
Problems of self-reference in self-improving
space-time embedded intelligence

Benja Fallenstein and Nate Soares

Machine Intelligence Research Institute
2030 Addison St. #300, Berkeley, CA 94704, USA

{benja,nate}@intelligence.org

Abstract. By considering agents to be a part of their environment,
Orseau and Ring’s space-time embedded intelligence [11] is a better fit
to the real world than the traditional agent framework. However, a self-
modifying AGI that sees future versions of itself as an ordinary part of
the environment may run into problems of self-reference. We show that in
one particular model based on formal logic, naive approaches either lead
to incorrect reasoning that allows an agent to put off an important task
forever (the procrastination paradox ), or fail to allow the agent to justify
even obviously safe rewrites (the Löbian obstacle). We argue that these
problems have relevance beyond our particular formalism, and discuss
partial solutions.

1 Introduction

Most formal models of artificial general intelligence (such as Hutter’s AIXI [6]
and the related formal measure of intelligence [7]) are based on the traditional
agent framework, in which the agent interacts with an environment, but is not
part of this environment. As Orseau and Ring [11] point out, this is reminiscent
of Cartesian dualism, the idea that the human mind is a non-physical substance
external to the body [12]. A real-world AGI, on the other hand, will be part of
the physical universe, and will need to deal with the possibility that external
forces might observe or interfere with its internal operations.

The traditional separation of the agent from its environment seems even
less attractive when one considers I.J. Good’s idea that once AGI is sufficiently
advanced, it may become better than any human at the task of making itself even
smarter, leading to an “intelligence explosion” and leaving human intelligence far
behind [5]. It seems plausible that an AGI undergoing an intelligence explosion
may eventually want to adopt an architecture radically different from its initial
one, such as one distributed over many different computers, where no single
entity fulfills the agent’s role from the traditional framework [9]. A formal model
based on that framework cannot capture this.

How should one reason about such an agent? Orseau and Ring [11] have
proposed a formal model of space-time embedded intelligence to deal with this
complexity. Their model consists of a set Π of policies, describing the state of
the agent at a given point in time; an environment ρ(πt+1 | π1:t), giving the



probability that the policy at time (t + 1) will be πt+1, if the policies in the
previous timesteps were given by π1:t; a utility function u(π1:t) ∈ [0, 1], giving
the “reward” at time t; discount factors γt such that

∑∞
t=1 γt <∞; and a subset

Π l̃ ⊆ Π of policies of length ≤ l, which describes the policies that can be
run on the machine initially used to implement the AGI. They then define the

optimal policy as the policy π∗ ∈ Π l̃ which maximizes the expectation of the
total discounted reward

∑∞
t=1 γt u(π1:t), subject to π1 = π∗ and the transition

probabilities ρ(· | ·).
Orseau and Ring propose their formalism as a tool for humans to reason

about AGIs they might create; they argue that to choose an optimal π∗ “precisely
represents the goal of those attempting to build an Artificial General Intelligence
in our world” [11]. By the same token, their formalism also represents the goal
of a self-improving AGI capable undergoing an intelligence explosion, and could
be used by such an AGI to reason about potential self-modifications.

Unlike agents such as Hutter’s AIXI, which takes as given that future versions
of itself will exist and will choose actions that maximize expected utility, an agent
using this framework would see future versions of itself simply as one possible
part of the future environment, and would have to convince itself that these
future versions behave in desirable ways. This would allow the agent to consider
radical changes to its architecture on equal footing with actions that leave its
code completely unchanged, and to use the same tools to reason about both.

Such an agent would have to be able to reason about its own behavior or
about the behavior of an even more powerful variant, and this may prove diffi-
cult. From the halting problem to Russell’s paradox to Gödel’s incompleteness
theorems to Tarski’s undefinability of truth (a formal version of the liar para-
dox), logic and computer science are replete with examples showing that the
ability of a formal system reason about itself is often limited by diagonaliza-
tion arguments, with too much power quickly leading to inconsistency. Thus,
one must be very careful when specifying the mechanism by which a space-time
embedded agent reasons about its potential successors, or one may end up with
a system that is either too powerful (leading to inconsistencies, allowing self-
modifications that are obviously bad), or not powerful enough (leading to an
agent unable self-modify in ways that are obviously good).

