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Abstract

In the field of AI, expected utility maximizers
are commonly used as a model for idealized
agents. However, expected utility maximization
can lead to unintended solutions when the util-
ity function does not quantify everything the
operators care about: imagine, for example, an
expected utility maximizer tasked with winning
money on the stock market, which has no re-
gard for whether it accidentally causes a market
crash. Once AI systems become sufficiently intel-
ligent and powerful, these unintended solutions
could become quite dangerous. In this paper,
we describe an alternative to expected utility
maximization for powerful AI systems, which we
call expected utility quantilization. This could
allow the construction of AI systems that do
not necessarily fall into strange and unantici-
pated shortcuts and edge cases in pursuit of
their goals.

1 Expected Utility Maximization

Many frameworks for studying idealized agents assume
that agents attempt to maximize the expectation of
some utility function, as seen in the works of Heckerman
and Horvitz [1], Bacchus and Grove [2], and Chajewska,
Koller, and Parr [3]. von Neumann and Morgenstern [4]
provide compelling arguments that any rational agent
with consistent preferences must act as if it is maximizing
some utility function, and Russell and Norvig [5, chap.
16] use the expected utility maximization framework
extensively as the basic model of an idealized rational
agent. Formally, let A be the finite1 set of available ac-
tions, O the set of possible outcomes, and W : A → ∆O
map each action to the predicted outcome distribution
resulting from that action2. Let U : O → [0, 1] be a
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1Expected utility maximizers and quantilizers can also
be defined for infinite set of actions, but in this paper we
discuss only finite action sets for simplicity.

2Defining W is not straightforward. See Rosenbaum and
Rubin [6] for a formalization of the “causal effects” of an

utility function, with U(o) being the utility of outcome
o. Then an expected utility maximizer is an agent that
chooses an action a ∈ A that maximizes E [U (W (a))].

We make no argument against expected utility max-
imization on the grounds of rationality. However, max-
imizing the expectation of some utility function could
produce large unintended consequences whenever U does
not accurately capture all the relevant criteria. Some
unintended consequences of this form can already be ob-
served in modern AI systems. For example, consider the
genetic algorithm used by Nguyen, Yosinski, and Clune
[8] to generate an image which would be classified by a
deep neural network as a starfish, with extremely high
confidence. The resulting image ended up completely
unrecognizable, looking nothing at all like a starfish.

Of course, Nguyen, Yosinski, and Clune [8] intended
to develop images that would be mis-classified, but
this demonstrates the point that an algorithm directed
to find the image that most classified as a starfish,
generated an image that was very strange indeed.

Another example of unintended solutions resulting
from maximization is given by Thompson [9], who used
genetic algorithms to “artificially evolve” a circuit that
could differentiate between two different inputs via a 10 x
10 field programmable gate array (FPGA). The resulting
circuit worked, using only 21 of the 100 available FPGA
cells. Curiously, five of those cells were not connected
to either the input or the output—the evolved circuit
was making use of them via the physical features of
that specific chip and machine (Thompson suggest that
the circuit was taking advantage of electromagnetic
coupling or power-supply loading). If the goal was to
design a circuit that could also work on other chips,
then this “maximization” process (of finding a very
small algorithm that, on that one circuit board, was
good at distinguishing between two inputs) produced
an unintended result that was dependent upon physical
features of the chip that the designers thought were
irrelevant. The resulting circuit performed well by the
test metric, but the result would not likely have been
usable on any other physical chips.

action, whose maximization results in causal decision theory;
see Soares and Fallenstein [7] for discussion of alternative
decision theories.

1



Unintended solutions of this form could become quite
dangerous in highly autonomous artificially intelligent
systems with capabilities that strongly exceed those of
humans. Bostrom [10] discusses a number of potential
dangers stemming from expected utility maximization in
powerful agents. He considers “superintelligent” agents,
defined as agents that are “smarter than the best hu-
man brains in practically every field,” and describes
the problem of perverse instantiation, his term for the
seemingly-perverse unintended consequences of direct-
ing a powerful agent to attempt to maximize a utility
function which is not in fact aligned with our goals.
For example, Bostrom [10] illustrates this by describ-
ing a machine that, when told to make humans smile,
accomplishes this goal by paralyzing human faces into
permanent smiles, rather than by causing us to smile via
the usual means. Another example is given by Soares
[11], who describes an agent directed to “cure cancer”
which attempts to kidnap human test subjects. Clearly,
before an autonomous system can be granted great au-
tonomy and power, we must have some assurances that
it will not, in pursuit of its goals, produce any such
“perverse” unintended consequences.

