, ϕ1, . . . (as well as the agent’s beliefs) don’t have any free variables, but they
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can make arbitrary use of the symbols Aki , f
k
i , cki . These symbols might be used to encode

information about sense experiences (for example f 1
0 (t) might return the data perceived by

the agent at time t, so that the agent continuously updates on expressions of the form f 1
0 (t) =

st) or to present some mathematical facts to the agent (for example, f 1
0 (x) might return the

successor of x, and the agent might update on facts like ∃x : ∀y : y 6= x → ∃z : z = f 1
0 (y))

or for some other purpose.

When we say that an agent would “come to believe ϕ,” all we really mean is that it would
come to make predictions as well as if it had come to believe ϕ. For example, if we say that
an agent has “come to believe Peano arithmetic” we do not mean to suggest that it believes
the literal axioms themselves, because we generally have no way to rule out the possibility
that (for example) the agent has assigned different interpretations to the symbols (or that
it has learned a more powerful theory which can interpret Peano arithmetic). All we mean
to say is that the agent has formed some internal model of the situation which allows them
to make predictions as well as if they believed Peano arithmetic, in the sense of theorem 5.

This entire section considers an “open loop:” the agent’s beliefs have no effect on the obser-
vations it receives. Realistic reasoning, mathematical or otherwise, often involves interaction
between a learner and an environment (indeed, as we discuss in section 5.4, even events within
a single mind might be best modeled as interactions between e.g. a goal-oriented agent and
a memory subsystem which it can consult as a resource). We will turn our attention to these
more complex cases in section 5. Many of the examples in this section have greater practical
relevance once we consider interaction.

4.2 Learning with unbounded resources

The examples in this section apply both to finite agents and to infinite agents with globally
coherent beliefs. Subsequent sections will focus on unique characteristics of learning with
bounded resources, which is of greater interest primarily because of the analogy with human
reasoning. We will focus on learning arithmetic, under varying conditions, only for simplicity
of presenetation..

4.2.1 Learning arithmetic

In a very simple case, a learner might simply be told true facts about arithmetic, where
+, ∗, 0, S are assigned function and constant symbols from L. For example, the reasoner
might condition on many facts of the form

SSS0 + SS0 = SSSSS0.

In this case, by theorem 5 we can guarantee that the agent will eventually make predictions
as well as if it knew the definitions of +, ∗, 0, S.
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4.2.2 Learning numerals

We can imagine a more realistic task, in which the agent is still given true arithmetic facts,
but they now involve some unidentified constant symbols ci. For example, the agent might
be told:

c2 ∗ c3 = c5,

or so on. We imagine that there is some real correspondence between the ci and integers.
The question is: can the learner simultaneously learn this correspondence and arithmetic?

The answer is essentially that the learner can if and only if they receive enough information
to determine the correspondence in principle. That is, consider the theory T ′ which includes
not only the axioms of arithmetic but also axioms pinning down the ci. For example, we
might have T ′ ` c1 = S0, c2 = Sc1, c3 = c2 ∗ (c2 ∗ c2 + c1), in addition to the axioms of
arithmetic. The complexity of this theory (in the sense of K (T ′) defined in section 3.2) is
roughly

∑
i log (ci) + K (PA). So in the long run, the learner needs to get about log (ci)

predictions wrong about each ci before it has pinned down its value (which is necessary
information-theoretically), and it can do this in parallel with learning the definition of +
and ∗.

4.2.3 Arithmetic as an explanation

In the cases we have considered so far, an agent has inferred the laws of arithmetic to
account for observations about the objects of arithmetic, i.e. about the truth of arithmetic
facts. Much more interesting is the case in which an agent infers mathematical structure to
explain not-obviously-mathematical phenomena.

For simplicity, we’ll consider an agent which already believes axioms which allow it to reason
about binary strings (for example, it has learned an axiomatic characterization of string
concatenation and string equality).

Suppose our agent is given observations of the form f (x0x1 · · · xk) = y0y1 · · · yk. The rule
f may be a complicated one which the agent cannot hope to learn exactly. For example,
this would occur if f was a computation which used more memory than the agent could
represent. Or, f might simply be stochastic. In either case, the learner can discover structure
in the values of f which made prediction easier. Representing this structure might require
introducing arithmetic as an abstraction. This is the route by which we suggest that a
realistic learner could come to believe the axioms of arithmetic.

For example, suppose that whenever f (x) = y, we have
∑
ixi =

∑
iyi. If the learner was

able to represent this fact and condition on it, the probability they assigned to the true
judgments of the form f (x) = y would be (roughly) k2 times higher, a significant advantage.
But formalizing this constraint without the use of arithmetic is a non-trivial challenge.

We cannot rule out the possibility that P would find some clever alternative representation
of this constraint, but we can show that in general it will find one way or another to make
predictions as well as if it had learned this constraint.
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Moreover, if an agent is tasked with learning many such relationships, which can be concisely
expressed within a single theory T , then the total loss on all of those prediction problems
is given by K (T ). This suggests that if there is a mathematical theory which has explana-
tory power in many domains, the agent will either come to believe it or come to find an
equivalently powerful method for making predictions.

4.3 Learning with bounded resources

In the previous sections we have focused on cases where an agent infers arithmetic because
the agent’s observations are in fact constrained by arithmetic. In general we are interested
in a more subtle phenomenon, which emerges when we consider bounded reasoners.

For example, consider a human reasoner who already accepts the axioms of Peano Arith-
metic, and is concerned exclusively with statements whose truth or falsity will be determined
in a finite amount of time—ie., which might actually affect their experiences. In particular,
every arithmetical statement of material interest to humans involves only bounded quan-
tifiers. Moreover, every mathematical observation that humans ever make also contains
only bounded quantifiers—that a particular theorem has a proof of at most so many lines,
that a particular computation returns a particular value after a particular amount of time,
and so on. Neglecting uncertainty about physics, we imagine that an account of all true ∆0

0

sentences would allow us to make any physical prediction whose truth or falsity can be deter-
mined by physically possible operations in finite time (this is, in essence, the Church-Turing
hypothesis).

All of the facts of interest to this human, or which this human can observe, are already
determined by her belief in the axioms of Peano arithmetic. So in what sense can any of
these observations shed light on more complicated claims? On the existence of infinities, or
the truth of Σ0

2 sentences?

We suggest two possible routes, and give examples of each in the sequel:

1. First, a theory concerning infinite objects or complex axioms might be a simple ex-
planation for certain finite data. For example, the existence of a “set of all natural
numbers” may be a simpler explanation, at least to a certain way of thinking, than
the axiom schema of induction. The real existence of a continuum might be a sim-
pler explanation for our physical observations than the existence of a computation
which approximates the solutions of certain equations on discrete approximations to a
continuum.

In this case a reasoner using the approach we have described might discriminate be-
tween theories with no testable distinctions on the basis of simplicity, and the theories
that concern themselves with finite objects need not win.

2. Much more fundamentally, although all truths about finite objects might be determined
by the axioms of Robinson Arithmetic the implications might be too computationally
expensive to examine. A theory which simply explains many observations which would
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otherwise require laborious computation may be considered to be confirmed by those
observations.

4.4 Computational expedience

4.4.1 Generalization

Consider a learner which knows Robinson arithmetic, and has made some observations of an
unknown function f . It has inferred that f(0) = 1 and in general f(Sx) = 2f(x), i.e. that
f(x) = 2x. (We’ll write 2x for f(x) from here on out.)

Suppose the agent is now asked to predict whether 2y2x = 2x2y for some large values of x
and y. In some cases the agent can derive this equality using sentences within S, simply
by applying the inductive definitions of exponentiation and multiplication until each side
has been reduced to a numeral. In these cases the agent will clearly assign probability 1 to
2y2x = 2x2y. But in general the intermediate steps need no lie in S, because they involve
very large numbers.