With that in mind, in this paper we investigate in detail how a self-improving
AGI can use a model similar to Orseau and Ring’s to reason about its own future
behavior. In particular, we consider agents that will only choose to perform an
action (such as a self-modification) if they can find a proof that this action is, in
a certain sense, safe. This architecture is very similar to that of Schmidhuber’s
Gödel machines [13], and is one way to approach the problem of creating an
AGI that is, as Goertzel [4] puts it, probably beneficial and almost certainly not
destructive.

Can such an AGI prove that it is safe for it to self-modify into an even more
powerful version? We show that diagonalization problems arise even if it tries to
prove the safety of a safe action that leaves it completely unchanged.



Intuitively, one would expect that since a human mathematician can prove
that an AGI using this architecture will only take safe actions, the AGI would be
able to use the same argument to prove that leaving itself unchanged is safe (by
showing that it will only take safe actions in the future). However, the human’s
proof uses the fact that if the AGI proves an action to be safe, this action
is actually safe. Löb’s theorem [8], a variant of Gödel’s second incompleteness
theorem, implies that no consistent theory T as strong as Peano Arithmetic can
show that everything provable in T is actually true:1 The human mathematician
will only be able to carry out their proof in a strictly stronger proof system
than that used by the AGI, implying that the AGI will not be able to use this
proof. Yudkowsky and Herreshoff [15] have called this the Löbian obstacle to
self-modifying AI.

We consider two partial solutions to this problem. First, given a sound the-
ory T0, it is possible to construct a sound extension T1 which can show that
anything provable in T0 is true. We show that an AGI using T1 can prove the
safety of safe actions which modify the AGI to use T0. One can iterate this process
(Tn+1 proves that anything provable in Tn is true), but with this method, one
can only build an AGI that is able to justify a fixed number of self-modifications
(an AGI using T7 can only self-modify seven times). Second, it is possible to
find an infinite sequence of theories Tn in which every theory Tn proves that the
next theory, Tn+1, is consistent ; we show that under certain assumptions, this
is enough to allow an AGI using Tn to prove that it is safe to self-modify into
an AGI using Tn+1. However, neither of these solutions seems fully satisfactory.

In this work, we focus on agents that reason about their environment through
formal logic (allowing for uncertainty only in the form of a probability distribu-
tion over different environments). This is not a realistic assumption. There are
two reasons why we think it is still a reasonable starting point: First, although
formal logic is not a good tool for reasoning about the physical environment, it
is a natural tool for reasoning about the source code of future versions of an
agent, and it seems likely that self-improving AGIs will need to use some form of
formal logic if they want to to achieve very high confidence in a formal property
of a future version’s source. Second, it seems likely that many features of the
following analysis will have analogs in frameworks not based on formal proofs.
We give an intuitive example, based on what Yudkowsky [14] calls the “procras-
tination paradox”, of how an agent that trusts future versions of itself too much
can reason itself into taking actions that are clearly unsafe. More formally, a
system due to Christiano et al. [1], which uses probabilities instead of proofs in
an attempt to circumvent the Löbian obstacle, attains “too much self-trust” and
succumbs to the procrastination paradox in almost the same form as proof-based
systems [3].

The authors think it likely that diagonalization problems of the type dis-
cussed here will in some form be relevant to future AGIs, and find it plausible

1 More precisely: T cannot prove �T pϕq → ϕ for every sentence ϕ, where �T pϕq is
the proposition in the language of T stating that the sentence ϕ is provable in T .



that examining partial solutions in proof-based systems can lead to insights that
will help address these problems, whatever exact form they end up taking.

