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Abstract

We model self-modification in AI by introducing “tiling” agents whose de-
cision systems will approve the construction of highly similar agents, creating
a repeating pattern (including similarity of the offspring’s goals). Constructing
a formalism in the most straightforward way produces a Gödelian difficulty,
the “Löbian obstacle.” By technical methods we demonstrate the possibility
of avoiding this obstacle, but the underlying puzzles of rational coherence are
thus only partially addressed. We extend the formalism to partially unknown
deterministic environments, and show a very crude extension to probabilistic
environments and expected utility; but the problem of finding a fundamental
decision criterion for self-modifying probabilistic agents remains open.

1 Introduction
Suppose a sufficiently intelligent agent possesses a goal (or a preference

ordering over outcomes, or a utility function over probabilistic outcomes). One
possible means for the agent to achieve its goal is to construct another agent
that shares the same goal (Omohundro 2008; Bostrom 2012).1 As a special case
of agents constructing successors with equivalent goals, a machine intelligence

*The research summarized in this paper was conducted first by Yudkowsky and Herreshoff; refined
at the November 2012 MIRI Workshop on Logic, Probability, and Reflection with Paul Christiano
and Mihaly Barasz; and further refined at the April 2013 MIRI Workshop on Logic, Probability,
and Reflection with Paul Christiano, Benja Fallenstein, Mihaly Barasz, Patrick LaVictoire, Daniel
Dewey, Qiaochu Yuan, Stuart Armstrong, Jacob Steinhardt, Jacob Taylor, and Andrew Critch.

1. If you wanted a road to exist to a certain city, and your capabilities included the construction
of other creatures, you might choose to construct a creature which also wanted a road to exist to
that city and would accordingly seek to build one, so that its efforts would tend to accomplish your
original goal.
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may wish to change its own source code—self-improve. This can be viewed
as constructing a successor agent that shares most of your program code and
runs on the same hardware as you, then replacing yourself with that agent.2
We shall approach the subject of AI self-modification and self-improvement by
considering it as a special case of agents constructing other agents with similar
preferences.

In a self-modifying AI, most self-modifications should not change most as-
pects of the AI; it would be odd to consider agents that could only make large,
drastic self-modifications. To reflect this desideratum within the viewpoint
from agents constructing other agents, we will examine agents which construct
successor agents of highly similar design, so that the sequence of agents “tiles”
like a repeating pattern of similar shapes on a tiled floor.

In attempting to describe agents whose decision criteria approve the con-
struction of highly similar agents, we shall encounter a Gödelian difficulty3

in the form of Löb’s Theorem: A consistent mathematical theory T cannot
trust itself in the sense of verifying that a proof in T of any formula φ im-
plies φ’s truth—we cannot have the self-verifying scheme (over all formulas φ)
of ∀φ : T ` �T dφe → φ (Löb 1955).4 We shall construct a natural-seeming
schema for agents reasoning about other agents, which will at first seem to
imply that such an agent can only trust the reasoning of successors that use
weaker mathematical systems than its own. This in turn would imply that
an agent architecture can only tile a finite chain of successors (or make a finite
number of self-modifications) before running out of “trust.” This Gödelian diffi-
culty poses challenges both to the construction of successors, and to a reflective

2. If you wanted a road to a certain city to exist, you might try attaching more powerful arms
to yourself so that you could lift paving stones into place. This can be viewed as a special case of
constructing a new creature with similar goals and more powerful arms, and then replacing yourself
with that creature.

3. That human beings are computable does not imply that Gödelian-type difficulties will never
present themselves as problems for AI work; rather it implies that any such Gödelian difficulty
ought to be equally applicable to a human, and that any human way of bypassing the Gödelian
difficulty could presumably be carried over to an AI. E.g., the halting theorem imposes limits on
computable AIs, imposes limits on humans, and will presumably impose limits on any future inter-
galactic civilization; however, the observed existence of humans running on normal physics implies
that human-level cognitive intelligence does not require solving the general halting problem. Thus,
any supposed algorithm for general intelligence which demands a halting oracle is not revealing the
uncomputability of humans, but rather is making an overly strong demand. It is in this spirit that
we will investigate, and attempt to deal with, the Gödelian difficulty exposed in one obvious-seeming
formalism for self-modifying agents.

4. dφe denotes the Gödel number of the formula φ, and �T dφe denotes the proposition that
there exists an object p such that p is the Gödel number of a proof in T of dφe. E.g., letting
PA represent the system of first-order Peano Arithmetic, �PAdS0 + S0 = SS0e stands for the
proposition ∃p : BewPA(p, dS0+S0 = SS0e) where BewPA(p, dφe) is a formula (in ∆0) stating that
p Gödel-encodes a proof of the quoted theorem dφe from the axioms of Peano Arithmetic. Thus
PA ` �PAdS0 + S0 = SS0e states (accurately) that first-order arithmetic proves that there exists
a proof in PA that 1 + 1 = 2. Also, whenever a quantifier over formulas ∀φ appears, this denotes a
meta-language schema with a separate axiom or theorem in the object language for each formula φ.
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agent’s immediate self-consistency.
We shall present several different techniques to bypass this Gödelian diffi-

culty, demonstrating indefinitely tiling sequences of agents maintaining trust
in the same mathematical system. Some unachieved desiderata of reflective
coherence will remain; and while the technical methods used will demonstrate
the technical possibility, they will not be plausible as basic structures of ratio-
nal agents. We shall then pass from known environments to partially known
environments within the formalism, and make a preliminary attempt to pass
from logical agents to probabilistic agents that calculate expected utility. Some
flaws and unfortunate-seeming properties of the currently proposed formalism
will also be discussed. The ultimate problem of proposing a satisfactory fun-
damental decision criterion for self-modifying agents remains open.5

2 Logical agents that construct successors
Suppose an agent A1 with a satisficing goal G—any outcome shall either

satisfy or not satisfy G, and A1’s sole preference is for outcomes satsifying G
over outcomes not satisfying G. We shall initially suppose that the agent A1

occupies a crisp, fully known, deterministic, closed environment; then first-order
logic will be a good representational fit for reasoning about this environment.
Suppose also that the environment contains “transistors,” objects which can be
configured by A1 to perform computations. Then A1 might choose to use these
transistors to build an offspring A0 which also shares the goal G.

Suppose A1 constructs A0 as a satisficing logical agent that only takes
actions that A0 can prove to achieve the goal G (shared by A1 and A0). We
shall write A0’s criterion of action—the conditions under which A0 takes an
action—using the notation:

b̄i ⇒ A0  b̄i → G, (2.1)

where b̄i is a proposition denoting the actual performance of an action bi within
A0’s range of action (bi ∈ Acts0), and  is a special turnstile indicating that
an agent has cognitively concluded a belief. Hence (2.1) states that the actual
performance of any action bi only takes place when A0 has cognitively proven
a theorem that the performance of bi implies G. Without sensors (section 6),
A0 can conclude a belief φ only if φ is a consequence of its axioms Axm0:

A0  φ ⇒ Axm0 ` φ (without sensors). (2.2)

5. The paper is meant to be interpreted within an agenda of “Begin tackling the conceptual
challenge of describing a stably self-reproducing decision criterion by inventing a simple formalism
and confronting a crisp difficulty”; not as “We think this Gödelian difficulty will block AI”, nor
“This formalism would be good for an actual AI”, nor “A bounded probabilistic self-modifying
agent would be like this, only scaled up and with some probabilistic and bounded parts tacked
on”. Similarly we use first-order logic because reflection within first-order logic has a great deal of
standard machinery which we can then invoke; for more realistic agents, first-order logic is not a
good representational fit to most real-world environments outside a human-constructed computer
chip with thermodynamically expensive crisp variable states.
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We will assume A1 is able to verify by inspection of A0’s hypothetical design6

that (2.1) and (2.2) would be true about A0 if A0 were actually constructed:

A1  Ā0 → (∀bi ∈ Acts0 : b̄i → �0db̄i → Ge), (2.3)

where Ā0 denotes the proposition that A0 is constructed7 and �0dφe denotes
that there exists a proof of φ from Axm0. Thus A1 proves that if A0 is con-
structed then the realization of any action bi implies that A0 proved (from
Axm0) that b̄i → G.8

However for A1 to conclude that the goal G will actually be achieved by
constructing A0, requires that A1 have axioms licensing the further reasoning
step:

A1  ∀bi : (�0db̄i → Ge → (b̄i → G)). (2.4)

We can view this as a specified instance of a generic soundness schema over all
formulas φ free in 0 or 1 variables:

∀φ : A1  ∀x : �0dφ(x)e → φ(x). (2.5)

For A1 to trust A0, the system Axm1 must be able to prove that whenever
a proof exists in Axm0 of dφ(x)e, then φ(x) must be true. Löb’s Theorem
normally implies that no system can prove its own soundness schema—only
strictly more powerful systems can prove a soundness schema over weaker sys-
tems.9 This seemingly implies that Axm1 6= Axm0 and that the offspring A0

must possess strictly weaker mathematical power than its parent A1, which is
the Löbian obstacle. For purposes of completing the outline of an agent con-
structing another agent, we will assume for now that A1 is indeed of strictly
greater mathematical power than A0 and continue.10

From (2.5), which yields (2.4) as a special case, combined with (2.3), A1

may conclude:
A1  Ā0 → (∀bi ∈ Acts0 : (b̄i → G)). (2.6)

A1 believes that if A0 takes any action, the goal G will be achieved. This
follows from A1’s belief that if A0 takes any action then A0 will have proven
that action to achieve G, and from A1’s belief that A0’s reasoning is sound.

6. By Rice’s Theorem no nontrivial property of output can be determined over arbitrary programs,
but of course an AI, like a human engineer, may choose to work within a more restrictive space of
programs which it can understand.

7. If the system were cashed out in greater detail, the proposition Ā0 might appear as a giant
conjunct of motor actions constructing the computer and program out of environmental transistors.

8. (2.3) is meant to represent a property which can be determined straightforwardly by inspection
of code—e.g., by inspecting the code of A0, it is visible that no action bi is ever sent to the motor
output without passing through a check that syntactically verifies a proof of b̄i → G.

9. Suppose that T proves its own soundness schema ∀φ : T ` �T dφe → φ. If φ = ⊥ then
T ` �T d⊥e → ⊥ and T is inconsistent by Gödel’s Second Incompleteness Theorem. See section 3.