In both the short term and the long term, the prob-
lem with expected utility maximization is that the sys-
tem’s utility function likely will not capture all the com-
plexities of human value, as humans care about many
features of the environment that are difficult to capture
in any simple utility function [11].

Of course, no practical system acting in the real
world can actually maximize expected utility, as find-
ing the literally optimal policy is wildly intractable.
Nevertheless, it is common practice to design systems
that approximate expected utility maximization, and
insofar as expected utility maximization would be un-
satisfactory, such systems would become more and more
dangerous as algorithms and approximations improve. If
we are to design AI systems which safely pursue simple
goals, an alternative may be necessary.

2 Expected Utility Quantilization

Given that utility maximization can have many unin-
tended side effects, Armstrong, Sandberg, and Bostrom
[12] and others have suggested designing systems that
perform some sort of “limited optimization,” that is,
systems which achieve their goals in some non-extreme
way, without significantly disrupting anything outside
the system or otherwise disturbing the normal course of
events. For example, intuition says it should be possible
to direct a powerful AI system to “just make paperclips”
in such a way that it runs a successful paperclip factory,
without ever attempting to turn as much of the universe
as possible into paperclips.

Simon [13] propose instead designing expected utility
“satisficers,” agents that choose any action that achieves
an expected utility above some fixed threshold. In our
notation, an expected utility satisficer is one that chooses

an action from the set {a ∈ A : E [U (W (a))] ≥ t} for
some threshold t. (Indeed, Fallenstein and Soares [14]
describe a toy model of satisficing agents in simple envi-
ronments.) However, the satisficing framework is under-
defined and not necessarily satisfactory. When it comes
to powerful intelligent agents, it may often be that the
easiest way to satisfice is to maximize: if the paperclip
AI system can easily create a sub-agent that tries as hard
as it can to make paperclips, it may be that the easiest
satisficing action is simply to construct a sub-agent that
attempts to approximate something like expected utility
maximization instead.

Abbeel and Ng [15] have suggested apprenticeship
learning as an alternative to maximization when it is
difficult to explicitly specify the correct goal. In appren-
ticeship learning, an AI system learns to closely imitate
a human expert performing a task. An agent which only
executes actions that its operators would have executed
seems likely to be immune to Bostrom’s problem of per-
verse instantiation. Yet while mimicking humans avoids
many unintended effects of maximization, a system that
merely mimics humans cannot easily surpass the per-
formance of those it is mimicking (except perhaps by
performing the same actions faster and more reliably).
Such a technique could prove quite useful, but wouldn’t
help us design algorithms intended to outperform hu-
mans by finding plans, strategies, and techniques that
the operators would not have been able to identify.

In this paper, we propose quantilization, which in-
terpolates between mimicry and maximization in order
to gain some advantages of both.

Definition 1 (Quantilizer). A q-quantilizer is an agent
that, when faced with a decision problem, returns a ran-
dom action in the top q proportion of some “base dis-
tribution” over actions, sorted by the expected utility
achieved if that action is executed.

Intuitively, a 0.1-quantilizer (which we could also call
a “ten percentilizer”) selects a random action from the
top 10% of actions. More formally, let A be the action set
and γ be some distribution over actions. For example, γ
could be uniformly random, or it could be a distribution
estimated from human actions. Let f : [0, 1] → A be
a function that represents γ, but sorted by expected
utility:

∀x, y ∈ [0, 1]

x > y =⇒ E [U(W (f(x)))] ≥ E [U(W (f(y)))]

µ({x ∈ [0, 1] | f(x) = a}) = γ(a)

where µ is the Lebesgue measure on the reals. For any
0 < q ≤ 1, a q-quantilizer samples a number x from the
uniform distribution over [1−q, 1] and returns f(x). We
will write QU,W,γ,q(a) for the probability that it returns
action a, where U is the quantilizer’s utility function.3

3Since there are multiple sortings of the actions f , some
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Figure 1: A representation of a 5/9-quantilizer for the
three-action example. The quantilizer samples x from
the gray region and returns the corresponding action
f(x), so it returns b with 2/5 probability and c with 3/5
probability.