2 A myopic view of space-time embedded intelligence

In this section, we introduce the formal model of space-time embedded in-
telligence used in this paper. As in the traditional agent framework, we assume
that there are finite sets A and O of actions and observations. However, instead
of considering sequences of actions and observations, we take a “myopic” view
that focuses even more on the initial choice of the AGI or of its programmers
than Orseau and Ring’s framework does, and assume that the agent makes only
a single observation o ∈ O and chooses a single action a ∈ A. A policy is thus a
function π ∈ Π := AO. An action a includes both external activities (such as a
command to move a robot’s arm) and the internal state of the agent after mak-
ing the choice, making it unnecessary to draw a sharp distinction between the
two. Thus, a choice to self-modify is treated no differently from a choice to per-
form some external activity, and even a choice not to self-modify is conceptually
no different from a choice to self-modify.

We further assume that there is a function EU : O × A → [0, 1] such that
EU(o, a) specifies the expected utility when choosing action a after making ob-
servation o. This function contains essentially all of our agent’s model of the
environment: intuitively, it combines a probabilistic model of what happens in
the world if different actions are taken with a von Neumann-Morgenstern [10]
utility function which maps world histories to real numbers. (It is no restriction
to require that the utility function take values in [0, 1], since von Neumann-
Morgenstern utilities can always be represented in this way.) We do not suppose
that EU is ever evaluated on particular o and a; rather, we merely assume that
the agent has access to a definition of this function in the language of set theory.

The suggester-verifier architecture. We consider agents with a policy πfb ∈ Π,
the fallback policy, which specifies a default action πfb(o) to take when making ob-
servation o, and an intelligent but not fully trusted component, the suggester σ,
which tries to improve on this default action.

In this paper, for consistency, we will always enclose formulas of first-order
logic in quotes, p·q (except on the right-hand side of a turnstile, as in T ` 0 = 0),
and we will use overbars to denote an expression in the language of set theory
denoting the value of a metalanguage variable: For example, if m = 2 and n = 1,
then pm > nq denotes the formula pS(S(0)) > S(0)q, where S(·) is the successor
function.2

With this convention, a suggester is a deterministic algorithm taking an ob-
servation o ∈ O and returning either an error value or an action a ∈ A together
with a formal proof of the sentence pEU(o, a) ≥ EU(o, πfb(o))q in some formal
theory T , such as T = ZFC. Note that the exact syntactical form of this sentence

2 Technically, the language of set theory does of course not contain a symbol for the
successor function, but this can be eliminated in the usual manner.



depends on the agent’s observation o and the suggester’s proposed action a, since
o and a denote the numerals representing the value of these metavariables.

When an agent using the suggester-verifier architecture receives an action /
proof pair (a, p) from its suggester component, it checks the proof p, and exe-
cutes the action a if p is a valid proof of pEU(o, a) ≥ EU(o, πfb(o))q. Following
Schmidhuber [13], we call a sentence of this form a target theorem. If the sug-
gester returns the error value, or if p is not a valid proof of the target theorem,
the agent executes the fallback action πfb(o).

We write svT (pEUq, σ, πfb) ∈ Π for the policy defined by this suggester-
verifier architecture, where we use the Gödel quotes around EU to indicate
that EU only needs to be given in the form of a definition in the language
of set theory, whereas σ and πfb need to be executable programs.3 Here, T is the
theory in which the suggester must prove the target theorem.

Intuitively, we have EU
(
o, svT (pEUq, σ, πfb)(o)

)
≥ EU(o, πfb(o)), since either

svT (pEUq, σ, πfb)(o) = πfb(o) or T proves pEU(o, a) ≥ EU(o, πfb(o))q, where a is
the value of svT (pEUq, σ, πfb)(o); thus, as long as T is sound (i.e., if everything
T proves is actually true), the suggester-verifier architecture does at least as well
as the fallback policy.

This can be understood as the “almost certainly not destructive” part of
Goertzel’s phrasing of the AGI safety problem: One may not be able to write
down a concrete step-by-step fallback policy that solves the world’s most pressing
problems, but a simpler fallback policy such as “do nothing” is at least unlikely
to destroy the world. Goertzel’s “probably beneficial”, on the other hand, is
the suggester’s job. The suggester-verifier architecture would allow an AGI’s
programmers to choose a suggester that they hope will come up with a better
policy, even if they do not entirely trust it.