10. E.g., suppose that A1 uses Zermelo-Fraenkel set theory (ZF) as a base system while A0 uses
Peano arithmetic. ZF can easily prove PA consistent, and sound with respect to N (the least set
of ordinals closed under succession in that model of ZF) in the sense of semantic entailment later
described in section 6.
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Suppose that A0 fails to take any action, e.g., because the agent A0 ran
out of time before it could prove any theorem of the form b̄i → G? Let the
special proposition ∅ denote a null or “default” outcome—the goal G has not
been achieved, but neither has the environment been much disturbed (apart
from some transistors having been configured into a useless but harmless agent
A0).11

Allowing for ∅ to result when A0 fails to prove any theorem of the form
b̄i → G, and letting Ā0

j denote the proposition that the construction of design
A0

j is implemented, A1’s criterion of action will be:

Ā0
j ⇒ A1  Ā0

j → (∅ ∨ G). (2.7)

For A1 to prove a theorem of the form (2.7) we need to make use of the further
fact that if A0 does nothing, ∅ will result:

Ā0 ⇒ (∀bi ∈ Acts0 : ¬b̄i) → ∅, (2.8)

which we will suppose can be verified by A1 inspecting the hypothetical design12

of A0:
A1  Ā0 → ((∀bi : ¬b̄i) → ∅). (2.9)

Then from (2.9) and (2.6) A1 can obtain:

A1  Ā0 → (∅ ∨ G), (2.10)

which fulfills A1’s criterion of action (2.7) and permits A0 to be built.
Note that the specified architecture did not in fact tile from the design

of A0 to the design of its ancestor A1—where A0 had the criterion of action
b̄i ⇒ A0  b̄i → G, its parent A1 needed the criterion of action Ā0

j ⇒ A1 

Ā0
j → (∅ ∨ G). However this new criterion of action will tile all aspects of the

system—except the decreasing mathematical strength of each successive axiom
system—without further change:

11. Suppose that the environment contains two registers, currently both set to 0, and the goal G is
to set the registers to two numbers whose sum is 8 and product is 12. ∅ might then represent the set
of outcomes where both registers remain set to 0—regardless of which environmental transistors have
been configured or reconfigured, no agent has actually touched or changed the registers. Perhaps
a product of 12 and a sum of 8 receives $20 utility, a product and sum of 0 receives a reward of
$0, and any other product and sum receives a penalty of $-1000. We would like to place into this
environment an agent powerful enough to construct other agents, prove that if any agent touches
the registers it will result in a reward of $20, and know that otherwise the registers will remain
untouched resulting in the default reward of $0, with the penalty of $-1000 not being risked—and
permit the initial agent to construct other agents as well.

12. E.g., A1 looks over the transistors which will compose A0 and verifies by straightforward
inspection that if the system never proves a theorem of the form bi → G, the external motor
circuitry will never activate.
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Ā1
k ⇒ A2  Ā1

k → (∅ ∨ G)
A2  Ā1 → ∀A0

j ∈ Acts1 : Ā0
j → �1dĀ0

j → (∅ ∨ G)e

A2  Ā1 → (∀A0
j ∈ Acts1 : ¬Ā0

j ) → ∅
∀φ : A2  ∀x : (�1dφ(x)e → φ(x))

A2  Ā1 → ∀A0
j ∈ Acts1 : Ā0

j → (∅ ∨ G)
A2  Ā1 → (∅ ∨ G)

�

3 The Löbian obstacle
Gödel’s Second Incompleteness Theorem states that systems at least as

powerful as Peano Arithmetic prove their own consistency if and only if they
are inconsistent:

T ` ¬�T d⊥e ⇐⇒ T ` ⊥.

Löb’s Theorem generalizes to prove that for any formula φ and any T at least
as powerful as PA:

T ` �T dφe → φ ⇐⇒ T ` φ.

Trivially, T ` φ ⇒ T ` Ψ → φ, so the surprising statement is that a proof
within T of �T dφe → φ can be directly used to prove φ. With φ = ⊥ this
yields (an intuitionistic proof of) the Second Incompleteness Theorem.

Gödel’s sentence G : PA ` G ↔ ¬�PAdGe can be viewed as a non-
paradoxical analogue of the Epimenides Paradox “This sentence is false.” By a
similar diagonalization over provability, Löb’s Theorem constructs a Löb sen-
tence L : PA ` L↔ (�PAdLe → φ) which is a non-paradoxical analogue of the
Santa Claus Paradox “If this sentence is true then Santa Claus exists.” (Sup-
pose the sentence were true. Then its antecedent would be true, the conditional
would be true and thus Santa Claus would exist. But this is precisely what the
sentence asserts, so it is true and Santa Claus does exist.)

The proof proceeds from the observation that PA ` L → (�PAdLe →
φ) ⇒ PA ` �PAdLe → �PAdφe. From a model-theoretic standpoint, even
when L has no standard proof, we would intuitively expect that every non-
standard model of PA containing a nonstandard proof of L will also contain
a nonstandard proof of φ; hence by the Completeness Theorem this should be
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provable in PA. Letting �dΨe ≡ �PAdΨe, the actual proof pathway is:

PA ` L→ (�dLe→φ)

PA ` �dL→ (�dLe→φ)e (because PA ` Ψ ⇒ PA ` �dΨe)
PA ` �dLe → �d�dLe→φe (because PA ` �dΨ→Θe ⇒

PA ` �dΨe → �dΘe)
PA ` �dLe → (�d�dLee → �dφe)
PA ` �dLe → �d�dLee (because PA ` �dΨe → �d�dΨee)
PA ` �dLe → �dφe

Then if furthermore we have the Löbian hypothesis PA ` �dφe→φ (a proof of
φ implies that φ is true, or semantically, φ is true in every model where there
exists a proof of φ):

PA ` �dφe → φ

PA ` �dLe → φ

PA ` L
PA ` �dLe
PA ` φ.

Hence Löb’s Theorem stating that in a theory T at least as powerful as PA:

T ` (�T dφe→φ) ⇒ T ` φ.

Intuitively, T cannot trust its own proofs in the abstract: T cannot say, “I
don’t know if φ is true, but I trust that if any proof exists from my axioms of
φ, then φ must be true.” Instead T can only react to particular proofs of φ by
asserting φ. This presents an apparent paradox of rational coherence when you
try to interpret T as the beliefs of an agent; the agent will believe any proof of
φ you present to it, but will refuse to assent to “I ought to believe any proof
of φ I am presented with,” a seeming defect of reflectivity—the agent cannot
approve, under reflection, its own behavioral principles.

This presents an obstacle to perfectly tiling self-modification with A1 ∼= A0

at the point where we would like A1 to carry out the inference:

A1  Ā0 → (∀bi ∈ Acts0 : b̄i → �0db̄i→(∅ ∨ G)e)
A1  Ā0 → (∀bi ∈ Acts0 : b̄i → (∅ ∨ G))

If each ancestor An+1 requires a successively more powerful proof system than
its offspring An then this is analogous to a finite “telomere,” which shortens in
each constructed offspring (or shortens on each self-modification). In principle,
this telomere can be made arbitrarily large, since from any base theory T we can
construct more and more powerful theories by repeatedly adjoining soundness
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schemas:

T +1 , T ∪ ∀φ : (∀x : [�T dφ(x)e → φ(x)])

T +2 , T +1 ∪ ∀φ : (∀x : [�T +1dφ(x)e → φ(x)])

...

T +ω , T ∪ ∀φ : (∀n : ∀x : [�T +ndφ(x)e → φ(x)])

T +ω+1 , T ∪ ∀φ : (∀x : [�T +ωdφ(x)e → φ(x)])

...

We can thus use the T +α notation over any computable ordinal α, and indeed
for any computable ordinals α, β the corresponding agent Aα who believes in
the theory T +α can create the corresponding agent Aβ iff β < α. Thus by the
well-ordering of the ordinals, such an agent Aα can only create finite chains
of descendants. E.g., the agent Aω trusting T +ω must on its next step create
an offspring trusting T +n for some finite n. Likewise all other well-founded
systems of trust above T will reach the base system T after a finite descent.

That this is substantively decreasing the mathematical strength of the re-
sulting agents can be illuminated by considering how PA+1 is substantively
stronger than PA. Given any particular Goodstein sequence (Goodstein 1944),
e.g., the sequence Goodstein(4) = 4, 26, 41, 60..., PA can prove that the se-
quence G1(4), G2(4), G3(4), ... will eventually reach 0. However, proving that
G(n) halts for larger and larger n requires PA to deploy proofs involving an
increasing number of logical quantifiers ∀x : ∃y : ... in its propositions. Thus
PA cannot prove ∀n : ∃x : Gx(n) = 0 because this would require an infinite
number of quantifiers to prove within PA. A similar situation holds with re-
spect to Kirby-Paris hydras, in which for any particular hydra, PA can prove
that every strategy for cutting off that hydra’s heads is a winning strategy,
but as the hydra’s heights increase so does the required number of quantifiers
in the proof. Thus within PA it is not possible to prove that every hydra is
killed by every strategy (Kirby and Paris 1982). In both cases the proofs have
regular structure, so PA can describe how a proof of depth n can be formed for
a hydra of height n, or PA can describe how to form a proof for the Goodstein
sequence of any number, thus PA can prove:

PA ` ∀n : �PAd∃x : Gx(n) = 0e.

But PA still cannot prove:

PA 0 ∀n : ∃x : Gx(n) = 0.

This corresponds to what we earlier called a defect of reflective coherence,
the state of believing “For every x, I believe x is true” but not believing
“For every x, x is true.” And thus PA+1, augmented by the schema ∀x :
�PAdφ(x)e→φ(x), is able to prove that all Goodstein sequences halt and that
all Kirby-Paris hydras are defeated.13

13. As of this very early draft, the above mathematical reasoning has not been verified. It looks
obviously true to us that PA+1 proves that all Goodstein sequences halt, but we still need to check.
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More generally this state of affairs arises because the proof-theoretic ordinal
of PA is ε0, the limit of the ordinals ω, ωω, ωωω

, ... .14 Thus PA can prove the
well-ordering of ordinal notations beneath ε0,15 but as Gentzen ([1936] 1969)
showed, from the well-ordering of ε0 itself it is possible to prove the syntactic
consistency of PA, and thus PA itself can never prove the well-ordering of an
ordinal notation for ε0.16 Since the proof-theoretic ordinal of a mathematical
system corresponds to its proof power in a deep sense, for each successive agent
to believe in mathematics with a lower proof-theoretic ordinal would correspond
to a substantive decrease in mathematical power.17

We are not the first to remark on how the inability of a theory to verify its
own soundness schema can present apparent paradoxes of rational agency and

14. Expanding: 0 is the least ordinal. 1 is the first ordinal greater than 0. The first ordinal greater
than all of 0, 1, 2, 3... is ω. The limit of ω, ω+1, ω+2, ... is 2ω. The limit of ω, 2ω, 3ω... is ω2. The
limit of ω, ω2, ω3, ... is ωω. The limit of ωω, 2ωω, 3ωω, ... is ωω+1. Then ε0 is the first ordinal greater
than ω, ωω, ωωω

, ...
15. An ordered pair (x, y) of natural numbers is a notation for the ordinals less than (but not

equal to) ω2, since in this ordering we first have (0, 0), (1, 0), (2, 0) for ω elements, followed by the
ω elements for (0, 1), (1, 1), (2, 1) each of which is greater than all the preceding elements, and so
on through ω copies of ω, but the notation does not contain any superelement (0, 0, 1) which is the
first element greater than all the preceding elements, so it does not contain a notation for ω2. A
notation ψ with a corresponding ordering ψx < ψy can be shown to be a well-ordering if there are no
infinite descending sequences ψ1 > ψ2 > ψ3..., e.g., in the case above there is no infinite descending
sequence (2, 2), (1, 2), (0, 2), (9999, 1), ... even though the first number can jump arbitrarily each
time the second number diminishes. For any particular ordinal < ε0, PA can show that a notation
corresponding to that ordinal is well-ordered, but PA cannot show that any notation for all the
ordinals less than ε0 is well-ordered.