We will abbreviate this as simply Qq(a), where it is
understood that Qq is parameterized on U , W , and γ.

As q approaches 0, a q-quantilizer reduces to a
maximizer whose available action set is the support
of γ. A 0.01-quantilizer (also known as a “one per-
centilizer”) samples a random action from the top 1%; a
0.5-quantilizer (“fifty-percentilizer”) samples a random
above-average action; a 1-quantilizer just mimics γ.

As an example, suppose there are 3 actions A =
{a, b, c} with expected utilities

E [U(W (a))] = 0.2

E [U(W (b))] = 0.5

E [U(W (c))] = 0.7

as illustrated in figure 1. A maximizer will always return
action c. If we define a uniform base distribution γ, then
the behavior of the q-quantilizer Qq is:

• If q ≤ 1
3 , it always returns c.

• If 1
3 ≤ q ≤

2
3 , then it returns c with probability 1

3q

and b the rest of the time.

• If q ≥ 2
3 , then it returns c with probability 1

3q , b

with probability 1
3q , and a otherwise.

In this example, it is clear that the quantilizer interpo-
lates between maximizing and mimicking γ depending
on q.

leading to different action distributions, this notation is
imprecise. To make the notation more precise, we could
specify some canonical way of defining f , such as assigning
as much probability mass as possible to lexicographically
earlier actions.

2.1 Derivation from a Conservative Cost
Constraint

We will now explore a few circumstances under which
one might prefer to design a system that quantilizes
expected utility, rather than maximizing it. Definition 1
gives some hint as to what sort of situation quantilizers
are designed for. Given some trusted base distribution γ
of actions, such as a generative model for the actions that
a human might take, the distribution Q0.01 is roughly
the distribution of actions that a human might take
if they were attempting to score well by U (but were
otherwise adhering to “normal” behavior). That is, if γ
puts most of its measure on actions that humans might
generate when solving similar problems, then Q0.01 is
similar to the distribution of actions a human might
take conditional on that action having a high utility
according to U . Thus, intuitively, a 0.01-quantilizer is
designed to solve problems in a manner similar to how
a human would solve that problem.

Furthermore, under certain assumptions, we can
prove that building a quantilizer instead of a maximizer
is not too costly to our true utility function, in the sense
that running the quantilizer won’t be much worse than
simply sampling from the base distribution γ.

To show this, assume that an AI system is built
to quantilize expected utility for some utility function
U . Assume that our true utility function is some other
function V . Intuitively, we will imagine that for most
actions, E [U(W (a))] is similar to E [V (W (a))], but for
the actions aU which maximize E

[
U(W (aU ))

]
(or come

close to maximizing it), the value of E
[
V (W (aU ))

]
is

much lower (because aU is some edge case or “per-
verse instantiation,” such as generating smiles by par-
alyzing people’s faces). Thus, as in Swaminathan
and Joachims [16], we assume there is some unknown
cost function c : A → R≥0, which describes the neg-
ative contribution of an action a to V . For exam-
ple, if there is some action noop which the AI system
may execute immediately to shut down without having
any further effect on the world, then we could define
c(a) = max{0,E [V (W (noop))] − E [V (W (a))]}. We
expect c to be quite difficult to approximate, because
human values are complex and depend on many difficult-
to-quantify aspects of the world. Indeed, if we could
formally encode c, we could build it into U , and then
we would have much less need to worry about perverse
instantiations. Even without an approximation of c,
though, we can still prove that under certain assump-
tions, a quantilizer will not incur a high cost according
to c.

Assume that the cost of a random action from γ is
no more than 1. This assumption may be justified if, for
example, γ is a uniformly random action and uniformly
random actions are highly unlikely to be harmful. Write
EA∼γ [c(A)] ≤ 1 for the expected cost of a random action
sampled from γ. It is now possible to bound the cost of
an action sampled from Qq:

3



Lemma 1 (Cost bound on quantilizers).