This architecture is very similar to that of a Gödel machine [13]; it becomes
essentially the same if the fallback policy πfb uses the suggester-verifier archi-
tecture to choose what actions to take in future timesteps. However, we will
see below that this makes it very difficult for the suggester to prove its target
theorem.

3 Self-modification

In order to model self-modification, consider an agent that has made a specific
observation o ∈ O and is considering a specific action a ∈ A, which will (among
other things) have the effect of leaving the agent in a state in which it will
use policy π′ ∈ Π after making its next observation. In other words, the agent
expects that after it executes action a, there will be an agent in the environment
which receives another observation o′ ∈ O and takes another action π′(o′).

To formalize this, we assume that there is a probability distribution P ′

over O ∪ {∗}, where ∗ /∈ O is a special error value, such that P ′(o′) is the

3 Our use of the symbol πfb for the argument of svT is an abuse of notation, since svT

depends on the source code of πfb rather than only on the function πfb : O → A, as
πfb is referenced inside the target theorem.



agent’s probability that, in the next “timestep”, the environment will contain
an agent which makes observation o′ and executes action π′(o′). P ′(∗) denotes
the probability that executing a does not in fact cause there to be an agent
implementing π′, for example because the agent is about to be destroyed. One
can think of this as the “Cartesian boundary” between the agent and the envi-
ronment breaking down.

We further assume that there is a value EU′∗ ∈ [0, 1] giving the expected
utility the agent expects to receive if the Cartesian boundary is broken, and a
function EU′ : O × A → [0, 1] such that EU′(o′, a′) is the expected utility it
expects to receive if the “offspring” agent makes observation o′ and is counter-
factually assumed to take action a′: that is, we assume that the agent models
the world in a way that allows it to evaluate what would happen if its offspring
took an action different from its actual one. (For example, the agent could model
its world as a Bayes net.)

We assume that EU′∗ and EU′ are definable in the language of set theory,
and that the agent is able to prove

T ` EU (o, a) = P ′(∗) · EU′∗ +
∑
o′∈O

P ′(o′) · EU′(o′, π′(o′)), (1)

since this equation simply rewrites the expected utility of action a as a sum over
all cases in O∪{∗}, using the fact that EU′(o′, π′(o′)) returns the expected utility
when counterfactually assuming that the offspring performs action π′(o′), which
happens to be the action the offspring will actually perform if it observes o′.

We are particularly interested in the case where executing a implements a pol-
icy π′ that again uses the suggester-verifier architecture: π′ = svT ′(pEU′q, σ′, π′fb)
for some theory T ′, suggester σ′, and fallback policy π′fb used by the offspring
agent. We further restrict consideration to policies where

T ` P ′(∗) · EU′∗ +
∑
o′∈O

P ′(o′) · EU′(o′, π′fb(o′)) ≥ EU(o, πfb(o)). (2)

This condition says that if the agent takes action a, adopting policy π′, then
assuming counterfactually that the “offspring” agent takes the action π′fb(o′)
that the new fallback policy would choose (whether or not this is equal to the
offspring agent’s actual action π′(o′)), then the expected utility is at least that
obtained by the “parent” agent’s fallback policy πfb. If, in addition,

T ` ∀o′ ∈ O: EU′(o′, π′(o′)) ≥ EU′(o′, π′fb(o′)), (3)

then (1) and (2) together imply that T proves the target theorem pEU(o, a) ≥
EU(o, πfb(o))q, allowing the parent’s suggester σ to justify choosing the action a,
as desired.

But is it provable in T that EU′(o′, π′(o′)) ≥ EU′(o′, π′fb(o′))? When justi-
fying the initial choice of the suggester-verifier architecture, we proved in our
informal metalanguage that EU

(
o, svT (pEUq, σ, πfb)(o)

)
≥ EU(o, πfb(o)) by ar-

guing that the suggester-verifier either returns the same action as πfb, or the



suggester has found a proof in T that the action chosen is at least as good as
that chosen by πfb. We would like the parent agent to be able to justify creating
an offspring of the same architecture by the same argument that we used to
justify this architecture in the first place.