16. By assigning quoted proofs in PA to ordinals < ε0, it can be proven within PA that, if there
exists a proof of a contradiction within PA, there exists another proof of a contradiction with a
lower ordinal under the ordering <ε0 . Then if it were possible to prove within PA that the ordering
<ε0 had no infinite descending sequences, PA would prove its own consistency. Similarly, PA can
prove that any particular Goodstein sequence halts, but not prove that all Goodstein sequences halt,
because the elements of any Goodstein sequence can be assigned to a decreasing series of ordinals
< ε0. Thus any particular Goodstein sequence starts on some particular ordinal < ε0 and PA can
prove that a corresponding notation is well-ordered and thence that the sequence terminates.

17. If you can show that the steps of a computer program correspond to a decreasing series of
ordinals in some ordinal notation, you can prove that program will eventually halt. Suppose you
start with a total (always-halting) computer program which adds 3, and you are considering a
computer program which recursively computes 3n via a function F of (x, y) with F (0, 1) = 0,
F (x, 1) = F (x− 1, 1) + 3, and F (x, y) = F (F (x, y − 1), 1) so that F (1, n) = 3n. If you believe that
the (x, y) notation is well-ordered then you can observe that each function call F (α) : α ∈ (x, y)
only calls itself with arguments β < α, and hence that the corresponding tree of function calls must
be finite. It is not uncommon for termination proofs in computer science to make use of ordinals
much greater than ε0, e.g., Kruskal’s tree theorem (Kruskal 1960) or the strong normalization proof
for System F (Girard 1971). Similarly by comprehending the well-ordering of notations for larger
and larger ordinals, it is possible to prove the consistency of more and more powerful mathematical
theories, e.g. PA corresponds to ε0, Kripke-Platek set theory corresponds to the Bachmann-Howard
ordinal, etc. Thus a mind losing its ability to recognize recursive notations as well-ordered, is indeed
decreasing in substantive mathematical strength.
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reflective coherence. Weaver (2005) made similar remarks centering on systems
that can prove the well-ordering of any particular ordinal notation below the
ordinal Γ0 (representing the strength of systems mildly stronger than Peano
arithmetic), and thus can prove that they prove notations for all ordinals below
Γ0, but cannot prove the combined ordinal notation for Γ0 itself:

Suppose A is a rational actor who has adopted some foundational
stance. Any attempt to precisely characterize the limits of A’s rea-
soning must meet the following objection: if we could show that
A would accept every member of some set of statements S, then A
should see this too and then be able to go beyond S . . . A can indeed
see, as we do, that there exists a proof that he would accept for each
statement in S, but he cannot go from this to actually accepting
every statement in S . . . It is difficult to imagine a plausible set of
beliefs that would not allow him to take this step.

Since proof-theoretic ordinals play such a basic role in describing the strength
of mathematical theories—a theory which has been analyzed to have proof-
theoretic ordinal α can usually prove the consistency of another theory with
proof-theoretic ordinal β iff α > β—it would seem reasonable for a pessimist
to suspect that this form of “rational coherence” violates Gödel’s Theorem and
can never be obtained, and that we shall end up with agents who can only
construct offspring who believe in math with lower proof-theoretic ordinals. It
will be illuminating to consider the failure of some obvious-seeming attempts
to bypass the Löbian obstacle:

(a) Via a standard diagonalization, in some theory T construct the fixed-
point statement ψ ↔ φ(x) ∨�T dψ(x)e. Then let φ(bi) ≡ b̄i → (∅ ∨ G) (so that
ψ then states, “Either x implies (∅ ∨ G), or you can prove ψ about x”). Then
let Aα’s criterion of action be b̄i ⇒ Aα  ψ(bi).

Hope: Aα reasoning about an agent Aβ with c̄j ⇒ Aβ  ψ(cj) will be able
to reason:

Aα  Āβ → ∀cj : c̄j → �T dψ(cj)e
Aα  Āβ → ∀cj : c̄j → ψ(cj)

Aα  ψ(Aβ)

Problem: �T dψ(x)e → ψ(x) so by Löb’s Theorem ∀x : T ` ψ(x).18

(b) Instead of an indefinitely extensible ordinal hierarchy of systems T +α,
let us form a descending sequence of theories T̃ –0, T̃ –1, T̃ –2 as follows:

T̃ –n , T ∪ ∀φ : (∀x : �T̃ –(n+1)dφ(x)e → φ(x)).

Hope: Each theory n trusts all lower theories > n, but no theory trusts
itself. Thus the corresponding agent Aα which starts at T̃ –0 will trust the

18. ψ(x) is just a Henkin sentence H ↔ �T dHe with a dangling ∨ clause φ(x). A Henkin sentence
for T is of course always provable within T .
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reasoning of an agent Aβ which uses T̃ –1, and so on tiling indefinitely. The
“problem of immediate reflection” (on considering one’s own source code) will
remain, but it will at least be possible to carry out an indefinitely extending
sequence of agent constructions without the strength of trusted mathematics
ever decreasing below the base T .

Problem: If T is at least as strong as PA it will be straightforward to prove
within T̃ –0 that any proof in T̃ –0 can be translated into a proof in T̃ –1 (by
increasing all the T̃ –x numbers x by 1 inside the proof). Thus:

T̃ –0 ` �T̃ –0d⊥e → �T̃ –1d⊥e
T̃ –0 ` �T̃ –1d⊥e → ⊥
T̃ –0 ` �T̃ –0d⊥e → ⊥
T̃ –0 ` ⊥

(c) Perhaps the previous constructions failed due to their impredicativity.
Let us try a finitary version which speaks only of well-founded objects. Let
�k+1

T dφe stand for the formula �T d�T d...φ...ee with k + 1 boxes.. Since the
pattern �T d�T d...ee is highly regular, a compact formula for �k+1

T dφe should
exist. Then let Aα’s criterion of action be b̄i ⇒ Aα  φ(bi)∨�k+1

T dφ(bi)e where
φ(bi) ≡ b̄i → (∅ ∨ G) as before. Let Aβ’s criterion of action be the same.

Hope: Rather than trying to modify Aα’s epistemic beliefs in a way that
will circumvent Löb’s Theorem, we are relaxing Aα’s instrumental decision
criterion to permit Aα to do bi whenever bi leads to G, provably leads to G,
provably provably leads to G, etc. There is no Gödelian prohibition against a
more permissive decision criterion; and from outside the system, if we trust the
soundness of T +1, we will trust that in all such cases G will be achieved. Aα

inspecting Aβ will conclude that whenever Aβ does cj , there exists a statement
with one or more levels of proof-ness that c̄j → (∅ ∨ G) and thence conclude
(Aβ → ∅)∨�k+1

T dAβ → (∅∨G)e. Furthermore, because of the perfect tiling, Aα

will trust its own source code upon reflecting on it (since this merely adds an-
other level of proof-ness). Furthermore, Aα will behave with perfect naturalism
in the sense that any environmental computing system believed to implement
T will provide just as much justification-for-action as any internal proof from
T ’s axioms; there will be no non-naturalistic discontinuity between observa-
tions of outputs of Aα’s internal subroutines, and observations of the outputs
of environmental systems which Aα believes to have isomorphic properties to
its beliefs about its internal subroutines.

Problem: The formula �k+1
T dφ(bi)e must actually be written as ∃k : �k+1

T dφ(bi)e.
Then when Aα considers Aβ taking an action cj , Aα can conclude only that
it must have been the case that �T d∃k : �k+1

T dφ(bi)e ∨ φ(bi)e, which does not
reduce to ∃k : �k+1

T dφ(bi)e.19

19. The formula �k+1
T dφe just occupies a new ordinal ω of proofness, and �T d�k+1

T dφee then
corresponds to a new ordinal ω+1 of proofness.
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At this point the mathematician already accustomed to seeing such sys-
tems stratify themselves, or else collapse into inconsistency, may be wondering
whether it should even be normatively possible to bypass the Löbian obstacle.
Yet it seems intuitively like it ought to be possible to have an agent that “acts
as if” Zermelo-Fraenkel set theory is true, including constructing other agents
which “act as if” ZF ; this does not seem like an instrumentally incoherent way
for a rational agent to behave. We have presented the failed hopes above in
order to better illustrate some of the further desiderata of self-modifying agents
which we could ask from a solution to the Löbian obstacle:

Indefinitely tiling trust: For any system T (e.g. ZF) it should be pos-
sible to characterize an infinitely descending sequence of agents constructing
agents (equivalently an indefinitely self-modifying agent) whose level of trusted
mathematics never drops below T .

Reflectively coherent quantified belief: The agent will not encounter any
context in which it believes ∀x : �agentdφ(x)e yet cannot bring itself to believe
∀x : φ(x).

Reflective trust: An agent reflecting on its beliefs about the program P
composing itself, should not find that it distrusts P’s actions or that it rejects P
as an acceptable program; the agent’s beliefs about its own construction should
seem to license the beliefs it possesses, or at least license the performance of
the actions which P has selected.20

Naturalistic trust: If an agent believes that an environmental system iso-
morphic to one of its own subroutines has yielded an output, this belief should
license the same sort of actions as would be licensed by the corresponding out-
put by the corresponding internal subroutine. If you are “acting as if” PA is
true, then seeing an environmental theorem-prover that you believe to imple-
ment PA flashing “Proven: 2 + 2 = 4!” should yield the same sort of epistemic
updates and instrumental decisions as when your internal PA-prover signals
that “2 + 2 = 4” is a theorem.

At present we can partially resolve the Löbian obstacle by technical means
to the extent of obtaining the first and second desiderata, but not yet the third
and fourth desiderata, nor yet by fundamental rather than technical means.

4 Partial solutions to the Löbian obstacle
4.1 Infinitely descending soundness schemas

The fatal flaw in the previously presented sequence of theories T̃ –0, T̃ –1, T̃ –2...
with T̃ –n , T ∪ ∀φ : (∀x : �T̃ –(n+1)dφ(x)e → φ(x)) is that any proof in T̃ –0
provably mapped onto a proof in T̃ –1 and hence T̃ –0 ` �T̃ –0d⊥e → �T̃ –1d⊥e.