Of course, if the agent knew the generalization that ∀a, b : ab = ba, it could deduce as
a special case that 2y2x = 2x2y. For each x and y, 2y2x = 2x2y follows from the axioms
of Robinson arithmetic. Nevertheless, a bounded agent who believed Robinson arithmetic
might not be able to deduce the fact, and so might find the generalization useful.

However we can reason identically as before to show that an agent will quickly learn this
generalization: P (∀a, b : ab = ba) is lower-bounded by the complexity of the assertion, and so
after observing many consequences which it cannot deduce without the generalization, even-
tually the learner will start predicting those consequences correctly (very likely by assigning
high probability to ab = ba itself).

But suppose this game continues, and the learner is now asked to determine whether 2x+y =
2x2y for some large integers x and y (for example, x = 2a and y = 2b). Again, the learner
cannot deduce this fact directly, but with enough examples will come to believe the universal
generalization.

It may seem as though these examples are slightly artificial because they rely on such large
integers. In fact the large sizes of the numbers involved is an artifact of an arithmetic
encoding (which we have chosen only to make the examples simple). In a more realistic
application, rather than very large numbers we might have modestly sized objects, such
that the combinatorial explosion keeps the objects from being amenable to reasoning about
directly. A typical case might be one in which an agent reasons about the result of a brute
force search, where the brute force search covers more items than those the agent can reason
about directly.

Another realistic class of examples might occur when the agent is reasoning about some
object x has some special physical significance—for example, “the number I’ve just written
down on a sheet of paper”—rather than having some special mathematical significance. This
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could simply be represented by an additional predicate A, rather than requiring any new
machinery to cope with physical facts. We will explore this setting in the section 5.4 below.

4.4.2 Induction

In the last section we described why an agent might infer ∀a, b : ab = ba or ∀x, y : 2x+y = 2x2y

from observations about finite objects. And of course there could be a long litany of such
generalizations which might be inferred for the sake of computational expedience. Inferring
such a long list of computational shortcuts is more efficient than simply guessing about the
result of individual computations. But there is a still more efficient approach.

If the agent assumes the axiom of induction, then it would immediately conclude that both
of these assertions are true in general (along with many more), since they are both easy
theorems of PA.7 Thus after observing many such generalizations, the agent would come to
infer induction (or at least, it would come to make subsequent generalizations as well as if
it had learned induction).

4.4.3 And beyond

Since few natural statements are independent of Peano arithmetic, it is natural to conjecture
that PA is as far as this process will take us. In fact, since almost all “natural” statements
can be derived in even weaker systems, we might suspect that we can’t even learn PA unless
we consider some very pathological observations, unless PA happens to be simpler (and
thereby receive a higher prior probability) than weaker theories like RCA0.

In fact this impression is misleading. For example consider an agent checking whether each
integer n is a perfect number, one at a time. It would quickly form the conjecture that odd
numbers are not perfect, whether or not it could actually find a proof of the fact. This would
occur even if this statement is a theorem of PA; thus even theorems of PA might prove to
be useful generalizations, which might be accepted as additional axioms.

Continuing in this vein, basic theorems of analysis might be most easily derived from as-
sumptions about the existence of infinities or continua (which can be characterized by simple
sets of axioms). Any theorem about strictly finite objects which can be proven by analysis
can also be proven by a brute-force approach (or proven from the axioms of Peano Arith-
metic), but such a proof might be considerably more difficult than one that proceeded from
the existence of a continuum. Even in very simple cases, for example when we are evaluating
computable functions at rational points to finite precision, the machinery of calculus rests
on relatively few axioms and may be a useful aid for some agents who are not sophisticated
enough to rebuild the same machinery starting from basic arithmetic.

7The axiom of induction is not itself a single axiom, but rather an axiom schema. The system we
have described cannot learn an axiom schema in a straightforward way, but this is primarily a technical
obstruction. We can work with any finitely axiomatizable extension of PA, such as NBG set theory, and
conclude the same results.
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Even if the agent believes that Peano arithmetic is sound and eventually discovers that ev-
erything it knows about real analysis can be derived within Peano arithmetic by alternative
means, this won’t eliminate the agent’s confidence in Peano arithmetic. The existence of a
continuum gives a simple account of why facts about analysis should be true, and (assum-
ing the soundness of Peano arithmetic) therefore gives an account of why those facts are
consistent with Peano arithmetic.

Of course it is very difficult to say what the end result of such a learning process would be;
our point is merely that even if very weak theories suffice to prove all ordinary theorems,
there is no reason why our learner would stop there. Indeed, its reasons for accepting stronger
theories would be quite similar to the historical motivation for developing such theories: to
provide an elegant unifying framework, and to allow for simpler or more direct arguments
than would otherwise be possible.

4.5 Metamathematical examples

4.5.1 Consistency of a theory

In order to reason about its own reasoning, an agent might be particularly interested in
understanding the consistency of an axiom system which it currently accepts. It is well known
that no powerful theories can answer this question by deductive means; but by reasoning
inductively, an agent might be able to arrive at high confidence in the consistency of a certain
axiom system.

Suppose that an agent is interested in the consistency of PA, and makes observations of a
mathematical community which is generating theorems about PA. For simplicity, suppose
these observations take the form of “at time T a proof of ϕ is published, which has length
k.” The agent can infer some properties of publications; perhaps it will infer that there is
a notion of mathematical importance, and that the community searches for proofs in PA of
important statements and publishes them. In reality the agent would make a great many
additional observations, for example about the structure of the proofs etc.

If PA is inconsistent, then a reasonable model for the mathematical community’s output is
expected assign a non-negligible probability to a proof of falsehood being published (or at
least to proofs of some contradictory propositions being published). Thus the consistency
of PA makes the bold prediction “the published proofs will not demonstrate contradictory
facts.” Given publications verifying ϕ and ψ, the agent can check for itself that ϕ and ψ are
not (easily) shown to be inconsistent. Thus the agent can make repeated tests of this bold
prediction, which will tend to provide support for the consistency of PA.

Of course, there are other explanations for this observation: for example, it may be that
the shortest proof of inconsistency is quite long, or that the search process used by math-
ematicians is unlikely to turn it up for some other reason, or simply that mathematicians
have a norm against publishing any proof that is easily seen to contradict a known result.
There are a number of reasons that the consistency of PA might stand out as a particularly
promising hypothesis:
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1. “There are no proofs of ⊥” is a simpler assertion than “Every proof of ⊥ has length
at least k” for some large integer k, or other statements of the form “Every proof of
⊥ has property P”. The total prior probability of statements of the latter type is
likely to be comparable with the prior probability of the consistency of PA; and most
statements of the latter type fail to make useful predictions, because the property P
does not explain why such proofs are not published by the mathematical community.

2. The consistency of PA is a consequence of other, potentially more natural statements,
such as the axioms of set theory. Some of these premises may be simpler than the
consistency of PA and thereby receive higher probability. Other premises (such as the
validity of ε0 induction) might be supported by other deductive arguments or other
useful generalizations, and thereby receive high probability despite being harder to
describe than the consistency of PA.

3. The agent has access to other lines of evidence, for example its own experimentation
with simple theorems of PA, which might discriminate between the consistency of PA
and other explanations for similar phenomena.

4. Many other useful generalizations may be contingent on the consistency of PA. For
example, other generalizations about which statements are “hard” to prove, or coherent
simple models for mathematical importance (or mathematicians’ decisions about which
proofs to publish) might only be coherent if PA is consistent. At least, the complexity
of these statements might need to be increased to accommodate the inconsistency of
PA. So to the extent that these generalizations are useful, they also provide evidence
for the consistency of PA.

Similar arguments might cause an agent to suspect not only the consistency of PA, but the
unprovability of more complex assertions ϕ like the twin prime conjecture. However, this
suspicion would naturally be much weaker:

1. Many of the arguments given above are particular to consistency and do not apply in
the case of the unprovability of a general ϕ, and therefore the strength of evidence in
favor of consistency is greater than the strength of evidence in favor of unprovability
of ϕ.