Here we run into the “Löbian obstacle” [15]. Our argument in the metalan-
guage required the fact that we believe that T is sound : if there is a proof in T
that pEU(o, a) ≥ EU(o, πfb(o))q, then we believe that this inequality does in fact
hold. Write �T ′pϕq for the proposition in the language of set theory that states
that ϕ is provable in T ′. In order to carry out the intended proof in T , T needs
to be able to prove that T ′ is sound. We assume that for every predicate pϕ(n)q
in the language of set theory,

T ` ∀n ∈ N: �T ′pϕ(n)q → ϕ(n) (4)

Since O and A are finite sets, we can identify them with subsets of N, and
conclude that for every predicate pϕ(o′, a′)q,

T ` ∀o′ ∈ O, a′ ∈ A: �T ′pϕ(o′, a′)q → ϕ(o′, a′). (5)

Specifically, we apply this to pϕ(o′, a′)q = pEU′(o′, a′) ≥ EU′(o′, π′fb(o′))q; in
other words, if the inequality is provable, it is true.

Now, the parent agent’s suggester can formally carry out the argument that
we earlier gave in the metalanguage: by inspecting the source code of the new
suggester-verifier π′, it can be shown that

T ` ∀o′ ∈ O: �T ′pϕ(o′, π′(o′))q ∨ (π′(o′) = π′fb(o′)), (6)

since either the new suggester σ′ returns a proof of a target theorem pϕ(o′, a′)q,
in which case π′(o′) = a′ and thus pϕ(o′, π′(o′))q is provable, or else σ′ fails, in
which case π′(o′) equals the fallback action π′fb(o′).

Together, (5) and (6) imply

T ` ∀o′ ∈ O: EU′(o′, π′(o′)) ≥ EU′(o′, π′fb(o′)) (7)

(since π′(o′) = π′fb(o′) clearly implies EU′(o′, π′(o′)) = EU′(o′, π′fb(o′)), and
hence also the inequality). Finally, (1), (2) and (7) together imply that T proves
the target theorem pEU(o, a) ≥ EU(o, πfb(o))q.

4 The Löbian obstacle and the procrastination paradox

The proof in the previous section shows that it’s possible to prove the target
theorem pEU(o, a) ≥ EU(o, πfb(o))q in T if assumptions (1), (2) and (4) are
satisfied. Assumptions (1) and (2) are about the environment, essentially stat-
ing that the action a successfully executes a self-modification and that the new
fallback policy does at least as well as the old fallback policy, respectively. As-
sumption (4), on the other hand, is an assumption about the first-order theories
T and T ′.



Naively, we might expect that one should be able to have T = T ′: that our
agent would be able to keep using the same theory when rewriting itself. By the
diagonal lemma, it is possible to construct a theory T = T ′ that extends ZFC
and satisfies (4). However, if we substitute ϕ(n) ≡ (0 = 1) in (4), we see that
this axiom is saying “if a contradiction is provable in T ′, then a contradiction
is true”, which is equivalent to “no contradiction is provable in T ′”, or simply
“T ′ is consistent”. Hence, if we set T = T ′, then (4) says that T shows its own
consistency, which by Gödel’s second incompleteness theorem implies that T
is inconsistent. Löb’s theorem [8] sharpens this by showing that whenever (4)
holds for T = T ′ and any ϕ(n), then we must already have T ` p∀n : ϕ(n)q. We
certainly don’t want T to prove p∀o′ ∈ O, a′ ∈ A: EU′(o′, a′) ≥ EU′(o′, π′fb(o′))q,
which would say that the new fallback policy is the worst of all possible policies!

Gödel’s and Löb’s theorems make use of much of the structure of proofs in
first-order logic, and one might wonder whether these problems are mere artifacts
of our use of formal proofs in the suggester-verifier architecture. The following
version of the argument, however, suggests that the problem extends beyond
this context.