EA∼Qq [c(A)] ≤ 1

q

Proof. Observe that Qq “fits under” γ when scaled down
by a factor of q:

Qq(a) =
1

q
µ({x ∈ [1− q, 1] | f(x) = a}) ≤ 1

q
γ(a).

Therefore, it is possible to bound the cost of Qq:

EA∼Qq [c(A)] =
∑
a∈A

Qq(a)c(a)

≤
∑
a∈A

1

q
γ(a)c(a)

=
1

q
EA∼γ [c(A)] .

(1)

So the expected cost of sampling from Qq is no more
than 1/q times that of sampling from γ.

Thus, for example, running a “ten percentalizer” can
be no more than ten times as costly as sampling from γ.
In fact, quantilizers are optimal among all policies that
can be proven to be low-cost in this way. For example,
suppose we have generated some base distribution γ
of actions (perhaps a generative model of what sort of
actions a human would take), and we’re willing to risk
running an agent that incurs an expected cost of at most
100 times the expected cost of simply sampling from γ.
Then, a 0.01-quantilizer is the optimal agent we could
run.

More formally, say we desire some distribution p ∈
∆A such that the following conservative cost constraint
holds for some acceptable cost threshold t > 1:

∀c :A → R≥0
EA∼γ [c(A)] ≤ 1 =⇒ EA∼p [c(A)] ≤ t. (2)

This constraint states that, for any cost function assign-
ing an expected cost of no more than 1 to a random
action from γ, the expected cost of an action drawn
from p is no more than t. Then, we have the following:

Lemma 2 (p fits under γ). Let p satisfy 2. Then p(a) ≤
tγ(a) for all a ∈ A.

Proof. Suppose this were not true. Then for some a∗

we have p(a∗) > tγ(a∗). Now define

c(a) =

{
1/γ(a∗) if a = a∗

0 otherwise

We have

EA∼γ [c(a)] =
∑
a∈A

γ(a)c(a) = γ(a∗)c(a∗) = 1.

Also,

EA∼p [c(a)] =
∑
a∈A

p(a)c(a)

= p(a∗)c(a∗)

> tγ(a∗)c(a∗)

= t.

Jointly, these statements contradict constraint 2.

Theorem 1 (Quantilizer optimality). Choose q=1/t.
Then, a q-quantilizer maximizes expected U -utility sub-
ject to constraint 2.

Proof. By Lemma 2, we cannot assign more that γ(a)/q
probability to any action a, so the best we can do to
maximize expected utility is to assign γ(a)/q probability
to the best actions and 0 to the rest—and this is exactly
what a q-quantilizer does.

2.2 Targeted Impact

Expected utility quantilization is intended for use in
systems that may eventually need to make important
decisions, autonomously, in environments where negative
actions could have a large cost. For example, imagine an
AI system which is programmed to autonomously trade
stocks in order to make significant sums of money, where
that money will in tun be put to use improving the world
in some potentially dramatic fashion. Unfortunately,
the bounds of equation (1) and the cost constraints
of equation (2) apply just as well for cost functions as
benefit functions: just as running a q-quantilizer will not,
in expectation, be any more than 1/q times as costly as
sampling from γ directly; nor will it be any more than
1/q times more beneficial than sampling from γ directly.
Thus, in a sense, a q-quantilizer has a bounded impact—
it will not make the world all that different than running
an AI system that samples γ directly would have made
it. What we really want, though, is not low impact, but
targeted impact.

A small modification to the quantilizer specifica-
tion allows us to achieve the same constraints on costs
without necessarily constraining the potential benefits.
Before explaining, first note that the stock trading AI
system has two different types of side effect: one is that
it produces money which can be used by its operators;
the other are side effects of trading (for example, it
might crash the market in order to make more money).
The first side effect might cause a significant change in
the world, e.g., if the operators use the money to fund
a charity which is highly effective at reducing global
poverty. Nevertheless, we would prefer the system to
only be guaranteeing reduced impact according to the
second sort of side effect.