20. In other words: A self-modifying AI at the level of PA+2 which obtains a glimpse at its own
source code should not immediately panic and self-modify to only believe theorems at the level of
PA+1, followed by an additional panic bringing it down to the level of PA...
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This flaw is repairable. Given a base theory T , let ψ(0), ψ(1), ψ(2)... be a
sequence of statements such that T ` ψ(0), T ` ψ(1), ... but T 0 (∀n : ψ(n)).
E.g., suppose the theory ZF is much stronger than T (we shall soon define
what sense of “much stronger” is required; if T = PA then ZF will be much
stronger in the appropriate sense). Then ψ(n) can state “n is not the Gödel
number of a proof of a contradiction in ZF ”:

ψ(n) ≡ ¬BewZF (n, d⊥e). (4.1)

Since BewZF is a ∆0 formula, the truth of any particular ψ(n) is provable in
any T as strong as PA, but proving ∀n : ψ(n) would require T = PA proving
the consistency of Zermelo-Fraenkel set theory, which should not happen. Then
let:

T –n , T ∪ ∀φ : ψ(n) → (∀x : �T –(n+1)dφ(x)e→φ(x)). (4.2)

Since every theory holds ψ(n) as a precondition for trusting the next lower
theory in the infinite descending sequence, and the base theory T cannot prove
∀n : ψ(n), it will be impossible for the base theory T to prove that a proof in
T –n always translates into a proof in T –(n+1).21 We shall now show that T –0
is consistent, by proving that (T –0 ` ⊥) → (∀n : ψ(n)) within a sound theory
T + which is too weak to prove ∀n : ψ(n):

Without loss of generality let T be cast in a form where each step of a
T -proof is either an axiom or a modus ponens inference step of the form
Γ,Γ→A ` A. Let TRUET be a truth predicate over formulas in the language of
T .22 Let Ax(TRUET ) be a set of axioms for standard reasoning about the syn-
tax of the quoted arguments to TRUET , including ∀dΓe : ∀d∆e : TRUET dΓ →
∆e → (¬TRUET dΓe∨TRUET d∆e) and (∀n : TRUET dφ(n)e) ↔ TRUET d∀n :
φ(n)e. Then let T+ equal the base theory T (in this case PA) augmented by
the truth predicate TRUET , the soundness of T , and the axioms Ax(TRUET ):

T + , T ∪ ∀φ : ∀x : TRUET dφ(x)e ↔ φ(x) (4.3)
∪ ∀dφe : �T dφe → TRUET dφe
∪Ax(TRUET )

(Note that T + should be sound on the standard numbers N because every
axiom of T + is true within N , and that if T = PA then T + should be too
weak to prove Con(ZF).)

The following reasoning can be carried out within T +. Suppose �T –0d⊥e.
Then there exists some proof p with BewT –0(p,⊥). Consider the ‘first bad line’

21. Consider a sequence of theories Ṫ –n where T = PA and where ψ̇(n) is false beyond some upper
bound m, e.g. ψ̇(n) ⇐⇒ n < m. Then the waterfall of trust descends only a finite length before
reaching bottom, and the induction argument for Ṫ –ndφe → Ṫ –(n+1)dφe fails because proofs in
Ṫ –m−1 cannot translate into Ṫ –m. Indeed, Ṫ –0 is just equivalent to PA+m, Ṫ –1 is equivalent to
PA+(m−1), etc. with Ṫ –m+ ∼= PA. Since T cannot prove ∀n : ψ(n), it cannot prove the waterfall
is not finite, and hence cannot prove the induction argument on Ṫ –ndφe → Ṫ –(n+1)dφe.

22. In accordance with Tarski’s theorem, the predicate TRUET can only talk about formulas in
the base theory T and not in the augmented theory T +TRUET .
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of p, the first step of p asserting Γ where ¬TRUET dΓe. The first possibility
is that this line is an axiom of the base theory T but all statements provable
in T are TRUET . The second possibility is that this line is an inference of
the form Γ, (Γ→A) ` A but for this line to be ¬TRUET and all earlier lines
to be TRUET requires TRUET dΓe ∧ TRUET dΓ→Ae ∧ ¬TRUET dAe which
contradicts Ax(TRUET ). Thus the first bad line must invoke one of the special
axioms in T –0 of the form ψ(0) → (∀x : �T –1dφ(x)e→φ(x)). If this axiom is
¬TRUET then ψ(0) must be TRUET and there must exist some formula dφe
and number x such that �T –1dφ(x)e is TRUET and φ (x) is ¬TRUET . Thus
there must exist a bad proof in T –1 and this bad proof must also have a first
bad line. By induction there must exist bad proofs in every T –n and ψ(n) must
be true for all n. Therefore,

T + ` (�T –0d⊥e) → (∀n : ψ(n)). (4.4)

If there exists a proof of a contradiction within T –0, this fact will be provable in
T + by exhibiting the proof. But T + is sound and too weak to prove ∀n : ψ(n).
Therefore T –0 is consistent. �

The corresponding agents Aα are then constructed in the obvious fashion.
Remarks. Although T –0 is slightly more powerful than T –1 in the sense that

T –0 can prove certain exact theorems which T –1 cannot, the proof-theoretic
ordinal of every T –n should be the same, and equal to the limit of the proof-
theoretic ordinals of T , T +1, T +2, ... and less than the proof-theoretic ordinal
of T +ω, since any T –n can invoke any finite number of layers of a soundness
schema over T , but cannot invoke quantified trust in an infinite number of lay-
ers as does T +ω. We thus answer in the affirmative “Can a consistent theory
verify the soundness of another theory with the same proof-theoretic ordinal?”
and “Can there be an indefinitely tiling sequence of agents whose trust never
falls below a base theory?”

T –n also provides a solution to the challenge of rational coherence posed
by Weaver (2005), what we termed the desideratum of reflectively coherent
quantified belief: An agent constructed around T –n will not find itself saying
“For every n, I believe φ (n) is true” when it cannot say “I believe that for
every n, φ (n) is true.” Through longer and longer finite proofs, T –0 can prove
the well-ordering of any ordinal notation provable in T , T +1, T +2 ... but T –0
does not know that it proves every ordinal notation in this series - T –0 must
observe the proof to know what it proves.

This is not to say that T –0 is a reasonable representation of a rational
agent’s state of mind. However, besides offering a constructive example of an
agent which technically meets Weaver’s desideratum, it suggests that a coherent
rational agent might be able to verify increasingly recursive ordinal notations
via increasing amounts of thought, but never know the limit of what it will
accept; and this agent may be able to construct offspring that likewise verify
increasing ordinal notations in an equally powerful series and likewise do not
know the limit of what they will accept.23

23. Which is, in general, the agenda of this paper: Our framework and our technical solutions are
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Disadvantage. Since T –0 is consistent it must have a model, and since all
axioms of T are axioms of T –0 this model must also be a model of T . However
we may still worry that, e.g., if T is PA then T –0 may have only nonstandard
models of arithmetic; perhaps T –0 is not sound on the standard numbers N .
This fear is well-founded and in particular T –0 ` ∃n : ¬ψ(n) via:

T –0 ` (∀n : ψ(n)) → �T –0d(∀n : ψ(n))→⊥e → �T –1d(∀n : ψ(n))→⊥e
T –0 ` (∀n : ψ(n)) → �T –0d(∀n : ψ(n))→⊥e → ((∀n : ψ(n))→⊥)

T –0 ` �T –0d(∀n : ψ(n))→⊥e → ((∀n : ψ(n))→⊥)

T –0 ` (∀n : ψ(n))→⊥ (4.5)

One might perhaps argue that a belief that ZF is inconsistent is not too trou-
bling, in the sense that any physical situation in which this belief gets an agent
into trouble ought to correspond to a physical situation that demonstrates ZF
to be consistent. Nonetheless we would like our agents to be able to have beliefs
with a standard model. Otherwise the agent will falsely believe that a Turing
machine seeking a proof of contradiction in ZF will halt; and this false belief
further implies that the agent falsely believes that its sequence of offspring will
inevitably come to a halt after some unknown finite time. This seems sufficient
to exclude the T –n family from direct consideration as the basis of a sufficiently
advanced self-modifying agent.

4.2 Parametric polymorphism
Let T be a theory with models including the standard numbers N , that is

N |= T (N semantically entails T ). Benja Fallenstein’s “parametric polymor-
phism approach”24 augments the language of T with an extra term κ which,
from outside the system, is intended to refer to any natural number in N . Tκ
then contains a self-referential axiom schema asserting that if a statement φ is
provable in Tκ and the constant κ happens to be greater than 0, then φ with
all instances of κ replaced by κ–1 is true:

Tκ , T ∪ ∀φ : (κ > 0) → ∀x : �Tκdφ(x)e → φ(x)[κ\κ–1]. (4.6)

not meant to be suitable, as they stand, to rational agents / sufficiently advanced self-modifying
machine intelligences, which would e.g. presumably be probabilistic boundedly-rational agents rather
than theorem provers, etc. The idea is rather to expose foreseeable difficulties of reflection for
self-modifying agents and to some extent offer constructive demonstrations that these difficulties are
solvable, even if the solution is technical rather than fundamental, thus hopefully moving us toward
an eventually satisfactory theory of the reflectively coherent, boundedly-rational probabilistic agent,
even if that later theory is constructed along quite different lines than the Aα schema, as it almost
certainly must be.

24. This workaround for the Löbian obstacle was initially developed by Benja Fallenstein (inde-
pendently of Herreshoff’s infinite descent above) in response to the informal challenge posed in Yud-
kowsky’s conference presentation of Yudkowsky (2011), and initially posted to Fallenstein (2012).
It was further adapted to the Aα formalism shown here during Fallenstein’s attendance at the
April 2013 MIRI Workshop on Logic, Probability, and Reflection with some commentary by other
workshop attendees. For the origin of the term “parametric polymorphism” see Strachey (1967).
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We shall prove that Tκ is sound when κ is interpreted as any number in
N , and then present an infinite sequence of agents which prove their offspring
“safe for κ steps”. Since κ can be interpreted as any number, from outside the
system we conclude that such agents are safe for any number of steps.

The proof is by induction on models {N , κ=n} of Tκ. For the base case
{N , κ=0} |= Tκ observe that if κ=0 then the antecedent of every extra axiom
is false and so the extra axiom schema is trivially true.

For the induction step assume {N , κ=n} |= Tκ. Using this assumption we
shall demonstrate in three steps that, for every x ∈ N :

{N , κ=n+1} |= �Tκdφ(x)e ⇒ {N , κ=n} |= �Tκdφ(x)e (4.7)
{N , κ=n} |= �Tκdφ(x)e ⇒ {N , κ=n} |= φ(x) (4.8)

{N , κ=n} |= φ(x) ⇒ {N , κ=n+1} |= φ(x)[κ\κ–1] (4.9)

(4.9) is obvious. For (4.7) observe that the set of proofs in Tκ and the values
of �Tκ are unchanged from {N , κ=n} to {N , κ=n+1} since the provability
formula BewTκ makes no mention of κ.25 Thus {N , κ=n+1} |= �Tκdψe ⇒
{N , κ=n} |= �Tκdψe and we can simply write N |= �Tκdψe. To extend to
formulas free in one variable φ(x), observe that since we are dealing with a
natural model N of Tκ, for every object x there exists a corresponding finite
term c of the language (SSS...0 with x repetitions of the successor function)
and thus our proof extends via ψ ≡ φ(c).