2. The consistency of PA is a simpler theory (and hence is likely to have a higher prior
probability) than the unprovability of ϕ (which also requires specifying the statement
ϕ).

3. The probability of a proof of ϕ appearing given the provability of ϕ is much lower than
the probability of a proof of ⊥ appearing given the provability of ⊥. This is due both
to the increased simplicity of ⊥, and due to the fact that a proof of ⊥ would lead to a
proof for all other propositions (and hence would be expected to have other effects on
the community’s output, even if the proof of ⊥ itself wasn’t published). As a result,
the non-appearance of a proof of ϕ is weaker evidence for the unprovability of ϕ than
the non-appearance of a proof of ⊥ is for the consistency of PA.

4. Even if a proof of ϕ exists, induction suggests that in general it will be quite long; if
there is a proof of ⊥, there is little a priori reason to think the same thing. If the
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community’s output is more likely to find short than long proofs, this again makes the
non-appearance of a proof of ϕ less evidence than the non-appearance of a proof of ⊥.

As in the last section, we must stress that it is difficult to predict the actual results of
induction when applied to this case. Nevertheless, we feel we have given some indication
that this framework is capable of “learning” the consistency of a theory. Moreover, we feel
that the considerations which are relevant to this framework are quite similar to those which
are relevant to an informed human’s judgment about the consistency of a theory.

4.5.2 Large cardinals

The current status of large cardinal axioms strikes us as another domain where “inductive”
mathematical reasoning is currently playing a significant role. Deductively, it is clear that
large cardinal axioms represent further assumptions: assuming consistency of the theories
involved, there is no way to move from PA to ZFC, or from ZFC to stronger large cardinal
axioms. Nevertheless, it seems that mathematicians are able to form beliefs about such ax-
ioms based purely on observations of finite objects—the success or failure of certain searches
for proofs.

It seems likely that the kind of inductive reasoning we describe here plays an important role
in forming these beliefs. Our framework seems unlikely to be expressive enough to capture
all of this reasoning, but once again we can work through the kinds of considerations that
would lead our framework to come to a tentative conclusion about large cardinal axioms. To
the extent that these considerations seem to capture the considerations that are relevant for
humans reasoning about large cardinals, this provides some evidence that it will be possible
to make headway on formalizing “informal” mathematical reasoning in this domain.

The first key observation about large cardinal axioms is that they explain the consistency
of large cardinal axioms.8 The consistency of a large cardinal axiom in turn explains why
attempts to derive inconsistencies have failed—see the discussion in the preceding section.

But this does not capture the full strength of the evidence in favor of large cardinal axioms.
Another source of evidence is inductive generalization from the consistency of weaker large
cardinal axioms to the general consistency of large cardinal axioms.

To be more precise, a reasoner who accepts many particular large cardinal axioms ϕ1, ϕ2, . . .
will by nature gravitate towards some explanation for why all of these axioms have proven
to be consistent. If there was some grand theory T which explained this fact, then our
reasoner would eventually assign each large cardinal axiom a high probability given its pre-
decessor. On the other hand, the existence of such a grand theory would also lend evidence
to each individual assertion ϕi, because now T itself constitutes a particularly parsimonious
explanation for the failure to deduce inconsistencies from particular large cardinal axioms.

8Given an appropriate account of self-verification, they might explain their own consistency. But until
such an account is available, we can content ourselves with the observation that each such axiom explains
the consistency of all weaker large cardinal axioms.
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Human mathematicians are quite uncertain about what such a theory T might look like,
and moreover it may be that there is no finitely axiomatizable theory which has the desired
characteristics. But whether or not there is such a theory T , the existence of syntactic and
mathematical relationships between the axioms ϕ1, ϕ2, . . . suffices to make generalizations
over them; indeed, we can posit the existence of an unknown grand explanation, and infer
some of the characteristics of this explanation (and therefore use it to make judgments) from
our observations. This works even if we cannot pin down the grand explanation itself.

5 Interaction

5.1 Modeling interaction

Rather than considering a passive learner receiving evidence from a teacher, we can consider
an active learner interacting with a more general environment.

To keep the exposition simple, for now we’ll assume that the agent and environment interact
via a binary channel; at each time step the agent specifies a bit corresponding to its action and
the environment responds with a bit (the agent’s observation). Formally, the environment is
represented by a special function symbol O : {0, 1}∗ → {0, 1} and the history of the agents
actions is represented by x : N → {0, 1}. At time t the learner chooses x(t) ∈ {0, 1} and
then is “told” O

(
x(0) · · ·x(t)

)
. Formally, if the agent selects x(t) = x and the environment

responds with O
(
x(0) · · ·x(t)

)
= y, then the agent updates on the sentences x(t) = x and

O
(
x(0) · · ·x(t)

)
= y, where x and y are terms in the language representing x and y.

To actually specify a model, we need to describe the behavior of the learner. In a realistic
application we might imagine that the learner has some goals unrelated to learning, and
chooses an action to satisfy those goals (which might incidentally require learning about
mathematics). Below we sketch a few simple rules of action:

• The greedy learner: The greedy learner is interested in some proposition ϕ (or family
of propositions, for example concerning the value of a function f), and greedily selects
the query xt for which its distribution overO (x1x2 · · · ct) has maximum mutual entropy
with its distribution ϕ. Equivalently, it chooses the query such that the expected
entropy of its beliefs about ϕ after learning the result of the query is minimized.

• The patient learner: The patient learner has a fixed lifetime T and a question of
interest ϕ. It choose a policy which minimizes the expected entropy of its beliefs about
ϕ at time T .

This can be done using dynamic programming, essentially considering a brute force
search over all sequences of observations and actions. For any sequence of observations
at time T − 1, the agent can use the greedy learner’s policy to evaluate the optimal
action. This allows the agent to estimate the value it will secure if it makes any
particular sequence of T − 1 observations, which can be used to determine the optimal
action for any sequence of T−2 actions. Proceeding in this way, the agent can determine
the optimal initial action and then make it.
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• The utility maximizer: the utility maximizer has a fixed lifetime T and a function
term U : {0, 1}T × {0, 1}T → [0, 1] representing its utility function.

Using a similar dynamic programming approach, it selects the policy which maximizes
E
[
U (x1x2 · · ·xT , y1y2 · · · yT )

]
.

This definition depends on considerably more subtleties than those preceding it. For
example, note that the obvious generalization of the agent described in the preceding
section would choose its actions to maximize its expectation of the value of U , and
so a priori it might take actions which caused it to believe that U was large rather
than actions which caused U to be large. This is only non-problematic because of the
martingale property of Bayesian beliefs—a Bayesian can never expect an observation
to change their estimate of U in a particular direction.

Relatedly, the agent will eventually learn a model for the observations x(t) themselves.
This causes the agent’s actions to constitute evidence to itself (namely, if the agent
outputs 0 and then updates on this fact, it has now learned that a certain algorithm
defined with respect to a halting oracle outputs 0). This evidence could influence
the value of U , and would cause the simplest definition of this agent to behave as an
“evidential” decision-theorist.

Discussing these subtleties would take us outside the scope of this paper. As usual,
we merely pause to observe that having a formal model in hand for such goal-oriented
behavior seems to open up a wide range of previously philosophical questions to a more
technical analysis.

5.2 Planning

All of the agents described in the last section plan for the future by explicitly considering
all possible plans. Computationally bounded agents, or agents which have infinite time
horizons, must take a different approach.

In principle, we can reduce the planning problem to the epistemic problem of evaluating
the quality of a state. If we had access to particularly accurate evaluations of the quality of
intermediate states, we could make good decisions by looking only one step ahead. Moreover,
the quality of a state has a simple mathematical form in principle (regardless of how difficult
it is to reason about): the quality is simply the expected utility obtained conditioned on
that state occurring (if we take a state to also include the history leading to that state).