That is, in this setting, we can define the cost func-
tion c : A × R → R≥0, such that c(a,m) determines
how much cost an action a has, if counterfactually it
generates m dollars (rather than the actual amount of
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money that it generates). Given a cost function of this
form, we would like to design a quantilizer such that

∀c : A× R→ R≥0,m : R
EA∼γ [c(A,m)] ≤ 1 =⇒ EA∼p [c(A,m)] ≤ 1/q.

That is, we require that for all counterfactual amounts of
money m, the side effects of the stock trading algorithm
have low cost compared to the side effects of executing
actions at random from γ. Thus, a system obeying this
cost constraint does not need to worry about the extra
side effects of generating significant amounts of money
for its operators.

Mathematically, quantifying over c and m at the
same time is the same as quantifying over functions of
the form a 7→ c(a,m) for any c and m, so the condition
is equivalent to

∀c : A → R≥0 Eγ [c(A)] ≤ 1 =⇒ Ep [c(A)] ≤ 1/q

which is the same as the original cost constraint. There-
fore, it is possible to design a quantilizer that is guaran-
teed to have low cost (compared to γ) through effects
other than money, by the same methods that guarantees
it to have low overall cost.

2.3 Algorithms for Quantilization

Just as it is impractical to design algorithms that literally
maximize expected utility in complex environments, it is
similarly impractical to design algorithms that perfectly
quantilize expected utility. Any practical system based
on expected utility quantilization would similarly have
to use some form of approximation. Fortunately, it is
not hard to see how expected utility quantilization could
be approximated.

Suppose we can compute E [U(W (a))] for each ac-
tion a, and that we wish to approximate a q-quantilizer
with respect to a distribution γ. To do this, we can run
the following algorithm: first take n samples from γ,
and then sample from QU,W,γ̂,q, where γ̂ is the empirical
distribution estimated from the n samples. As n ap-
proaches infinity, γ̂ approaches γ, soQU,W,γ̂,q approaches
QU,W,γ,q. Thus, given some base distribution γ which
is relatively easy to sample from, and some method
for approximating E [U(W (a))] and γ̂, an approximate
expected utility quantilizer can be constructed in a
straightforward manner.

Indeed, this algorithm yields insight into how safe it
is to perform a random search of actions sampled from γ.
If q = 1/n, then this algorithm simply takes n samples
from γ and returns the one with the highest expected
utility, emulating a simple random search procedure.
Since this procedure approximates q-quantilization, the
bounds that apply to quantilization can be shown to
hold for random searches over samples of γ, with some
minimal modifications.

3 Drawbacks and Open Problems

3.1 Acquiring the Base Distribution

Clearly, a quantilizer is only as good as its base dis-
tribution γ. The above constraints on the amount of
costs that running an expected utility quantilizer can
incur are in terms of multiples of the expected cost from
sampling directly from γ: clearly, if it is dangerous to
sample actions from γ, then it is dangerous to run a
quantilizer using γ.

Defining a useful base distribution is not a straight-
forward task. One could define the base distribution
to be some uniformly random action, but in a complex
multi-dimensional space of strategies, a uniformly ran-
dom action is highly unlikely to be useful, and so even a
10−5-quantilizer would be unlikely to do anything useful.
If instead γ described random strategies that a human
might actually execute, then it is much more likely to
be useful. Thus, a generative model of human strategies
would make expected utility quantilization a much more
viable strategy. (See Ng and Russell [17] and Baker,
Tenenbaum, and Saxe [18] for some initial work in this
direction.)

Of course, there are a number of situations in which
a simple generative model of human behavior would not
be sufficient. For example, if humans are likely to mis-
understand the problem and thereby cause catastrophe,
then a simple generative model would not suffice. (And
if a human were quite likely to design an expected utility
maximizing AI system, then a quantilizer may well also
generate a maximizer.)4

The study of how to generate safe and satisfactory
base distributions γ for various different problem do-
mains remains an open problem.

3.2 Butterfly Effects

It could be that a non-negligible percentage of ordinary
actions that humans take are either very good or very
bad, due to butterfly effects. In this case, the cost of
sampling from fairly ordinary γ distributions is actually
quite high, with the expectation of γ being reasonable
only because the high costs are canceled out by equally
high benefits. However, in situations such as these, it is
quite possible for a quantilizer to preserve the costs of
γ without necessarily preserving many of the benefits.