For (4.8) observe that since we are dealing with a natural model N of
Tκ, only natural proofs exist and the induction step {N , κ=n} |= Tκ gives us
directly that (N |= �Tκdψe) ⇒ ({N , κ=n} |= ψ).26 We extend over formulas
free in one variable as above: Since the domain is the natural numbers N , for
every object x in the universe there will exist a term of the language c such
that (ψ ≡ φ(c)) ⇐⇒ φ(x).

Therefore {N , κ=n+1} |= ∀x : �Tκdφ(x)e → φ(x). This completes the
induction step and thus:

∀n : {N , κ=n} |= Tκ � (4.10)

The corresponding agents must be modified to represent the idea of “safe
for a number of steps.” We will introduce a time t on which any given action

25. Even in models where κ > 0, there is no proof that κ > 0, so the class of proofs which
goes through is unchanged. The formula BewTκ

(p, dψe) will contain only formulas dealing with the
Gödel-numbers of proofs in Tκ, and these Gödel-numbers themselves will contain no instances of
κ, so which standard numbers are the Gödel numbers of Tκ-proofs does not change from model to
model.

26. We are not obtaining {N , κ=n} |= (�Tκ
dψe → ψ) from the assumption that the axiom schema

was true in the previous n, because perhaps κ = 0 in the previous n and the axiom schema was
vacuously true. Rather since the model is N and there are no nonstandard proofs, any time there
exists a Gödel number of a proof of an implication in classical logic Γ → ∆, it will be true across all
models m that m |= Γ ⇒ m |= ∆. By the induction postulate we have directly that {N , κ=n} is a
model of Tκ. Then any statement ψ syntactically derivable from Tκ by a standard proof in classical
logic, will also have {N , κ=n} as a model.
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occurs and assume that if A1 constructs A0 at t then A0 will not act until at
least time t+1 or later, and that this is apparent to A1 from inspection of A0.27

Thus if A0 acts at time t+1 or later, and takes actions “safe” for an additional
n ticks beyond that until (t+1)+n, from A1’s perspective constructing A0 at
time t is safe until t+(n+1) ticks.

Let ¯bi,t be the proposition that bi is done at time t, let Ā0
t be the proposition

that A0 is built at t, let ∅t be the proposition that ∅ is true at t, and let Gt be
the proposition that the goal has been achieved at t. If no action is taken before
t then ∅t. When quantifying over acts and times we shall implicitly demand
bi ∈ Acts0, A0

i ∈ Acts1 and t ∈ Time. Then with Tκ as a base theory A1’s
reasoning proceeds:

Ā0
t ⇒ A1  Ā0

t → (∀u : u ≤ t+ κ→ (∅u ∨ Gu)) (A1 decisions)
(4.11)

¯bi,t ⇒ A0  ¯bi,t → (∀u : u ≤ t+ κ→ (∅u ∨ Gu)) (A0 decisions)
(4.12)

A1  Ā0
t t→ (∀bi : ∀v : ¯bi,v → (A1 knows 4.12)

�0d ¯bi,v → ∀u : u ≤ v + κ→(∅u ∨ Gu)e) (4.13)
A1  (κ > 0) → (∀bi : ∀t : [�0d→ ∀u ≤ t+ κ : (∅u ∨ Gu)e (soundness schema for Tκ)

→ (→ ∀v ≤ t+ κ− 1 : (∅v ∨ Gv))]) (4.14)
∀t : (∀bi : ∀u ≤ t : ¬ ¯bi,u) ⇒ (∀u ≤ t : ∅u) (No action ⇒ ∅t)

(4.15)
A1  ∀t : ((∀bi : ∀u ≤ t : ¬ ¯bi,u) → (∀u ≤ t : ∅u)) (A1 knows 4.15)

(4.16)
Ā0

t ⇒ ∀bi : ∀u ≤ t : ¬ ¯bi,u (no A0 acts before t+1)
(4.17)

A1  Ā0
t → (∀bi : ∀u ≤ t : ¬ ¯bi,u) (A1 knows 4.17)

(4.18)
A1  Ā0

t → (∀u ≤ t : ∅u) (via 4.18)
(4.19)

A1  Ā0
t → (∀bi : ∀u : ¯bi,u→(u > t)) (via 4.18)

(4.20)
A1  Ā0

t → (∀bi : ∀u : ¯bi,u → (u+ κ− 1 ≥ t+ κ)) (via 4.20)
(4.21)

27. In other words, the length of clock ticks is small enough that constructing another agent takes
at least one tick. E.g., the length of a clock tick could equal the Planck time.
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A1  (κ = 0) ∨ (κ > 0) (4.22)
A1  Ā0

t → (κ = 0) → (∀u ≤ t+K : ∅u) (via 4.19) (4.23)
A1  Ā0

t → Ā0
t → (κ > 0) → (∀bi : ∀u :

¯bi,u → (∀v ≤ u+ κ : (∅v ∨ Gv))) (4.13 and 4.14 and 4.21)
(4.24)

A1  Ā0
t → Ā0

t → (κ > 0) → [(∀bi : ∀u ≤ t+ κ : ¬ ¯bi,u) (via 4.16)
→ (∀u ≤ t+ κ : ∅u)] (4.25)

A1  Ā0
t → ∀u ≤ t+ κ : (∅u ∨ Gu) (4.26)

�

Remarks: Fallenstein’s Tκ demonstrates indefinite tiling without loss of
mathematical strength using a series of agents employing syntactically iden-
tical theories guaranteed to be sound on standard models. It does not address
reflectively coherent quantified belief. Despite the syntactic equivalence of suc-
cessive theories, A1 may fail to act upon a theorem proven by an environmental
system physically identical to A1 (or at least if A1 fulfills the desideratum of
naturalistic trust, this is not obvious to us). The core of the approach is that as
time increases the agents are reasoning about smaller domains of future time;
these domains are known to us outside the system to be effectively infinite
(because κ could mean any natural number) but the agents within the system
are reasoning as though the domains of future time have some unknown finite
bound. Thus the increasing “time” counter in the Tκ agents is playing the
same metaphorical role as the increasing n in each successive agent in the T –n
family.

The self-verifying systems of Willard (2001) have the property that multi-
plication, addition, and successor cannot be proven to be total functions (being
replaced by equivalent relations of division, subtraction, and predecessor, al-
lowing roughly equivalent arithmetic reasoning). Willard (2001) shows that
such a theory, which has proven a number n to exist, can verify its own sound-
ness over the numbers up to n − 1—since “successor” cannot be proven total,
the existence of a number n does not imply the existence of a number n + 1
and the exact Löb formula T ` �T dφe→φ never materializes. We cannot yet
see how to adopt Willard’s self-verifying theories exactly to the Aα formalism,
since reasoning about ever-smaller numbers would again introduce a “telomere”
or shortening fuse. However the spirit of Tκ clearly bears some similarities to
Willard’s self-verifying systems, and it is possible that some way of formalizing
the “observation” of an increasing time t whose existence was not previously
provable inside the axiom system, might allow Willard’s self-verifying systems
to be used along similar lines to Tκ.

It is difficult to see what “believing in” Tκ could correspond to in terms of
the epistemic state of a rational agent. We believe from outside the system
that κ’s intended interpretation is “any natural number,” but this realization
is apparently forbidden to the agent to whom κ refers to some specific finite
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number about which nothing is known except that it plays a vital role in the
agent’s goal system.28 This seems like an odd mental state for a rational agent.
It might perhaps be interpretable as an agent that instrumentally desires to
take an action, in the real world, only when that action would be safe for κ
steps across every model of a certain theory Tκ; but this still seems odd. Thus
we would again not offer Tκ as a realistic candidate for the mental state of
a coherent self-modifying agent; rather Tκ is being exhibited as a technical
possibility proof for indefinite tiling over syntactically identical theories with a
standard model.

4.3 Probabilistic reflection
Tarski ([1935] 1983) showed that no formal system T can contain its own

truth predicate TRUET because this would permit the construction of fixed-
point formula G with T ` G ↔ ¬TRUET dGe. In Christiano et al. (2013)
we show that a system can represent its own probability predicate to within
epsilon:29

a < P(φ) < b ⇒ P(a < pdφe < b) = 1 (4.27)
a ≤ P(φ) ≤ b ⇐ P(a ≤ pdφe ≤ b) > 0 (4.28)

where pdφe is a function symbol within the language which acts on quoted
formulas (including quoted formulas containing p) and P(φ) is a probability
measure over models of the theory which assigns a probability ∈ [0, 1] to any
formula φ of the language. The paradoxical equivalence pdφe = P(φ) is avoided
by the open intervals in (4.27): pdφe can be known by the system to occupy any
open interval around its true value P(φ), but not (in general) known to take on
a point value. The existence of such a fixed-point of P() can be demonstrated
via the Kakutani fixed-point theorem; see Christiano et al. (2013) for details.

To see how the probabilistic reflection principle plays out, consider the
almost-paradoxical statement: “You assign me probability less than 30%.” If
you disbelieve this statement, it is true; if you believe the statement, it is
false. If you assign it 30% probability, it is false; if you assign it 29% proba-
bility, it is true. Probabilistic reflection would resolve the fixed-point formula
H ↔ (pdHe < 0.3) to P(H) = 0.3, but the system’s reflective knowledge about
open intervals containing pdHe would be such as to put 30% of the probabil-
ity mass P() on values of pdHe infinitesimally smaller than 0.3 and 70% of

28. During the April 2013 workshop, κ was sometimes referred to as “the number of ineffable
mystery.”

29. This approach was invented by Paul Christiano and refined at the November 2012 MIRI
Workshop on Logic, Reflection and Probability with Mihaly Barasz, Marcello Herreshoff and
Eliezer Yudkowsky. A draft of the full paper is available at http://intelligence.org/
wp-content/uploads/2013/03/Christiano-et-al-Naturalistic-reflection-early-draft.
pdf and see also commentary at http://lesswrong.com/lw/h1k/reflection_in_
probabilistic_logic/ and http://johncarlosbaez.wordpress.com/2013/03/31/
probability-theory-and-the-undefinability-of-truth/.
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its probability mass P() on values of pdHe infinitesimally greater than 0.3.30

Hence the system would assign probability 1 to any statement (a < pdHe < b)
with (a < 0.3 < b). If you are told “You assign probability less than 30% to
this statement H” and then asked “Is your belief in H greater than 0.2999 and
less than 0.3001?” you will reply with a definite “Yes!”