Reasoning successfully about this quantity is quite difficult, and in practice a range of
domain-specific heuristics are often used. However, these heuristics can be given a unifying
account as effective approximations to the “real” value of a state, which a sophisticated
agent might be able to learn by a combination of inductive and deductive reasoning (in the
same way that humans originally learned these functions). For example, evaluation func-
tions for chess positions can (in principle) be learned as predictors of who will win a chess
game given reasonable play between the two sides. The only significance of our formalism
here is the observation that the “real” value of a state can be given a precise mathematical
characterization, and so an agent capable of human-level mathematical reasoning would be
able to use this very general formulation.
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Reasoning about this quantity naturally encapsulates planning, heuristic evaluation func-
tions, and exploration vs. exploitation. For example, an agent might discover a simple plan
beginning with action a, and then take action a based on the knowledge that its future-self
will do something at least as good as the simple plan it has identified. Or an agent might
take an action based on the belief that it will be better-informed in the resulting state, and
so will make better choices. Note that this formalism also immediately leads the agent to
make use of computational aids in its environment in order to help construct plans—there
is no distinction between its knowledge about the environment and its knowledge about the
value of intermediate states, and plans are evidence that clarifies the value of intermediate
states.

Formally (again restricting attention to infinite agents), we can define x(0), x(2), . . . and
y(t) = O

(
x(0) · · ·x(t)

)
. By quining, we can ensure that the agent knows a description of

its own decision procedure (for more realistic approaches which are applicable to feasible
agents, see the section on introspection below), and we can add the additional axiom that xt
is defined from x(0), · · · , y(t−1) and y(0), y(1), . . . , y(t−1) by using this decision procedure.
The agent has utility function U , which is a real-valued term depending on x and y, then its
decision procedure is given by:

xi = argmax
b∈{0,1}

E

U
∣∣∣∣∣∣xi = b ∧

∧
j<i

(
xj = xj ∧ yj = yj

) ,
where xj is either the symbol 0 or the symbol 1 depending on whether xj was 0 or 1.

This proposed algorithm can be straightforwardly instantiated using a halting oracle, and
in the following sections we will discuss elaborations which allow it to be instantiated by a
potentially tractable algorithm.

Unfortunately it seems unlikely to yield good behavior, for (at least) the following reason: in
order to reason about the value of a state, the agent must reason about the value they will be
able to obtain starting from that state, which in turn requires reasoning about the accuracy of
the judgments that they will make. This may be straightforward for particular judgments—
if the agent believes that ϕ has probability 2/3 and can determine by introspection that
it assigns ϕ probability 2/3, then it will typically believe that its judgment about ϕ is
reasonable. But the entire point of this approach to planning was to prevent the agent from
needing to consider every particular contingencies that would arise in the future. Doing so
requires reasoning about the quality of a generic future judgment. For example, in order
for the agent to believe that it will take actions at least as good as a simple plan that it has
identified, it must believe that its future self won’t predictably make errors in judgment. In
order for the agent to believe that acquiring more information is useful, it must believe that
its future self will make better judgments given more evidence, ideally without needing to
consider every possible piece of evidence that might be received.

Unfortunately, our system does not necessarily believe any of these self-confidence assertions.
Indeed, in the classical case of deductive logic, such self-verification axioms typically lead
to self-referential paradoxes. It seems quite plausible that the probabilistic reasoners will
not have these difficulties; a probabilistic reasoner can acquire inductive evidence in favor
of their own reliability, and it is still possible that there are “approximately self-verifying”
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logical priors.

See the section on self-verification below for further discussion of these issues.

5.3 Limited memory

In the case of unbounded computation, we considered agents who remember the entire
history of their interaction with the environment, and reason about the outcomes of all
future interactions. In the case of bounded computation this becomes impractical: we are
interested in considering agents whose lifetimes are longer than they can directly reason
about. For example, a human can reason directly about the length of their life, but cannot
simultaneously hold all of the experiences of their life in their head.

In this case it may be useful to consider agents which have a limited memory. In addition to
giving our agents a distinguished symbol for the environment O, we can provide them with
a distinguished symbol t for the current time. Rather than having beliefs about all values
xi, yi, the agent might keep track only of those which have occurred recently or will occur
soon: xt−k, yt−k, xt−k+1, yt−k+1, . . . , yt+k, xt+k. For for i < t− k, such an agent no longer has
any belief about the value of yi (though they may still have beliefs of the form “the last time
I saw Alice it was in Detroit,” etc). Note that this occurs automatically if we make use of
the bounded quantifier depth agent in section 2.3.2.

The main difficulty with such proposals is updating the agent’s beliefs as time passes. This
can be done by first shifting the agent’s beliefs to reflect the change in the value of t, updating
on the observation, and using the framework of KL divergence discussed in section 2.4.2 to
extend the agent’s beliefs to the new sentences introduced by the increase in t. Formally,
if at a certain time the agent takes action x∗ and observes y∗, then we update the agents’
beliefs as follows:

1. First, we form a new set S ′, by adjoining a new symbol t′. For each ϕ ∈ S, we include
both ϕ and ϕ [t = t′] in S ′. We also include the statement t = t′ + 1. We may also
include some additional statements in S ′ to help pin down the relationship between t
and t′. For example, we might include all of the sentences with some fixed quantifier
rank, or we might take the closure of S ′.

2. Now we do a preliminary transfer of the agent’s beliefs to S ′: for each ϕ ∈ S the
agent’s beliefs are unchanged, the sentences t′ = t + 1, xt′ = xT+1, yt′ = yT+1 are
assigned probability 1, and the agent’s beliefs about other sentences are left undefined.

3. Now we take the coherent distribution over S ′ minimizing the KL divergence from these
preliminary beliefs. This is not completely straightforward, because the preliminary
beliefs do not assign probabilities to some statements. We would like to consider the
“relative” entropy only for those statements where both distributions assign proba-
bilities, and consider the absolute entropy everywhere else. We can emulate this by
defining the relative entropy from Q to P as the smallest relative entropy from any
coherent extension of Q to P (which turns out to have a simple algebraic form).
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These definitions can be applied either in the setting either of section 2.3.1 or sec-
tion 2.4.2.

4. We discard every sentence including t from the agent’s beliefs, and then replace every
instance of t′ with t.

It is easily proven that such an agent’s beliefs are correct about the observations which it
still “remembers.” After the observations have been forgotten, their consequences might still
be remembered (for example, if I observed a proof of an interesting fact in the environment,
I would remember the fact even after the observation faded).

5.4 External memory

Although we have described this constraint as “limited memory” it is worth mentioning
that it also arises from a limitation on computational resources. In the framework we have
described, if an agent can reason about any sentence ϕ (x), it will typically automatically be
able to do a brute force search over all y with |y| ∼ |x|.

In many realistic situations this is not the case. For example, it is quite natural for me
to write down the number 2860486313 without having the time to determine whether this
number is prime.

Modeling this in our framework (or building an agent which is capable of such reasoning
using our framework) requires formalizing the concept of external memory. In fact this is an
automatic consequence of the notion of limited memory defined above, but it is important
enough that it is worth calling out separately.

For illustration, consider an environment O which implements a Turing machine tape. That
is, at each step the agent observes the contents of the current tape cell, and can write new
contents (from some alphabet Σ) as well as move to the next or previous cell.

We’ll imagine the case where the agent is given a description of the environment axiomat-
ically, but in principle an agent could also infer such a description from observations (for
example, it will quickly learn that if it writes, moves back, and then moves forward, it will
observe the same string it just wrote—eventually it will develop the Turing machine model
to explain these observations, and potentially even develop a theory of arithmetic in order
to accommodate the Turing machine model).

Introducing such an environment allows an agent to reason about objects indirectly. For
example, an agent might have beliefs about the integer encoded in a certain region of the
tape, despite the fact that this integer is too large for the agent to reason about directly.