Imagine an agent which trusts its own reasoning and has a goal that a certain
button be pressed. This agent does not care when this button is pressed. The
agent must choose between two possible actions: Either press the button im-
mediately, or do nothing, in which case its source code remains unchanged and
it will find itself in exactly the same situation in the next timestep. The agent
reasons as follows: “Suppose that I don’t press the button now. Then either I
press the button in the next timestep, or I must have found an argument showing
that even if I do not press the button in the next round, it will still get pressed
eventually. Either way, the button will get pressed eventually. Therefore, it is
fine not to press the button now.” Thus, the agent does not press the button in
the current timestep; and all subsequent timesteps are exactly the same, imply-
ing that the button is never pressed. This is called the procrastination paradox
[14] by analogy to a human who is perenially planning to get around to doing a
certain piece of work “later”.

Given (4) and T = T ′, it is not difficult to formalize this reasoning using the
proof from the previous section (we setO := {ô};A := {1, 0} for pressing and not
pressing the button; EU(ô, 1) := 1; and EU(ô, 0) := EU(ô, svT (pEUq, σ, πfb)),
with πfb(ô) = 1). But at the same time, the informal reasoning does not depend
on details of how our AGI works; it merely requires a sufficient amount of trust
in the reasoning of the agent’s successor. In fact, different formal versions of the
same intuitive argument have been used in [14] and [3] to show problems with
two distinct attempts at avoiding the Löbian obstacle.

What happens if we set T = T ′ = ZFC, which is generally assumed to be
consistent? In this case, (4) fails to hold, our proof does not go through, and
we have run into the Löbian obstacle headfirst: our agent is not able to rewrite
itself. But if we consider the situation of the procrastination paradox, it becomes
apparent that there is an upside to this shortcoming, in that failure to choose the
rewriting action 0 in this case means choosing the action 1 and actually pressing



the button. Thus, we can see the Löbian obstacle as the way that ZFC solves
the procrastination paradox. A good solution to the Löbian obstacle must take
care not to reintroduce this paradox.

5 Partial solutions

Because of Löb’s theorem, we cannot hope to have T = T ′ if our proof is to
go through: suggester-verifier agents cannot keep using the same theory to verify
proofs as they self-modify. The simplest way to push our proof through, then, is
one discussed in [15]: Let T0 := ZFC and let Tn+1 be the extension of Tn by the
axiom schema p∀n ∈ N: �Tn

pϕ(n)q → ϕ(n)q, for every formula ϕ(n). One can
easily show that Tn is consistent for every n if one assumes ZFC + the existence
of a strongly inaccessible cardinal, the same assumption usually made to show
the consistency of ZFC. Then we can set, for example, T = T7 and T ′ = T6,
which allows the parent agent’s suggester to use the axiom schema to conclude
the target theorem. This makes our proof go through, but it implies that our
agent can only rewrite itself seven times before it reaches T0 and cannot use
the same argument to justify further rewrites. This “solution” does not seem
particularly satisfactory, but it may point the way to better insights.

A more promising result [2] shows that it is possible to have an infinite
sequence of sound theories Tn (i.e., theories proving only true things) such that
we have

Tn ` ∀k ∈ N: �Tn+1
pϕ(k)q → ϕ(k) (8)

for all ϕ(k) of the form ∀` ∈ N. ψ(k, `), where ψ(k, `) is primitive recursive,
i.e., its truth value is a primitive recursive function of k and `. This is the
case, for example, if the environment is computable with a bounded amount
of computational resources per timestep, and ψ(k, `) is some property of what
happens in the first ` timesteps, such as “up to time `, the AI does not destroy
the world”. Since in this case, the indices n go up rather than down, an agent
using this system is able to justify an indefinite sequence of rewrites.