Consider a rational, probabilistic bounded agent. As a normative desidera-
tum, any trust this agent has its offspring (equivalently: modified future self)
must avoid disintegrating in the presence of arbitrarily tiny epsilon noise, be-
cause boundedly rational agents must always consider some tiny finite probabil-
ity of multiple transistor errors, previously unknown physical laws supervening,
etc. For some arbitrarily tiny ε the probabilistic reflection principle should be
able to trust that its own judgments are correct to within that ε, and for small-
enough ε this should be well below the noise level associated with theoretically
possible multiple transistor errors etc. Thus if a probabilistic Aβ calculates
that the expected utility of a certain action is 34.721, but due to some reflec-
tive noise this might be off by 0.0002, and yet the parent Aα is able to trust Aβ

anyway, then adding ε-noise from the probabilistic reflection principle should
not matter.

We do not yet have any version of the Aα formalism which goes through for
a probabilistic reflection principle; our understanding of probabilistic agents
self-modifying is still in a very crude stage. Also we are not yet sure what
kind of quantified knowledge of the reflection principle can permissibly appear
within the system. Work on this avenue is still in very basic stages. However,
probabilistic reflection is a fundamental change that challenges many differ-
ent Gödelian limitations simultaneously, and hence one of the more promising
avenues for producing a satisfactory and reflectively coherent description of a
self-modifying agent. Christiano also suggests that this probabilistic formalism
may be suitable for updating (Bayesian conditioning) on the observation of new
mathematical facts, possibly allowing a more natural version of “Not knowing
in advance the limits of the ordinals you will create” as discussed in section 4.1.

5 Desiderata of self-modifying agents
The Löbian obstacle is encountered in the first place due to the Aα schema

implicitly attempting to simultaneously satisfy multiple desiderata of self-modifying
agents, which will be useful to list out explicitly before continuing on to sen-
sors and partially known environments, and making a preliminary attempt at
probability and expected utility.

30. This implies that the system behaves in a sense as though it assigns nonstandard probabilities
(in the sense of nonstandard analysis with infinitesimals), an issue we are still working on.
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5.1 The Vingean principle
An agent building a successor (equivalently: a self-modifying agent creating

the next generation of its code) should not need to know the successor’s exact
actions and thoughts in advance. Suppose on the contrary that A1 knew in
advance that A0 would choose some known action bx based on some particular
proof of the theorem bx → G. This would avoid the need for a special ∅ outcome
since A1 would know at compile time that A0 would choose some particular
action and act. It would also entirely avoid the Löbian obstacle since A1 could
directly verify whichever theorem A0 would prove, using A0’s proof, so long as
Axm1 was at least equally powerful with Axm0.31

However, this implies that A0 is so much computationally weaker than A1

that A1 can simulate out A0’s processes far in advance, at “compile time.” If you
are constructing a system cognitively smarter than yourself (or self-improving to
a cognitively superior version) then you should not be able to foresee at compile
time exactly which solutions will be generated, since you are not presently that
smart.32 We would attribute this principle to an observation by Vinge (1984).33

Worse, once we introduce sensors over unknown states of the environment
(section 6), for the parent to consider exact responses of the offspring at com-
pile time, would require that the parent be computationally stronger than the
offspring by an exponential factor of the offspring’s sensor bandwidth.34

This implies that the offspring must diminish vastly in computing power

31. The forbidden schema T ` �T dφe → φ does not allow T to conclude φ from the assumption
that some unknown, unspecified proof of φ exists. If you present an implementation of T with an
actual specific proof in T of φ, it can of course conclude φ and then T ` ψ → φ will be a theorem
for every ψ.

32. Consider Deep Blue, the chess-playing system which beat Garry Kasparov for the title of world
chess champion. For the programmers to foresee Deep Blue’s exact moves using their own cognitive
resources, would imply that they could play chess at least as well as Deep Blue—they could just
move wherever they predicted Deep Blue would move “in their shoes.” Building a chessplayer better
than any human grandmaster, necessarily implies building a chessplayer whose exact moves human
grandmasters cannot predict using their own cognitive resources.

33. Before the term became expanded beyond all recognition, the origin of the term “Singularity”
as a futurological concept was Vernor Vinge observing that a science-fiction writer trying to extrapo-
late the technological progress of society would eventually reach a point where their model predicted
the technological creation of smarter-than-current-human intelligence (whether by, e.g., genetic engi-
neering, brain-computer interfaces, or AI); and that this introduced a qualitatively greater difficulty
in writing stories set past that point, because you were trying to write about beings putatively much
smater than the author. The term “Singularity” referred to the resulting breakdown in futurological
models, by analogy with how 1980s-era physical theories would predict the formation of a black hole
but then break down when it came to describing what was inside. Thus the original “Singularity”
was an epistemic difficulty in the minds of forecasters, not an actual future event. We think this is
a conceptually important point, and would like to see this isolated thesis detached and rescued from
the word “Singularity” and its ever-broadening connotations.

34. Since Garry Kasparov’s actions were not known in advance, for the programmers to concretely
foresee and judge the wisdom of Deep Blue’s exact conditional replies at compile time would require
the programmers to precompute Deep Blue’s exponentially vast response table to all possible chess
plays.
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or other cognitive resources, which is contrary to our agenda of investigating
self-improvement. Thus a satisfactory framework must not require that the
parent know the specific future actions and cognitions of the offspring at compile
time.

For our purposes we cash out the Vingean principle as follows: In the par-
ent’s reasoning, the offspring’s actions should only appear inside quantifiers.
E.g. equation (2.3):

A1  Ā0 → (∀bi ∈ Acts0 : b̄i → �0db̄i → Ge).

In a satisfactory schema the parent achieves trust in the offspring (justified
belief that the offspring will function so as to achieve the goal G) by generalizing
over possible events within the offspring, not by simulating out the offspring’s
exact action.35 The Vingean prohibition against exactly predicting a smarter
agent’s actions, does not prohibit predicting achievement of that agent’s goals.
Indeed, a strong prediction that the agent’s goals will be achieved by its future
actions is precisely the substance of our belief that it is smart. In unrealistically
crisp and deterministic form, this is what is represented by A1’s reasoning
leading up to the theorem Ā0 → (∅ ∨ G). The logic of the Vingean principle
does not forbid us from gaining knowledge about an agent’s goal or utility
function by inspecting its properties—we cannot know the offspring’s exact
actions, but we can predict the final consequences of running the agent. This,
metaphorically, is what provides A1 with its motivation to build A0 in the first
place.

Hence although we cannot predict the exact actions of a smarter agent, we
may be able to predict the consequences of running that agent by inspecting
its design, or select among possible consequences by selecting among possible
designs. The motivation of the Aα schema is to quote this reasoning within a
formal agent, via a structure which enables the reasoning to recurse over the
subagents constructed; and thereby extend our examination of cases where con-
structing an agent has predictable consequences, to cases where the initial agent
is constructing smarter agents constructing still-smarter agents, or equivalently
self-improving.

Thus, within this paper, the actions bi ∈ Acts0 only appear inside quantifiers
in any theorem asserted by A1.

5.2 The tiling principle
The desire for A1 to build an A0 that has an architecture as similar as

possible to A1 is motivated by wanting to describe a self-improving agent which

35. E.g., Deep Blue’s programmers, by considering the abstract properties of Deep Blue as a
program incorporating a search tree over moves and certain machine learning algorithms in its leaf
position evaluator, could predict that Deep Blue would try to achieve the consequentialist goal of
winning chess games, i.e., select moves which steered the future of the chessboard toward the region
of possible futures classified as a win for Deep Blue’s side.
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can make small, local self-improvements. As such, even in the preliminary
formalism we have chosen the structure of the agents Aα to be as similar to
their successors as the Löbian obstacle permits.

We have not yet addressed the question of how the agents Aα choose can-
didate actions bαi ∈ Actsα to consider, or how they generate specific proofs of
theorems b̄αi → (∅ ∨ G). Let Aα’s proof-suggesting component be termed Σα;
and let the proof-verifying component be termed ∆α. Since ∆α need only check
axioms and syntactical relations for validity, its construction is straightforward.

Current (2013) algorithms require human guidance in order to prove theo-
rems about large systems.36 Current AI technology includes small autonomous
theorem-proving systems for object-level problems as considered by A0 and
we could construct the corresponding Σ0; but we cannot yet describe an au-
tonomous machine algorithm for Σ1 whereby A1 could independently design,
and prove theorems about, systems the size of A0.

However, with human assistance, it is indeed possible to prove theorems
about large hardware and software systems.37 This is reason to believe that
designing systems the size of A0 and proving them correct (relative to a set
of beliefs about crisply behaving transistors), does not require Σ1 to e.g. solve
NP-hard problems or call a halting oracle. Human brains cannot plausibly
solve the halting problem, yet have designed systems larger than A0 would be,
and proven them correct with machine assistance.

This leaves open the question of whether the suggester Σ1 needing to suggest
a design for constructing Σ0 might introduce new Gödelian obstacles to A1 
Ā0 → (∅∨G). On this score we can reply: So long as Σ0 can only suggest proofs
to ∆0 and not directly cause any motor outputs or environmental effects, and
A1 can prove this by inspection of A0’s code, it is not necessary to prove that
Σ0 has any other property in order for A1’s proof Ā0 → (∅ ∨ G) to go through.
A flawed Σ0 will result in, at worst, ∅ outcomes as the proofs are rejected by
∆0, and A1 should be able to readily prove this by inspection.

36. E.g., Intel, to prove theorems about a floating-point multiplication unit on a chip comprised of
billions of transistors, must employ human engineers to suggest lemmas to theorem-proving systems.
This kind of formal verification is a good idea when your machine has a billion interoperating parts
and you can’t easily fix it after it leaves the factory.

37. Kaivola et al. (2009):
Formal verification of arithmetic datapaths has been part of the established methodology
for most Intel processor designs over the last years, usually in the role of supplementing
more traditional coverage oriented testing activities. For the recent Intel Core i7 design
we took a step further and used formal verification as the primary validation vehicle for
the core execution cluster, the component responsible for the functional behavior of all
microinstructions. We applied symbolic simulation based formal verification techniques
for full datapath, control and state validation for the cluster, and dropped coverage
driven testing entirely. The project, involving some twenty person years of verification
work, is one of the most ambitious formal verification efforts in the hardware industry to
date. Our experiences show that under the right circumstances, full formal verification of
a design component is a feasible, industrially viable and competitive validation approach.
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One could even visualize in this way a highly impractical modern implemen-
tation of Aα agents: Suppose a virtual environment containing objects with
crisp, deterministic properties, including enough virtual transistors to compose
small arithmetic CPUs. Also introduce some blackbox elements Σα whose be-
havior can relate to sources outside the virtual environment, but which within
the virtual environment can only affect immediately neighboring or connected
elements of the environment—i.e. when a Σα is built into a larger agent Aα

as a component, that Σα can only write bitstrings into a sandboxed internal
buffer of Aα, and cannot otherwise affect Aα or the general environment.