By reasoning in this way, the agent can perform computations on these objects and reason
about the results of those computations (and infer things from observing the results of the
computations) without ever being able to directly reason about the objects in question. For
example, the agent can simulate a Turing machine M by maintaining the simple belief “There
is a time t such that the environment’s state is the result of running M for t steps, and my
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current location is the location of the Turing machine tape head at time t.” If the agent then
follows the next step of the policy defining M , then this belief will be preserved. If eventually
the agent discovers that the policy defining M represents accepting or rejecting, then the
agent will (correctly) believe that M accepts or rejects—without being able to represent any
of the intermediate steps taken by M .

Similarly, an agent could “write down” some numbers and reason about their properties even
though it cannot hold them in memory. It could verify that a number written in a certain
place is prime by carrying out the steps of a primality-testing algorithm, even without being
able to write down the number itself. And so on.

This provides a more realistic source of examples for the computational utility of sophisti-
cated mathematical theories. For example, an agent might be able to perform some series
of steps which resulted in it believing “There exist numbers a and b such ab is written down
in register 1 and ba is written down in register 2,” even if a and b are much too large for
the agent to reason about directly. The commutativity of multiplication would then lead to
the prediction that the two registers contain the same numbers, and in particular that every
observation of one register will yield the same result as the same observation of the other
register. (In fact the agent could come to suspect the commutativity of addition before it
even finished looking at the registers, after it observed that the two numbers had many bits
in common.)

Although we’ve described external environments that provide such scratch space, and it is
natural to think in terms of the analogy with external computational aids, the “environment”
need not be external. For example, we could design a brain as a system with two components:
an agent, and a useful computational environment that the agent interacts with. The non-
agent part of the brain could be used to read and write memories, to perform specialized
processing tasks, or whatever else.

5.5 Introspection

We briefly mentioned the possibility that an agent using a halting oracle can be made aware
of their own decision procedure via quining. The reason for this is that the agents we
have considered have a compact description, and they have conditioned on a finite set of
observations. There are some additional subtleties, for example we must quine not only the
agent but also all observations, and this actually changes the content of the agent’s updates
(when a self-aware agent updates on ϕ it not only updates on ϕ, but on the fact that it
updated on ϕ, etc.):

This approach is not satisfactory for bounded agents with limited memory. In particular,
in order to describe the current state of an agent whose beliefs are a map in ∆+ (S0), we
need to either represent an entire map S0 → [0, 1] (which certainly cannot be described by
a sentence in S0!) or represent all of the observations ϕ1, ϕ2, . . . on which the agent has
conditioned (which requires too much memory after more than a few observations).

Of course, an agent can still manipulate a mathematical representation of their current
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beliefs: they are the beliefs at time t of an agent who begins with a certain prior and then
forms their beliefs by conditioning on observations. However, the agent is now ignorant of
its own characteristics. To the extent that understanding its future behavior is important
for planning, we need to attend to the agent’s self-knowledge.

There are at least three plausible approaches by which the agent could come to know facts
about itself:

1. The agent can use deduction to infer a limited set of characteristics about itself. For
example, it knows that it has some beliefs and takes optimal actions with respect to
those beliefs, even if it doesn’t know all of its beliefs, and this knowledge can be quite
useful for planning.

2. After making a decision x(t), the agent conditions on the fact that it took this action.
This allows the agent to build up a simplified self-model in the same way that it builds
a model of the environment, and to inductively infer generalizations about its own
behavior which can then be used for planning.

3. We can provide the agent with an environment which allows explicit introspective
access. For example, we could allow the agent to write down a proposition ϕ in
external memory, and then ask the environment to tell it the agent’s current beliefs
about ϕ. This might correspond to the agent imagining a hypothetical situation and
then inferring their own response to that hypothetical situation, which of course could
be an important input into planning.

5.5.1 Avoiding quining

Even the discussion of “bounded introspection” above relies on quining: the agent is given a
compact description of its own initial dynamics, and defines its current state as the result of
evolving those dynamics up until time t. Though this imposes only a “constant” requirement
on the agent’s beliefs (they must be complex enough to describe the agent itself), this
requirement might still be prohibitively difficult to meet. Methods based on quining also
appear to be particularly and egregiously psychologically implausible.

An alternative approach is to simply provide the agent with special symbols which refer to
its own characteristics. For example, we might provide the agent with a symbol P referring
to its own prior distribution, or a symbol Pt referring to its beliefs at time t, or a symbol A
referring to the decision of the agent when it has beliefs t.

We can then provide rules bridging between these special symbols and the agent’s observa-

tions. For example, we can enforce the axiom xt+1 = A (Pt), and Pt+1 (ϕ) = Pt
(
ϕ
∣∣∣ pxt = xt ∧ yt = ytq

)
.

With these rules in place, updating on xt gives the agent information about A and P. (And
as usual, the agent can proceed to form inductive generalizations about these functions even
if their exact form is too complex for it to understand.)

We can also add some axioms constraining A and P which are not as complex as their full
specification. And we can provide opportunities for introspection, as long as the agent is
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given axioms relating the output of introspection to the symbols A and P (or whatever other
symbols we supply).

6 Conclusion

6.1 Further work

We have painted a very crude picture of probabilistic reasoning about mathematics. On
almost every front there are plausible directions for improvement:

6.1.1 Choice of priors

Perhaps the most pressing question is what prior distribution over states of affairs is appro-
priate, especially when subject to computational limitations. We have described an ad hoc
distribution which seems to be efficient and to support some nice properties, but which has
little theoretical justification and does not perform sensibly in all cases. It seems quite likely
that there is a more compelling answer to this question.

An intuitive approach to the problem is based on maximum entropy methods. One problem
with this approach is that it does not result in reasonable probabilities for sentences like
∀x : ϕ (x), and so such generalizations will never be learnt. To address this we can try to
define a weighted notion of entropy, representing an ensemble of variables (with some logical
constraints) which are of different levels of interest.

Carrying out this definition is not straightforward. One plausible rendition is

Hµ (P) =
∑
i

µ (ϕi)H (ϕi | ϕ1, ϕ2, . . . , ϕi−1)

where the ϕi are arranged in increasing order of µ (ϕi), and H (ϕi | ϕ1, ϕ2, . . . , ϕi−1) is the
expected (under P) entropy of P (ψ) after conditioning on the truth values of ϕ1, ϕ2, . . . , ϕi−1.
This has the downside that the maximizing P may have P (ϕ) = 2−µ(ϕ), which means that
learning a generalization may take an amount of time which is exponentially large in the
complexity of that generalization.

This choice of Hµ has the interesting characteristic that the maximizing P satisfies the follow-
ing minimax property: P maximizes the worst-case total log-score on a series of prediction
problems, where the intended answers to those problems must be consistent and the cost
assigned to a prediction of the truth of ϕ is weighted by µ (ϕ).

Unfortunately, this choice ofHµ has the undesirable property that for the maximizing P, P (ϕ)
can be as low as 2−µ(ϕ). This implies that the time required to learn a generalization might
be exponential in the complexity of that generalization, which we consider unacceptable.
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In the setting of section 2.4.2, an alternative generalization is the quantity tr (µ log ΣP), where
µ is a trace 1 diagonal matrix whose diagonal entries are µ (ϕ) (where tr (log ΣP) would be
analog of the unweighted entropy). We do not yet have an understanding of this function or
its characteristics.

6.1.2 Probabilistic generalizations

The system we have described is able to make universal generalizations, of the form ∀x : ϕ (x),
given enough positive examples of ϕ (or at least, it is able to predict subsequent values of
ϕ (x) as well as if it had made such a generalization). Most realistic generalizations are not of
this form. This is quite clear in everyday experience, but is also plausible in a mathematical
setting; even if the actual output of mathematical reasoning is proofs, such heuristics and
probabilistic generalizations may play a central role in the actual practice of mathematics.