For example, suppose that the quantilizer is trying
to make money on the stock market. There is a 10%
chance of the stock market crashing in the next year.
While a random sequence of trades made by a human
will not significantly change the chance of a crash in
expectation, it might be the case that a certain sequence
of 3 ordinary trades (a sequence that a human would be
0.1% likely to make) will greatly increase the chance of
a stock market crash through butterfly effects. In this

4See Christiano [19] for additional discussion of superin-
telligent predictions of human decisions, and the difficulties
that arise in this context.
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case, a 0.001-quantilizer that can predict these effects
might make these trades if it can profit from the crash.

It is not clear if this scenario is even theoretically
possible, since it requires extremely accurate prediction
of the future. Nevertheless, it would be prudent to study
this problem further and possibly design variations on
quantilization that avoid this problem.

3.3 Quantilization in Repeated Games

Suppose we have n independent games. On game i,
the agent chooses an action ai ∈ Ai and receives utility
Ui(Wi(a)), where each Wi : A → ∆O returns the out-
come for game i, and each Ui : O → [0, 1] measures the
utility achieved in that game. There are two different
ways to design a quantilizer that plays these n games.

We could design the agent to q-quantilize each game
independently, choosing from the best q proportion of
actions in each game independently according to n dif-
ferent base distributions γi. This distribution for the
sequence of actions in each game could be written as∏n
i=1QUi,Wi,γi,q.
Alternatively, we could design the agent to

q-quantilize a sequence of actions for the joint
game. Here we define the joint game as A =∏n
i=1Ai, W (a1, ..., an) = (W1(a1), ...,Wn(an)) and

U(o1, ..., on) =
∑n
i=1 Ui(oi). This action distribution

for a q-quantilizer with respect to the base distribution∏n
i=1 γi could be written as QU,W,

∏n
i=1 γi,q

This is quite
different from the first scenario!

To give a concrete example, imagine two consec-
utive games that work as follows. In each game,
the agent must pick an integer from the set {0, 1, 2},
and then gain that much utility. Thus, we define
Ai = {0, 1, 2},Wi(a) = a, Ui(o) = o. Each base dis-
tribution γi is uniform. Then, a 1/3-quantilizer quan-
tilizing both games independently will choose from the
top third of actions in each game separately, and will
always yield the action sequence (2, 2). By contrast,
a quantilizer quantilizing for the joint game will uni-
formly sample from the top third of action sequences
{(2, 2), (1, 2), (2, 1)}, as illustrated in figure 2.

What could explain this difference? If we define a
cost function

c(a1, a2) =

{
1 if (a1, a2) = (2, 2)

0 otherwise

which states that the (2, 2) action has terrible unintended
consequences, then independent 1/3-quantilization will
accrue a cost 9 times that of sampling from γ. This
cost blowup increases exponentially with n. On the
other hand, 1/3-quantilization in the joint game will
accrue a cost only 3 times that of sampling from γ. If
we believe that the cost function c may not sum costs
independently between games, then quantilizing each
game independently could be very costly.

Figure 2: A representation of the 9 available action pairs
in the repeated game. Independent 1/3-quantilization
will always select the striped action pair, while 1/3-
quantilization on the joint game will select uniformly
from one of the three shaded action pairs.

Cost Independence Assumption

Suppose we added the assumption that c(a1, ..., an) =∑n
i=1 ci(ai) for some ci : Ai → R≥0. Then a repeated

q-quantilizer would get total expected cost

EAi∼QUi,Wi,γi,q [c(A1, ..., An)] =

n∑
i=1

EAi∼QUi,Wi,γi,q [ci(Ai)]

≤ 1

q

n∑
i=1

EAi∼γi [ci(Ai)]

=
1

q
EAi∼γi [c(A1, ..., An)]

so repeated quantilization would no longer have a cost
blowup exponential in n.