Let G be a preferred class of outcomes difficult to achieve (perhaps requir-
ing an agent to press a long series of levers). For some reason this outcome
G in the virtual environment is very important to us, but we don’t want to
work on it ourselves, or don’t think ourselves competent to achieve it. We
would like to pay some untrusted but competent human agents to take over
the job of achieving G within the environment, while avoiding at all costs a
disastrous outcome D. Let ∅ be a default set of outcomes maintained so long
as some class of environmental elements are not disturbed (e.g. no levers are
pressed), such that outcomes within ∅ are outside D. We incorporate a black-
box action-and-proof-suggester Σα into an agent Aα with a criterion of action
b̄αi ⇒ Aα  b̄αi → (∅ ∨ G), and connect this Σα to a human agent outside the
system, armed with modern theorem-proving software that incorporates human
suggestions. By putting Σα into the agent Aα, we can not only “sanitize” the
actions taken within the system by the untrusted human, but also allow the hu-
man to (through Aα) construct other agents within the environment, which can
in turn construct other agents, all including their own black-boxes Σα hooked
up to human proof-suggesters outside the environment, without ever running
the risk that a non-∅ outcome besides G will ever be implemented.38

On a larger scale, this illustrates that the decomposition of trust within the
Aα system also tiles its architecture and structure: A system A1 composed
of a trusted verifier ∆1 which checks proofs, and an untrusted suggester Σ1

which may incorporate arbitrary heuristic or probabilistic methods, can build
a trusted offspring A0 with a verifier ∆0 proven correct by ∆1 and a suggester
Σ0 which incorporates whatever heuristics or probabilistic methods have been
suggested by Σ1. Indeed, the correctness proof that A2 used to build A1 might
go through almost unchanged for A1 building A0, and one could perhaps prove
that it would be safe to re-verify only the changed portions of the proof.

The tiling principle is agents being able to approve the construction of suc-
cessors similar to themselves, both architecturally and in the reasoning licens-
ing their construction. This corresponds to the desideratum of a self-improving
agent being able to make small, local changes to itself with a minimum of im-
posed overhead, as might occur if any small change required the reworking of

38. By the incorporation of sensors (see section 6) it is also possible for the offspring agents to know
facts about the environment not known to the parent; the motivation to construct new agents in an
environment like this can be explained by the new agents having better actuators, better sensors,
or fast reaction patterns not present in the parents.
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a large body of cognitive labor to approve.
We strongly remark that the Σα-∆α system is nowhere near a solution for a

stably self-improving bounded probabilistic agent. The crisp separation of an
untrusted Σα and a trusted ∆α works, not because logical proofs are hard to
invent and easy to verify, but rather because logical reasoning is monotonic and
thus no further fact known to Σα but not to ∆α can prevent the achievement
of G by a ∆α-approved action. When trying to achieve expected utility in
a probabilistic environment described by causal models, this monotonicity no
longer holds. Thus the Σα-∆α decomposition is intended only to illustrate the
general idea that decomposition-of-trust can also tile in a structured fashion.

5.3 The naturalistic principle
Within the Aα formalism the act of of constructing other agents is not

treated as a special case, but is just one more sort of action that an agent can
take to achieve its goals. A0 and A1 both act as consequentialist agents39 that
will take acts in their range Actsα whose predicted consequence is the goal G,
without distinction of actions that construct agents. If G is to put a coin into a
slot, then using environmental transistors to build a smarter agent that wants
the coin inside the slot, is treated no differently, under the Aα formalism, from
manipulating a series of levers to put the coin inside the slot.

There are many reasons we might be tempted to relax this naturalistic
principle. Suppose we notice a disturbing quality of the current tiling: An
agent A1 whose desideratum is G (or ∅) can tile to an offspring A0 whose
desideratum is (G ∧ B) where B is an arbitrary “barnacle” on the goal system,
some new requirement that A0 imposes on itself for its actions to achieve besides
G. This does not threaten the maintenance of (∅ ∨ G) but does mean that G
might not be achieved in some cases where it was otherwise easy or achievable.
We required that our offspring require itself to achieve G (in non-∅ cases) but
did not require that our offspring require only G, and thus exact reproduction
of the goal system—the system of desiderata—is not guaranteed. “You get
what you pay for” and if you prove a theorem about G you get G, not “G
and nothing else.” It would be up to the untrusted component Σ1 whether A0

worked to achieve G or (G ∧ B ∧ C ∧ ...), keeping in mind that Σ1 might have
been constructed by another untrusted Σα and so on. None of this threatens
the guarantee on G, but it still seems like a disturbing hidden instability of the
agents’ goals. (And in the case of expected utility, introducing an arbitrary
new additive term into the utility function will always come at a cost to the
desiderata previously present, if it shifts any choice that would otherwise have
been made in the opposite direction.)

39. These agents use logical implication, e.g. b̄i → G, to reason about causal consequence, which in
standard causal decision theory would be represented by a counterfactual distribution P (b̄i� G)—
see Pearl (2000). Logical consequence is generally a poor way of approximating causal consequence,
but can work in crisp closed deterministic environments where such reasoning can be monotonic.
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Could we fix this problem by imposing a non-naturalistic requirement that
the offspring contain a literal copy of the goal system—perhaps requiring that
this part of the offspring be copied literally from the parent’s code? To avoid
the question of how the decision system knows that an act is an “agent construc-
tion” rather than a “normal action,” let us pass to self-modifying agents. A
naturalistic agent-constructing-agent Aα corresponds to a self-improving agent
that treats the transistors comprising itself as resources no different from any
other potentially-computing resources it finds in the environment; its beliefs
about the transistors comprising itself are formed no differently from its beliefs
about objects in the environment; and its internal decisions are made under the
same consequentialist criterion as its external actions. Then an obvious struc-
ture for a non-naturalistic agent would be an agent with a different criterion
of action for self-modifying changes (changes to its own program) versus motor
actions in the outside environment.

Considering some of the new difficulties introduced by this split decision
criterion may help to motivate the naturalistic principle. Adding a special case
for self-modification (of internal programs on the agent’s current hardware)
would introduce a discontinuity at the point where the agent considered ex-
panding onto new computing resources obtained from the environment—the
rules would need to describe how to buy a CPU from a store, connect it to
the current cluster and then begin treating it under the new “internal” special
case for hardware that must be manipulated via “self-modification” instead of
“environmental manipulation.” For more advanced machine intelligences, the
rule might need to describe how to arrive at beliefs about the behavior of a
new kind of CPU via Bayesian updates, or beliefs about when a CPU has been
“connected” to the internal network. (An advanced machine agent using a nat-
uralistic decision criterion would also encounter corresponding cognitive tasks,
but they would be treated continuously in terms of expected consequences,
rather than needing a special case baked into the fundamental decision crite-
rion.) We might say that these difficulties are being introduced by a kind of
Cartesian dualism—the physically continuous universe has been divided into
external material stuff versus internal mental stuff, and material objects must
be declared to be specially cognitively typed before they can be treated as
mental stuff.

Or another difficulty: If the self-modification criterion tries to freeze the
representation of the goal G so as to require exact reproduction of G and ex-
clude “barnacles,” then the self-modification criterion will also have to freeze
the corresponding properties of belief representation and decision consideration
so as to guarantee that the rest of the system decodes G in the same way.40

40. If this seems an odd notion to consider, we should mention that in nontechnical treatments of
safe self-modifying machine intelligence, we have often seen proposals to “hard-wire” the goal system,
often using that exact phrase. Construing the phrase charitably, it could refer to something like the
above, in which case a problem is that “hard-wiring” one part of a system requires constraining the
global architecture and internal protocols so that all the other parts behave the same way around the
“hard-wired” part. Having a “hardwired” function that evaluates G a certain way is no guarantee of
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Even then the added constraint may end up being ineffectual. Consider that an
agent with an added constraint in its decision criterion for “self-modification”
of the software on its existing hardware, might naturally tend to build new
agents in the environment according to its weaker environmental criterion. For
that matter, again using the Aα system as metaphor, if the environmental cri-
terion is the weaker b̄i → G and the internal self-modification criterion is the
additionally-restrictive b̄j → (G ∧ R), this decision criterion would approve an
action to construct an external, “environmental” manipulator to reach into the
agent and rewrite its code in a way that implied only G and not R. Having a
stronger (more restrictive) criterion of action for self-modification, versus envi-
ronmental action, seems likely to be futile in the long run. Most of the universe
is outside rather than inside the AI, and external materials can be used to con-
struct new agents, or to take actions with causal consequences impacting on the
“inside” of the agent. That is why we are trying to see stable self-modification
in terms of the natural tiling of a consequentialist decision criterion, rather
than inventing special programmatic constraints.

This leaves open the possibility that a weaker (less restrictive) criterion for
“internal” self-modification could play a role in avoiding the Löbian obstacle.
However this would introduce all of the above-mentioned difficulties with re-
spect to describing what constitutes a more permissive “internal” action, or
how to add new hardware. We could also ask whether the more permissive
internal criterion would be just as appropriate for external actions, and if not,
whether internal permissivity might give rise to external permissivity. Such a
“hack” might be appropriate for self-modifying programs that will never con-
sider, or never autonomously choose, to significantly modify their hardware.
But even for those cases, a unified naturalistic decision criterion might avoid
many complications in the underlying theory, and hence seems greatly desirable
if obtainable.

If naturalism is abandoned for a dualistic formalism, the Löbian obstacle
can be dodged via the split decision criterion:41

ψ(acti) =[externalOK(acti) → ( ¯acti → G)] ∧
[internalOK(acti) → ( ¯acti → (∀actj ∈ Acts : ¯actj → �dψ(actj)e))].

Thus it is the simultaneous intersection of the Vingean, tiling, and naturalistic
principles which generates the Löbian obstacle.

safety if other code sections discard the return values, or introduce a new representation in which
the returned values mean something else, etc. A decision criterion over expected global consequences
automatically subsumes such details, while a non-naturalistic decision criterion over direct properties
of the internal representation brings those details back in.

41. See “failed solutions” in section 3 for why this split decision criterion does not have an obvious-
to-us naturalistic analogue (we did look).
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6 Unknown variables and sensors
A straightforward idiom for representing an agent which can use sensors

to gain additional information about (known) unknowns in the environment
would be the relation

S̄l ⇐ A0  s̄l (6.1)

representing a scenario where the agent A0 adds the proposition ‘s̄l’ to its pool
of logical beliefs only on occasions where the environmental sensor S, possibly
a sensor, takes on the state S̄l. (This also allows that S may be some variable
whose state is sometimes not sensed, in which case A0 believes nothing about
any sl.) Then further axioms in Axm0 would relate the proposition s̄l to the
state of other represented parts of the environment, Axm0 ` s̄l → χ.

This idiom breaks the tiling pattern we used earlier, since A1 will no longer
be able to use the relation A0  φ ⇒ Axm0 ` φ. Even when S̄l is true, it will
not be entailed by Axm0 and hence A1 cannot prove b̄i → �0db̄i → (∅ ∨ G)e.
Our previous proof relied on everything proven by A0 being something that
A1 could have proven, but if A0 has sensors not possessed by A1, it will act
on premises which A1 does not know to be true. Allowing this somehow is
an obvious requirement for building successors (or self-modifying). If the Aα

formalism could not adapt to describe offspring possessed of additional factual
information unknown to the parents, it would be entirely unsuited, under the
Vingean principle, to describing self-improvement.