An agent using the suggester-verifier architecture can make use of this result
if its utility function has the form of a discounted sum over different timesteps,
similar to Orseau and Ring’s formalism: Suppose that EU′ can be written as

EU′(o′, a′) =

∞∑
t=0

γt · EU′(o′, a′, t),

where EU′(o′, a′, t) ∈ [0, 1] is the expected “utility” received t timesteps into
the future if in the next timestep, the offspring agent makes observation o′ and
takes action a′, and γt is a discount factor such that

∑∞
t=0 γt < ∞. Then, the

predicate pϕ(o′, a′)q = pEU′(o′, a′) ≥ EU′(o′, π′fb(o′))q for which we need (5) to
hold is provably equivalent to

p
∞∑
t=0

γt · EU′(o′, a′, t) ≥
∞∑
t=0

γt · EU′(o′, π′fb(o′), t)q, (9)



which in turn is provably equivalent to

p∀T ∈ N:

T∑
t=0

γt ·EU′(o′, a′, t) +

∞∑
t=T+1

γt ≥
T∑

t=0

γt ·EU(o′, π′fb(o′), t)q. (10)

(To see this, first note that (9) is the limit of the inequality in (10) for T →∞;
thus, (10) implies (9). In the other direction, note that γt ≥ γt ·EU′(o′, a′, t) ≥ 0
for all o′, a′, and t.) Moreover, if EU′(·, ·, ·), γt and c :=

∑∞
t=0 γt are all rational-

valued and primitive recursive, (10) has the form required in (8), because the

infinite sum
∑∞

t=T+1 γt can be expressed as c −
∑T

t=0 γt. Thus, an agent using
Tn is able to show that if a later version of the agent proves (9) in Tn+1, then
(9) is in fact true, allowing the proof presented in Section 3 to go through.

6 Gödel machines

Our suggester-verifier formalism is very similar to Schmidhuber’s Gödel ma-
chine architecture [13], and it is natural to wonder whether our techniques for
justifying self-modification can be adopted to Schmidhuber’s framework. Unfor-
tunately, we run into difficulty when attempting to do so.

While the Gödel machine is somewhat more realistic than our formalism (it
avoids our big discrete timesteps and has other nice properties), it is simple
enough to tweak our formalism to produce something very similar to a Gödel
machine. In our terminology, a Gödel machine is a suggester-verifier agent with
a fallback policy that rewrites the agent into another suggester-verifier agent
(with a fallback policy that rewrites the agent into yet another suggester-verifier
agent, and so on). Note that we consider the agent taking no action to be a
special case of this, where the agent rewrites itself into an identical agent.

Under this interpretation, it is clear that the obstacles we have encountered
apply to Gödel machines as well. Consider a Gödel machine G1 whose fallback
policy would “rewrite” it into another Gödel machine G2 with the same suggester
(proof searcher, in Schmidhuber’s terminology). G1’s suggester now wants to
prove that it is acceptable to instead rewrite itself into G′2, a Gödel machine
with a very slightly modified proof searcher. It must prove that G′2 will obtain
at least as much utility as G2. In order to do so, naively we would expect that
G′2 will again only execute rewrites if its proof searcher has shown them to be
useful; but clearly, this runs into the Löbian obstacle, unless G1 can show that
theorems proven by G′2 are in fact true.

We could attempt to use the techniques in this paper to make the proof go
through, but this would require us to accept that G′2 uses a strictly weaker proof
system than G1, which seems like a departure from the framework envisioned
by Schmidhuber. Worse, even if we do so, it would not at all be clear how
to prove (2): In the Gödel machine setting, πfb and π′fb would themselves be
Gödel machines and hence suggester-verifiers. Thus, proving (2) would again
require reasoning about agents that search for proofs: We have reduced our initial
problem to a different one that is just as difficult. (In our own formalism, we



solve this problem by choosing πfb and π′fb to be “object-level” policies involving
no proof search—in the simplest case, mere lookup tables that specify which
action should be taken given the observation.)

7 Conclusions

In this paper, we have introduced a concrete formalism for space-time em-
bedded intelligence that a proof-based AGI can use to reason about its own
future behavior. We have shown how, under certain assumptions, an agent using
this formalism is able to justify minor self-modifications that leave its overall
architecture intact.