However, adding this assumption may be dangerous.
Imagine a scenario in which almost all of the cost of
a sequence of actions comes from correlation between
actions in different games. For example, imagine that
each game consists of appending a byte to a computer
program, and the program is run when it consists of a
million bytes. Then some sequence of actions that each
individually have probability 1 in 256 (namely, append-
ing the bytes of a program implementing a computer
program that would be very destructive if run) could be
dangerous. Each individual action did not have a much
higher cost than adding a random byte to the program,
but taken all together, the sequence of actions still had
a very high cost. In this case and any analogous case,
assuming that the cost function is additive could be
quite dangerous.

In fact, attempting to design a “superintelligent” (in
the sense of Bostrom [10]) expected utility quantilizer
could lead to similar issues. Imagine asking a superintel-
ligent quantilizer for repeated actions that maximize the
long-term number of paperclips produced by a certain
factory. In this case, similar to the above example, each
action might play some small part in a complex plan to
turn large swaths of the world into paperclips.

However, this seems much less likely to be a problem
if the different goals that we have the system quantilize
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with respect to are independent. For example, imagine
that we instead ask the system to repeatedly quantilize
a slightly different utility function Ui which only cares
about events which happen in hour i, with the quantilizer
run at the beginning of hour i. Intuitively, it seems that
this setup would be safer. However, no safety guarantees
have been given; finding a reasonable assumption about
the cost functions under which this form of independent
quantilization would be safe (if such an assumption
exists) remains an open problem.

4 Example Applications

Quantilizers cannot be used to effectively achieve all pos-
sible goals. If the system has to achieve an outcome that
it is extremely difficult to achieve by simply sampling γ,
then the quantilizer, too, will have a hard time achieving
that outcome. For example, if γ is a generative model of
human behavior, and the system faces a problem that a
human would be very unlikely to solve even one time in
a billion, then the quantilizer would also be hard pressed
to solve the same problem.

However, there are a number of tasks where an ex-
pected utility quantilizer would plausibly be able to
perform quite well. In this section, we will list a number
of examples of tasks that are plausibly solvable with
limited expected utility quantilizers.

Note that, in practice, these example applications
involve repeated quantilization. As explained in sec-
tion 3.3, repeated quantilization is not currently known
to be safe, but we will provisionally assume that it is
possible to develop some set of independent (possibly
time-indexed) objectives such that repeatedly quantiliz-
ing those objectives is in fact safe.

4.1 Synthesizing Highly-Rated Images

Imagine that we have a database containing images and
human ratings of these images, and that we would like
to synthesize new images that are expected to receive
high ratings. To do this, we could separately create a
generative model over images and a regression model
predicting the expected rating for an image. If the
regression model is a deep neural network, then as in
Nguyen, Yosinski, and Clune [8], the image that gets
the highest rating according to the model is unlikely to
resemble highly-rated images. Instead, we could use the
generative model over images as the base distribution γ
and then quantilize to generate a plausible image with
a high predicted rating.

4.2 Factory Management

Suppose we want a program to control a factory to create
a number of objects satisfying a certain specification,
using a fixed amount of time and resources. Policies will
control parts of the factory, eventually producing many
objects.

Maximizing the extent to which the resulting objects
adhere to the specifications may result in unintended
solutions. Perhaps the resulting object will be useless
despite satisfying the specifications, due to Goodhart’s
law: “When a measure becomes a target, it ceases to be a
good measure.” [20]. As an example, imagine a factory
that produces electronic toys, which has automated
devices that samples toys and automatically score them
to see how well they meet specifications. Then, we can
imagine a expected utility maximizer figuring out exactly
which toys will be sampled, and makes only those ones
to spec (the other ones being the cheapest possible piece
of plastic that triggers the toy-counter). Or perhaps the
automated devices dock points for toys that come off
the assembly line hot (as these toys generally become
deformed), and the expected utility maximizer finds a
way to supercool the toys and thus gain an extremely
high score, despite the fact that the supercooled toys
later shatter and are useless.

By contrast, if we build the AI system to quantilize
the extent to which the devices pass the specifications,
then the resulting policy will be much more likely to be
of the form we expected: the task will almost certainly
be accomplished in a manner that was not incredibly
unlikely according to γ.