So we would like to be able to build a system which can learn probabilistic generalizations,
of the form “the probability of ϕ (x) is 2/3, for a generic x” or “a generic k digit number has
a 1/k probability of being prime.”

We can make some crude steps towards this goal by simple heuristics. For example, we can
use a number quantifier to learn that the number of x satisfying ϕ (x) is 2/3 of the total
number of x (and even without a number quantifier we could explicitly code such a sentence
in set theory, for example). But most of these heuristics seem to perform badly even in
simple cases, and to fail to capture exactly what we want.

The approach we would find most satisfying would be one in which this constraint entered
into the cost function used to determine P, rather than appearing as a logical constraint. To
motivate this hope, we consider the case of ordinary Bayesian reasoning. When a Bayesian
using a maximum entropy prior receives a piece of evidence for a proposition X which
suggests that X is twice as likely as they had previously supposed, their beliefs P now
maximize the function:

H (P) + P (X)

(if H is measured in bits).

Similarly, if we are able to pick P as the maximizer of some payoff function motivated by
entropy, we might be able to impose a linear term which caused P to assign a higher proba-
bility to each expression ϕ (x) (though this tendency could then be overruled by conflicting
generalizations and logical constraints). That is, if we accept the generalization “For each x,
ϕ (x) is twice as likely as we would otherwise suppose” then our beliefs could be determined
by maximizing

H (P) +
∑
x

P
(
ϕ (x)

)
(as in Theorem 7, we would need to take care in defining the maximum, since the sum would
probably be infinite). Then we can recover universal generalizations via “For each x, ϕ (x)
is infinitely more likely than we would otherwise suppose.”

There are a few challenges with carrying out this program, however. First, we would like
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to impose this linear term only if P thinks it is true. So instead of a linear term, we would
like to include an interaction term between ϕ (x) and the event “for each x, ϕ (x) is more
likely than we would otherwise think.” But we need to take care to do this in a way that
doesn’t create an infinite incentive or disincentive for P to assign high probability to this
soft generalization.

Second, we don’t yet have any working formulation of our prior as a suitably modified
maximum entropy distribution, and imposing such linear costs in our current framework does
not achieve the desired functionality. If this approach is to be successful, it will probably
require a different choice of prior.

6.1.3 Self-verification

Our ultimate objective concerning reflective reasoning is the notion of reflective consistency.
Intuitively, we would like to build systems which consider their own output to be evidence
about a claim.

Formally, we would like to write down some algorithm P such that P
(
ϕ
∣∣ P (pϕq) = p

)
is,

if not equal to p, at least pulled towards p. That is, P should treat the observation of
P (pϕq) = p in the same way that it treats the testimony of an informed and wise teacher
about ϕ. Of course, there might be some pathological sentences, such as “the wise teacher
thinks this sentence is false,” for which updating on the teacher’s testimony that the sentence
is false actually causes you to believe that the sentence is true.

In fact we may want to go somewhat further; we may imagine that P is evaluating the quality
of its own judgment in general rather than regarding a particular proposition. Formally,
suppose that cq is a constant symbol indicating that the agent will need to make a decision
about ϕ

(
cq
)
. Then we would like to say that the agent’s beliefs about ϕ

(
cq
)

are accurate
in general, given that it had to make a decision about cq. In symbols, if x is the numeral
representing x, then

P

(
ϕ
(
cq
) ∣∣∣∣∣ P

(
pϕ
(
cq

)
q
∣∣∣∣ pcq = cqq

)
= p

)

should be, if not equal to p, at least strongly pushed towards p.9 (As before, there may be
pathological sentences for which the effect is reversed, and in general we should never expect
the probability to be exactly p.)

The analogous problem in the case of deductive reasoning is to build a system which can
prove that anything it proves is correct. This project is in some sense straightforward: if
you can build a system which believes “ϕ is true” for each of its axioms ϕ, it can conclude
by an inductive argument that everything it proves is true. Unfortunately, it turns out that

9It may seem strange to condition on cq = cq, i.e. we might hope that P

(
ϕ
(
cq
) ∣∣∣∣∣ P

(
pϕ
(
cq

)
q
)

= p

)
is

close to p. But this is unlikely to be true in general. For example, if cq is defined to satisfy ϕ
(
cq
)

then the

agent might assign probability 1 to ϕ
(
cq
)

but low probability to ϕ
(
cq

)
, unless it conditions on cq = cq.
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both steps of this plan—defining a notion of truth, and building a system which trusts its
own axioms—are essentially impossible.

In the probabilistic setting, we no longer have to contend with these impossibility results (at
least if we are willing to allow arbitrarily small uncertainty in our system’s self-evaluation).
But the project is no longer as straightforward as in the deductive case: what should our
system believe about itself, in order to treat its own judgments as evidence? There was a
clear rationale for proofs, in that they can be justified by assuming the truth of the axioms.
But for probabilities, it is no longer adequate to believe that your absolute assumptions are
correct, you need to believe that your prior is correct.

This appears to be a much higher bar. Moreover, a demonstration of a natural self-verifying
system would provide some indication that the chosen prior is a good one, in exactly the
same way that the fact that proofs provably preserve truth provides an indication that proofs
are epistemically solid.

An agent may also come to trust its own judgments on the basis of inductive evidence, and
this may be in closer accordance with an intuitive picture of our own self-trust. That is, a
system might be able to observe its own reliability in a number of cases and infer that it is
likely to be reliable in analogous future cases.

This approach also requires further technical work, in order to demonstrate that it is possible
for the system to learn the appropriate kind of generalization. So far, proposed systems have
not been able to learn these generalizations, either because they lack sufficient expressive
power, or because these generalizations would be inconsistent and are hence assigned zero
probability. The severity of these difficulties is not yet clear; discussing them at more length
would be outside of the scope for this paper.

6.1.4 Shifting attention?

Our finite systems all rely on a fixed set of sentences S with respect to which probabilistic
judgments are coherent. Combined with externalizing memory (and the ability to carry out
proofs in externalized memory), this may be an adequate basis for reasoning. But it seems
plausible that the set S itself should be subject to change as different facts become important
to the agent.

Suppose the agent wishes to change its focus from the set S to a set T . Removing elements
from S is straightforward, we can simply restrict our original coherent distribution to a
smaller set of sentences. The key problem is determining what probability to assign to
sentences ϕ ∈ T\S. So for simplicity, assume T ⊃ S.

One approach is to simply fix the probability of each sentence of S and to find the com-
pletion to T which minimizes entropy. However, this fails to allow an agent to update on
the constraints implied by any new sentences that have been included. For example, if I
previously assigned ∃x : ϕ (x) a probability of 1

2
but T contains all of the steps of a proof

of ϕ (17), then my probability for ∃x : ϕ (x) should go to 1, not remain at 1
2
. In this case

retaining a probability of 1
2

would lead to incoherence, but in milder cases the sentences in
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T might contain evidence about an assertion ψ.

An alternative approach is to extend a set of beliefs P defined on S to a set of beliefs P′
defined on T so as to minimize the KL divergence from P to P′ (but not enforcing any other
temporal consistency condition).

A further difficulty when considering approaches of this type is handling the introduction
of the new statement as an observation. For example, if T includes a proof of ϕ (17), it
seems intuitive that this should increase our probability assignment to ∀x : ϕ (x) as if we
had conditioned on ϕ (17). But this does not seem to be true for natural resolutions. (this
is closely related to the challenges described in the next section).

6.1.5 Paradox of ignorance

One potentially problematic aspect of our approach is the benefit that prior ignorance ap-
pears to confer upon a learner. That is, we might expect that an agent operating under a
more stringent logical consistency condition, which forced their prior to assign probability
1 to a larger number of (true) statements, would only perform better than its less-informed
peer. But in fact we can see that this is not generically true.