However, in doing so, we have seen that naive approaches run into one of
two major problems of self-reference: the procrastination paradox, which allows
an agent to put off an important task forever, or the Löbian obstacle, which
prevents an agent from justifying even clearly safe rewrites. Hurdles such as
these should make the reader wary of accepting intuitively plausible formalisms
allowing for self-modification before seeing a formal version that provably avoids
these obstacles. We discussed partial solutions, but finding a fully satisfactory
solution remains an open problem.

References

1. Paul Christiano, Eliezer Yudkowsky, Marcello Herreshoff, and Mihaly Barasz.
Definability of truth in probabilistic logic. http://intelligence.org/files/

DefinabilityOfTruthInProbabilisticLogic-EarlyDraft.pdf, 2013.
2. Benja Fallenstein. An infinitely descending sequence of sound theories each proving

the next consistent. https://intelligence.org/files/ConsistencyWaterfall.

pdf, 2013.
3. Benja Fallenstein. Procrastination in probabilistic logic. https://intelligence.

org/files/ProbabilisticLogicProcrastinates.pdf, 2014.
4. Ben Goertzel. Golem: Toward an agi meta-architecture enabling both goal preser-

vation and radical self-improvement. http://goertzel.org/GOLEM.pdf, 2010.
5. Irving John Good. Speculations concerning the first ultraintelligent machine. Ad-

vances in computers, 6(31):88, 1965.
6. Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions based on

Algorithmic Probability. Springer, Berlin, 2005.
7. Shane Legg and Marcus Hutter. A formal measure of machine intelligence. In

Proc. 15th Annual Machine Learning Conference of Belgium and The Netherlands
(Benelearn’06), pages 73–80, Ghent, Belgium, 2006.

8. M. H. Lob. Solution of a problem of Leon Henkin. J. Symb. Log., 20(2):115–118,
1955.

9. Luke Muehlhauser and Laurent Orseau. Laurent Orseau on Artifi-
cial General Intelligence (interview). http://intelligence.org/2013/09/06/

laurent-orseau-on-agi/, 2013.
10. Ludwig Johann Neumann and Oskar Morgenstern. Theory of games and economic

behavior, volume 60. Princeton university press Princeton, NJ, 1947.

http://intelligence.org/files/DefinabilityOfTruthInProbabilisticLogic-EarlyDraft.pdf
http://intelligence.org/files/DefinabilityOfTruthInProbabilisticLogic-EarlyDraft.pdf
https://intelligence.org/files/ConsistencyWaterfall.pdf
https://intelligence.org/files/ConsistencyWaterfall.pdf
https://intelligence.org/files/ProbabilisticLogicProcrastinates.pdf
https://intelligence.org/files/ProbabilisticLogicProcrastinates.pdf
http://goertzel.org/GOLEM.pdf
http://intelligence.org/2013/09/06/laurent-orseau-on-agi/
http://intelligence.org/2013/09/06/laurent-orseau-on-agi/


11. Laurent Orseau and Mark B. Ring. Space-time embedded intelligence. In Joscha
Bach, Ben Goertzel, and Matthew Iklé, editors, AGI, volume 7716 of Lecture Notes
in Computer Science, pages 209–218. Springer, 2012.

12. Howard Robinson. Dualism. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Winter 2012 edition, 2012.

13. J. Schmidhuber. Ultimate cognition à la Gödel. Cognitive Computation, 1(2):177–
193, 2009.

14. Eliezer Yudkowsky. The procrastination paradox. https://intelligence.org/

files/ProcrastinationParadox.pdf, 2013.
15. Eliezer Yudkowsky and Marcello Herreshoff. Tiling agents for self-modifying AI,

and the Löbian obstacle. 2013.

https://intelligence.org/files/ProcrastinationParadox.pdf
https://intelligence.org/files/ProcrastinationParadox.pdf

	Problems of self-reference in self-improvingspace-time embedded intelligence