4.3 Safely Transferring Information to Hu-
mans

A number of proposals for designing extremely capable
AI systems that are nevertheless safe to use for one
purpose or another include a step where the AI system
is expected to explain its plans to humans instead of
executing them [12, 10]. However, it is quite a difficult
task to define a goal function that adequately describes
“provide an explanation that causes the human to under-
stand the plan.” Yet, absent such a goal function, the
system’s “explanation” is likely to be inadequate. If the
system’s internal representation of the plan is foreign
to the operators, then they may not be able to inter-
pret most simple data dumps describing the system’s
plan. Furthermore, if the system is more capable and
knowledgeable than the humans, then the humans may
also need a large number of relevant facts, assumptions,
and sub-strategies explained to them before they are
capable of evaluating the plan. But if the system has
to perform a complex optimization task to explain the
plan to the humans, then we face the same problem of
safe optimization again.

If the system is designed to maximize the extent to
which the human operators understand its plan, then
perverse instantiations could occur, and the result could
be quite dangerous. An expected utility maximizer
might exploit edge cases in the definition of “understand”
to fool or otherwise manipulate the humans in a fashion
that fulfills the technically stated requirements of “make
the humans understand the plan,” without generating
anything that we would actually term “understanding.”
It seems very difficult to define what it means for an
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explanation to cause the human to understand such that
we would be comfortable instructing a powerful system
to maximize along this metric.

Quantilization provides an alternative: we could
build an expected utility quantilizers that selects an
explanation that is good at causing the human to “un-
derstand” the system’s plans in the same way that they
would understand a plan as explained by another hu-
man, without as much risk of perverse instantiation. For
example, if the base distribution γ is a generative model
of explanations created by humans, then moderately
strong quantilization might result in an explanation of
a plan suitable for human consumption.

4.4 Stock Trading

As explained in section 2.2, a quantilizer can be designed
to make trades on the stock market that are likely to
make money, but which have few other side effects be-
side the side effect that now the operators have much
more money. Specifically, the important thing is that
expected utility quantilization gives us the ability to
design systems that would almost certainly not crash
the stock market (any more than sampling randomly
from γ is likely to crash the stock market, which, if γ
is a generative model of a smart human trader, means
that the system is not much more likely to crash the
market than any given smart human trader).

This holds true even if the system is powerful enough
to find a strategy for gaining incredible amounts of
money by causing the stock market to crash. An ex-
pected utility maximizer maximizing the amount of
money it receives in the stock market would crash the
market the moment it found some way to generate huge
amounts of profit from doing so, but an expected utility
quantilizer would not be much more likely to crash the
market than sampling randomly from γ.

5 Conclusion

Directing a powerful AI system to maximize some utility
function U could result in large unintended consequences,
if U does not in fact capture all the intricacies of hu-
man values. Many of these dangers can be mitigated
if, instead of designing expected utility maximizers, we
consider other agent architectures. Expected utility
quantilization is one alternative to expected utility max-
imization that allows some safety guarantees, given that
we have some base distribution γ where sampling actions
from γ is known to be relatively safe.

Expected utility quantilization is not a silver bullet.
Constructing a safe expected utility quantilizer requires
some method for generating a safe base distribution
γ, and there are a number of contexts where expected
utility quantilization is not guaranteed to yield good
results. For example, if the costs of sampling from
γ could in fact be high, then quantilization may not
lead to good outcomes. Furthermore, if a quantilizer

is going to be used to complete the same task many
times sequentially, then running the quantilizer may be
significantly more dangerous.

Yet despite these shortcomings, the preliminary re-
sults from investigating expected utility quantilization
are promising. Gaining a better understanding of the
benefits and drawbacks of expected utility quantiliza-
tion could yield many more insights into how to create
powerful systems that are “domestic” in the sense of
Bostrom [10, chap. 9], who defines a domestic agent
as an agent with limited “scope in its activities and
ambitions.” There are many open issues that make it
difficult to assess how safe it would actually be to run an
extremely capable expected utility quantilizer in an un-
restricted domain, but nevertheless, this area of research
does prove fruitful, and we are hopeful that further study
of expected utility quantilization may yield insights into
how to design autonomous AI systems that avoid the
problem of perverse instantiation.
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