Consider a pair of agents, one powerful and one limited, trying to determine the truth
of ∀x : ϕ (x) for some ∆0 formula ϕ. Each of them has access to an environment which
can evaluate ϕ (x), though it takes longer to evaluate a sentence with a more complicated
argument x.

To the limited agent, it may be that each new value of ϕ (x) is a surprise, and so constitutes
evidence about the generalization ∀x : ϕ (x). If so, it may be able to query nature about some
very simple inputs x and thereby obtain a reasonable view of the universal generalization.
At the same time, it may be that the more powerful agent is able to deduce ϕ (x) directly
for simple x (i.e., it considers a set of sentences S large enough to prove each ϕ (x), and
therefore its prior necessarily assigns these statements probability 1). Casually it seems that
this should be to its advantage, since it should be able to jump to the same conclusion as
the limited agent but without needing to consult the environment. But in fact, because the
agent has assigned these statements prior probability 1, they don’t act as evidence at all—
they would be true whether or not the universal generalization ∀x : ϕ (x) were true—and the
prior probability of the universal generalization is still roughly µ

(
∀x : ϕ (x)

)
Thus the more

powerful agent must consult the environment regarding more complex examples, and pay a
larger cost, in order to begin to form reasonable beliefs about the universal generalization.

We could respond to this challenge in a number of ways:

• We could define a prior in which the existence of logical constraints influences prior
probabilities in the desired way. For example, the existence of a proof of ϕ (17) which
forces us to assign prior probability 1 to ϕ (17) might cause us to increase our prior
probability of ∀x : ϕ (x), just as if we had observed ϕ (17).

• We could provide an explicit mechanism by which agents can “update” on facts that
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they assign prior probability 1. For example, we might imagine an agent’s beliefs
as being formed in stages, subject to increasingly stringent logical constraints. Then
the complex agent might assign prior probability 1 to the simple sentences ϕ (x), yet
update on them in an earlier “stage” during which it was ignorant.

• We could conclude that it is not a problem at all, and that it is correct that ignorance
can be an advantage in certain situations; we find this problematic but not completely
implausible.

• Even if P
(
ϕ (x)

)
= 1 is guaranteed by logical coherence, the fact that P

(
ϕ (x)

)
= 1

is guaranteed by logical coherence may not be assigned probability 1, and so we could
try to build the agent such that updating on this fact would have a similar effect to
updating on ϕ (x) itself.

6.1.6 Implementation

Most of our discussion has been highly theoretical, and our primary interest has been in
understanding the nature of mathematical reasoning. Nevertheless, it may be possible to
implement the system described in section 2.4.2 in practice, and to apply it to simple prob-
lems. There is little doubt that experience with a working implementation would provide a
new perspective on these results.

Moreover, the computational time required to deal with a set of n sentences (and their
pairwise conjunctions) is O(n3), which remains easily manageable up through n = 103 (at
which point we may have enough expressive power to be interesting, given a careful choice
of 103 sentences).

6.1.7 Practical questions

As discussed in section 4.5, there are a number of contemporary mathematical discussions
in which inductive reasoning plays a role, and it may be interesting to try to apply formal
frameworks like this one to these discussions:

• Applying formal frameworks to current discussions may help us understand the current
state of evidence, and clarify discussion.

• Understanding the reasoning which is used in practice may help highlight gaps in a
formal framework.
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7 Appendix

Theorem 1. It is possible to determine whether ϕ ∼ ψ in n log2 n time, where n is the total
length of ϕ and ψ.

Proof. First, observe that ϕ ∼ ψ iff there is a series of operations, of the sort described in the
definition of ∼, which transforms ϕ into ψ. (These operations might be applied to arbitrary
subexpressions).

By using a sequence of such operations, we will describe how to transform any expression ϕ
into a canonical expression ϕ∗ in a new language where ∧ is modified to take a set rather
than a pair of arguments. We will show that if ϕ ∼ ψ then ϕ∗ = ψ∗, so that computing ϕ∗

provides an algorithm to test for trivial equivalence.

First, we remove all occurrences of →,∨,∃. Then we inductively define ϕ∗ as follows:

Case 1: ϕ ∈ {⊥,>}. >∗ = ∧∅,⊥∗ = ¬∧∅, where ∧∅ is ∧ applied to no arguments.

Case 2: ϕ is an atom. ϕ∗ = ϕ.

Case 3: ϕ = ¬ψ. If ψ∗ = ¬ξ∗ then ϕ∗ = ξ∗. Otherwise, ϕ∗ = ¬ψ∗.

Case 4: ϕ = ∀xj : ψ. Let xi be the lexicographically first variable not appearing in ψ∗. Then
ϕ∗ = ∀xi : ψ∗

[
xj = xi

]
.

Case 5: ϕ = ψ ∧ ξ. For any expression ζ∗, define

S (ζ∗) =

S if ζ∗ =
∧
θ∗∈S

θ∗

{ζ∗} otherwise

Define S = S (ψ∗) ∪ S (ξ∗). If there is some ¬θ∗ ∈ S such that S (θ∗) ⊂ S, then
ϕ∗ = ¬∧∅. In this case, we say that ϕ is false by virtue of noncontradiction.

If S = {θ∗}, then ϕ∗ = θ∗. Otherwise, ϕ∗ =
∧
θ∗∈S

θ∗.

47



It is straightforward to verify by induction that if ϕ∗ = ψ∗ then ϕ ∼ ψ. The only challenging
step is showing that if ϕ is false by noncontradiction, then ϕ ∼ ⊥, but this can be done by
rearranging the conjuncts of ϕ appropriately until it is of the form ψ∧(θ ∧ ¬θ) ∼ ψ∧⊥ ∼ ⊥.
By using standard data structures for sets, we can compute A ∪ B or A ⊂ B in time

log
(
|A|
)
|B|. This yields an O

(
n log2 n

)
time algorithm for computing ϕ∗, where n is the

length of ϕ (as long as we always merge the smaller set into the larger set).

It remains to show that if ϕ ∼ ψ, then ϕ∗ = ψ∗. It is sufficient to check each of the trans-
formations in the definition of ∼, and then we can induct on the number of transformations
transforming ϕ into ψ. Moreover, since ϕ∗ depends only on the canonical form of its subex-
pressions, it suffices to consider the case where ϕ ∼ ψ pattern matches exactly with one of
the defining transformations, and then we can induct on the structure of ϕ.) It is routine to
check almost all of these rules. Only two present difficulty:

1. ϕ∧¬ϕ ∼ ⊥. In this case, observe that S (ϕ∗) ⊂ S (ϕ∗) regardless of the form of ϕ∗, and
so the expression on the left is false by virtue of noncontradiction and has a canonical
form of ¬∧∅.

2. ϕ ∧ (ψ ∧ ξ) ∼ (ϕ ∧ ψ) ∧ ξ. The canonical forms of these expressions are usually equal
by virtue of the associativity of set unions. The only possible failure is if one of
them is false by virtue of noncontradiction. Let S = S (ϕ∗) ∪ S (ψ∗) ∪ S (ξ∗). It is
straightforward to check that each side of this expression is false by noncontradiction if
and only if S contains some ¬θ∗ such that S (θ∗) ⊂ S. Since this is the same condition
on both sides, these are equivalent.

Theorem 6. For every k there are 2k inconsistent sentences ϕi with K (ϕi) = θ (k).

Proof. Consider the theory Tx specified by a binary vector x = x0x1 · · · xk, defined by the
conjunction of the axioms:

∀x, y, z, w :f 2(x, y) = f 2(z, w)→ x = z ∧ y = w

∀x, y :A1(x) ∧ A1(y)→ x = y

c0 6= c1

A1

(
f 2

(
cx0 , f

2
(
cx1 , · · · f 2

(
cxk−1

, cxk
)
· · ·
)))

For simplicity, write ϕx for the last axiom. The first three axioms have complexity θ (1)
since they have no dependence on k. By induction and the definition of K (·), we have
K
(
ϕ (x)

)
= θ (k). Moreover, it is easy to verify that any ψx and ψy are incompatible given

the first three axioms. Thus Tx and Ty are incompatible given x 6= y.

Theorem 7. There exists a coherent distribution P such that for every coherent distribution
Q, P ≥ Q.
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Proof. Observe that Ψ (P) is continuous in the product topology and that the space of
coherent distributions is a compact set. Thus if P1 < P2 < · · · (or in general if the Pi form
a chain), then P = limi Pi (relative to some ultrafilter) satisfies Ψ (P) > Ψ (Pi) for all i.

Thus we can find a maximal P. For any P′ 6= P, we must have either P > P′ or P and
P′ are incompatible. We will show that if P′ is incomparable with P, then Q = 1

2
(P + P′)

dominates P, contradicting maximality of P. This implies that P satisfies the conditions of
the theorem.

To see that Q > P, let S be the set of sentences where P > P′, and let T be the set of
sentences where P′ ≥ P. Then

Ψ (Q‖P) =
∑
ϕ∈L

µ (ϕ)
(

log
(
Q (ϕ)

)
− log

(
P (ϕ)

))
=
∑
ϕ∈S

µ (ϕ)
(

log
(
Q (ϕ)

)
− log

(
P (ϕ)

))
+
∑
ϕ∈T

µ (ϕ)
(

log
(
Q (ϕ)

)
− log

(
P (ϕ)

))
≥
∑
ϕ∈S

µ (ϕ)
(

log
(
Q (ϕ)

)
− log

(
P (ϕ)

))
+
∑
ϕ∈T

µ (ϕ)

(
log

(
P (ϕ)

2

)
− log

(
P (ϕ)

))
≥
∑
ϕ∈S

µ (ϕ)
(

log
(
Q (ϕ)

)
− log

(
P (ϕ)

))
− 1

= +∞ > 0

as desired.

7.1 Computing P

In this section we show how to compute the distribution P defined in section 3 using a halting
oracle.

The first observation is that if S is a finite set of sentences, then a distribution P : S → [0, 1]
can be extended to a coherent probability distribution if and only if P satisfies the coherence
axioms when restricted to S and assigns probability 1 to each theorem of PA (this is a
straightforward modification of theorem 2). Using a halting oracle, we can straightforwardly
test whether a given P : S → [0, 1] satisfies these properties.

Given a finite set S, we can restrict our potential function Ψ (P) by considering

ΨS (P) =
∑
ϕ∈S

µ (ϕ) log
(
P (ϕ)

)
.

For any S, let PS : S → [0, 1] be the coherent distribution maximizing ΨS (PS). We will
show that for any ϕ, ε we can find a set S such that

∣∣P (ϕ)− PS (ϕ)
∣∣ ≤ ε; this implies that

we can approximate P simply by computing PS for a sufficiently large S.

Let µ (S) =
∑

ϕ∈S µ (ϕ), and µ
(
S
)

=
∑

ϕ∈L\S µ (ϕ). To measure the distance between two
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distributions P and Q over the set S, we define

‖P−Q‖22 =
∑
ϕ∈S

µ (ϕ)
(
P (ϕ)−Q (ϕ)

)2
.

Theorem 8. For any coherent PS : S → [0, 1], any P : L→ [0, 1], and any ε > 0, there is a
PS : L→ [0, 1] such that:

1. For each ϕ ∈ S,
∣∣∣PS (ϕ)− PS (ϕ)

∣∣∣ ≤ ε.

2. Ψ
(
PS
∥∥∥P) ≥ ΨS (PS)−ΨS (P)− ε+ log (ε)µ

(
S
)

.

In particular, taking ε = log µ
(
S
)

, we have

Ψ
(
PS
∥∥∥P) ≥ ΨS (PS)−ΨS (P)− µ

(
S
)(

log µ
(
S
)

+ 1

)
.

Proof. Let Q be any extension of PS to a coherent probability distribution. Define

PS = (1− ε)Q + εP.

Then it is trivial to verify that condition (1) above holds.

Moreover,

Ψ
(
PS
∥∥∥P) =

∑
ϕ

µ (ϕ)

(
log
(
PS (ϕ)

)
− logP (ϕ)

)
=
∑
ϕ∈S

µ (ϕ)

(
log
(
PS (ϕ)

)
− logP (ϕ)

)
+
∑
ϕ∈S

µ (ϕ)

(
log
(
PS (ϕ)

)
− logP (ϕ)

)
≥
∑
ϕ∈S

µ (ϕ)
(

log
(
(1− ε)PS (ϕ)

)
− logP (ϕ)

)
+
∑
ϕ∈S

µ (ϕ)
(

log
(
εP (ϕ)

)
− logP (ϕ)

)
=
∑
ϕ∈S

µ (ϕ)
(

log (1− ε) + log
(
PS (ϕ)

)
− logP (ϕ)

)
+
∑
ϕ∈S

µ (ϕ)
(

log (ε) + log
(
P (ϕ)

)
− logP (ϕ)

)
= µ (S) log (1− ε) + ΨS (PS)−ΨS (P) + µ

(
S
)

log ε

≥ −ε+ ΨS (PS)−ΨS (P) + µ
(
S
)

log ε

as desired.

Theorem 9 (Strong concavity). For any P,Q : S → [0, 1],

ΨS

(
δP + (1− δ)Q

)
≥ δΨS (P) + (1− δ)ΨS (Q) +

1

2
δ(1− δ)

∑
ϕ∈S

µ (ϕ)
(
P (ϕ)−Q (ϕ)

)2
.
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Proof. The key ingredient is the strong concavity of the logarithm, which can be deduced
directly from the fact that its second derivative is − 1

x2
≤ −1:

log
(
δx+ (1− δ)y

)
≥ δ log x+ (1− δ) log y +

1

2
δ(1− δ)(x− y)2.

Using this inequality, we can compute (where all sums are over S):

ΨS

(
δP + (1− δ)Q

)
=
∑
ϕ

µ (ϕ) log
(
δP (ϕ) + (1− δ)Q (ϕ)

)
≥
∑
ϕ

µ (ϕ)
(
δ log

(
P (ϕ)

)
+ (1− δ) logQ (ϕ)

)
+

1

2
δ(1− δ)

(
P (ϕ)−Q (ϕ)

)2
= δΨS (P) + (1− δ)ΨS (Q) +

1

2
δ(1− δ)

∑
ϕ

(
P (ϕ)−Q (ϕ)

)2
,

as desired.

Corollary 1. If PS is the coherent distribution maximizing ΨS (PS), then for any coherent
P : S → [0, 1]:

ΨS (P) ≤ ΨS (PS)− 1

2
‖P−Q‖22

Proof. Consider the distributions (1− δ)PS + δP. By theorem 9:

ΨS

(
(1− δ)PS + δP

)
≥ (1− δ)ΨS (PS) + δΨS (P) + δ(1− δ) ‖P−Q‖22
= ΨS (PS) + δ

(
ΨS (P)−ΨS (PS) + ‖P−Q‖22

)
+O

(
δ2
)

And taking δ → 0, the corollary follows by the optimality of PS.

Putting these two theorems together, we conclude:

Theorem 10. If PS is the coherent distribution maximizing ΨS (PS) and P is the coherent
distribution maximizing Ψ (P) in the sense of Theorem 7, then for any ϕ ∈ S we have

∣∣PS (ϕ)− P (ϕ)
∣∣ ≤√√√√µ (ϕ)µ

(
S
)

log
2

µ
(
S
)

Proof. By Theorem 8 we can find an extension PS such that

0 ≥ Ψ
(
PS
∥∥∥P) ≥ ΨS (PS)−ΨS (P)− µ

(
S
)

log
2

µ
(
S
)

Then applying corollary 1, together with the observation

‖P−Q‖22 ≥ µ (ϕ)
(
P (ϕ)−Q (ϕ)

)2
yields the desired result.
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