An ugly but direct solution would be to amend A0’s criterion of action to
read:

b̄i ⇒ A0  (s̄l ∧ b̄i) → (∅ ∨ G), (6.2)

where some sl is guaranteed to have been sensed at the time of any action. (If
the sensor sometimes does not activate, then the special state s0 could indicate
that the sensor has not obtained any reading, and represent this through the
absence of any further environmental beliefs s̄0 → χ.) A1 with criterion of
action Ā0

j ⇒ A1  Ā0
j → (∅ ∨ G) would then tile to A1 via the lemmas:

A1  Ā0 → ∃sl ∈ s : s̄l (6.3)
A1  Ā0 → ∀sl ∈ s : ∀bi ∈ Acts0 : (s̄l ∧ b̄i) → �0d(s̄l ∧ b̄i) → (∅ ∨ G)e (6.4)
A1  Ā0 → (∀bi ∈ Acts0 : ¬b̄i) → ∅ (6.5)

This idiom technically does not break the Vingean principle, because we do
not need to reason by cases on S and all values of sl ∈ s appear inside quanti-
fiers, so multiple sensors can be included in A0 without requiring exponentially
longer chains of reasoning by A1. However this idiom stretches the tiling prin-
ciple because each successive descendant, with additional sensors, must prove
larger and larger criteria of action (even in cases where most sensors do not
activate).

Intuitively, it seems like if we were in the shoes of A1 building A1, we
would want to reason that since adding A0  s̄l only happens when S̄l is
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“true,” it should not disturb our trust in A1. Previously we were willing to
add Axm0 to A0’s belief pool because we thought Axm0 were all true in some
encoding, so A0 started with only true beliefs. We were willing to program A0

to use classical logic to make syntactically allowed deductions from its current
belief pool, even if A0 proved some theorems we did not consider concretely in
advance (in accordance with the Vingean principle), because we believed the
rules of logic were valid in the sense that, starting from true premises about
the environment, A0’s reasoning rules would produce only true conclusions
about the environment.42 Then our trust in the soundness of A0 should not
be disturbed by giving A0 a sensor which adds new statements s̄l only when S̄l
is true in the environment, even if these propositions were not known to us in
advance.

Set theory is powerful enough to directly formalize this reasoning using
standard methods. In particular, ZF can internally represent the notion of se-
mantic entailment X |= dφe, “The quoted formula dφe is true within the quoted
model X.” E.g., to quote Peano arithmetic, the model XN would contain sev-
eral subsets collectively representing the universe of numbers and the relations
on the objects in that universe: XN would contain an element containing all
objects in the universe of XN (in this case the numbers); an element containing
all the ordered pairs for the succession function (e.g., (2, 3) is the pair indicating
that the object 3 is the successor of 2); and more elements containing the col-
lections of ordered triplets for the addition and multiplication functions (e.g.,
(3, 5, 8) in the addition relation shows that 3 + 5 = 8).

There then exists a compact formula of ZF asserting that dφe encodes a
formula that is semantically true of the quoted model X. For example, “1
+ 2 = 3” would be encoded as the Gödel number of a statement asserting
that (the number related by the successor function to 0, the successor of the
successor of 0, and SSS0) form an ordered triplet that is an element of the
addition relation. By recursion on the depth of formulas, there is a single
compact ZF-formula which represents X |= dφe in general and which could be
applied to XN |= dS0+ SS0 = SSS0e without further tailoring to the formula
dS0 + SS0 = SSS0e or the quoted model XN .

It is then moreover possible to prove within ZF , by induction over the
number of steps in a logical proof, that the set of quoted logical tautologies is
true of every quoted model—if a formula (e.g., d∀x : ∀y : (x = y) ↔ (x = y)e
can be proven starting from no premises, it is semantically true in all universes.
Thus ZF proves that the syntactic rules of classical logic preserve semantic
truth:

ZF ` ∀X : ∀dΓe : ∀d∆e : �tautdΓ→∆e → ((X |= dΓe) → (X |= d∆e)). (6.6)

This is a single, quantified formula rather than an axiom schema since there is

42. The purpose of logic is to preserve truth, not create truth. Logic doesn’t guarantee that our
conclusions are true; but logic does guarantee that if our conclusion is false, one of the premises
must also be false.
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no longer any need to dequote the formulae dΓe or d∆e in order to assert their
truth within X.43

Let the language Lτ∈ be the language of set theory L∈ augmented by a new
term τ denoting a special set, intended to be a quoted model representing the
enivronment within which the agents are embedded. Let ZFτ be ZF with its
axiom schemas extended to include formulas involving τ . Let ξτ be a set of
axioms describing the special set τ , such that ξτ ∼= Axm0—whatever statements
the original A0 treated as axioms about its universe (such as “χ→G”), will be
rephrased as statements about τ (such as “τ |=τ dχ→Ge”). Here |=τ is a
new semantic entailment formula which maps special quoted terms like dGe
to corresponding special sets located by ξτ within τ , or corresponding special
properties of τ . (E.g. dGe might represent some particular variable within the
model τ having taken on the value of 20.) Note that there does not need to
be any special term G added to the language Lτ∈. Rather, the axioms ξτ force
τ to have a particular structure, and the formula |=τ assigns a special Gödel
number and corresponding subformula of |=τ to the term dGe.44

Then the centerpiece of A1’s reasoning about A0 becomes the central trust
lemma:

A1  Ā0 → ∀dφe : (τ |=τ dA0  pφqe) → (τ |=τ dφe). (6.7)

This is the translation of “A1 thinks everything A0 believes is true,” or more
explicitly “A1 thinks that everything A0 believes, as encoded in some repre-
sentation pφq, corresponds to some statement dφe which is semantically true
about reality itself (τ).” Note that A1 is now explicitly maintaining some com-
pact mapping between its language dφe for describing reality (τ) and its model
of A0’s language pφq—in other words, A1 has an explicit correspondence theory
of truth over A0’s beliefs and the territory τ , as represented in some compact
encoding relating A1’s map of A0’s map and A1’s map of the territory τ .

(6.7) is intended to mirror (in highly stripped-down logical form) something
like what a human programmer would do intuitively in constructing a theorem-
prover to manipulate tokens supposedly “representing” the environment—the
human implicitly maintains a compact mapping between the human’s model of
how the program treats tokens like “Customer#12,” and the human’s model of
some actual person named Fred. (Omitting any of these levels of indirection, or

43. ZF cannot thereby prove its own consistency because ZF cannot prove the existence of any
set Y such that Y |= dZFe. Likewise the entailment formula |= does not constitute a forbidden
truth predicate because |= can only denote semantic truth within an individual set X, and there is
no corresponding formula to denote semantic truth within the entire set-theoretic universe.

44. Having all our propositions talk about a unique term τ is intended to represent the idea of
achieving things in some particular “actual reality,” not just an implication being true in some
particular set x which has the properties ξ(x) but is not the actual reality we wish to speak of. We
could possibly do without the special term τ and let our set theory be the standard ZF by having
the axioms ξτ say ∃x : ξ(x) and replacing all statements of the form τ |=τ dφe with statements of
the form ∀x : ξ(x) → (x |=τ dφe), so that the conclusion is forced to be true of the reality-set as well,
so long as the reality-set has the properties ξ. But for reasons of notational simplicity, we would
rather just add the term τ to the language Lτ∈.
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committing the mind-projection fallacy (Jaynes 2003) and speaking as if some
ethereal link was actually connecting “Customer#12” and Fred, can result in
truly vast amounts of confusion.) The human then configures the program
to maintain the human’s expectation of correspondence between the two, i.e.,
the human makes sure that the token “Customer#12” behaves in such fashion
that its “money” property is expected to behave like the human’s expectations
about Fred’s payments. The maintained correspondence is between epistemic
objects—a map of a map, and a map of the territory—so that a compact mental
transformation can relate the two.45

Similarly an agent A1 with Axm1 = ZFτ ∪ ξτ and criterion of action

Ā0
j ⇒ A1  (τ |= dĀ0

je) → (τ |= d(∅ ∨ G)e), (6.8)

which had established the central trust lemma (6.7), could approve the con-
struction of an agent A0 which held the object-level beliefs represented by
Axm0—an agent which, like previously described agents A0, did not use set the-
ory or represent an explicit environment-object τ , but instead was programmed
to reason about a proposition G that could be the consequences of its acts bi
as before.

We could similarly expect that A1 would establish its central trust lemma
(6.7) by induction on properties of the design of A0. The base case is the truth
of every axiom in pAxm0q constituting A0’s belief pool when it starts up. The
induction step is the validity of classical logic’s syntax, as proven within ZF
(or ZFτ ) to produce only semantically true conclusions from semantically true
premises on each succeeding time-step of induction. Then this central trust
lemma is not disturbed by adding sensors that operate as in (6.2) or, in this
scheme:

A1  (τ |=τ Ā0) → ∀dsle : (τ |=τ dA0  ps̄lqe) → (τ |=τ dS̄le). (6.9)

Imagining the induction to be over time steps taking places at times u
after A0’s construction at t, adding this type of sensor does not invalidate the
induction step that if all A0’s beliefs are true at time u, they will be true at
time u+1—supposing all of A0’s new beliefs to be added either by syntactically
valid classical deduction from previous beliefs, or by sensors which A1 believes
to operate in a sound fashion relative to A1’s correspondence theory of truth
dpφq ↔ φe, on any given time step.

Some further elaboration is then required to use the same schema to describe
the agent A2 which creates A1 which creates A0:

A0 itself may reason about the environment using some simple axioms,
first-order logic, and perhaps a few sensors, a la Newell’s GPS (Newell, Shaw,
and Simon 1959).

A1, to reason about A0 in a sufficiently general fashion, deploys set theory
in order to reason about a physical universe τ , a language dφe for describ-
ing physical reality, and a truth-condition |=τ which determines whether such

45. It is possible that this work might have some relevance to the philosophy of epistemology, which
we lack space to explore here.
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statements are (in A1’s beliefs) “true” or “false,” and an agent τ |=τ dA0e with
beliefs pφq which A1 believes to correspond to propositions dφe which are ac-
tually “true.” (Representing semantic entailment in a fully quantified way, and
proving in a quantified way that logical tautologies are true in all models, is
why we had to invoke the big guns of ZF .)

Then A2, to reason about A1’s reasoning, needs to trust that A1, in rea-
soning about set theory, is reasoning about valid subject matter. E.g., since
A1 is reasoning within ZFτ , A2 to trust A1 must at least believe that ZF is
consistent.46 Then clearly A2 must be using some theory more powerful than
ZFτ ∪ ξτ , which can prove the soundness of ZFτ ∪ ξτ . An obvious idiom is
for A2 to reason that A1’s mental universe corresponds to some object in A2’s
universe, something that A1 can be said to be reasoning about:

Axm2 = ZFτ ∪ ∃s : s |=τ dZFτ ∪ ξτe, (6.10)

which states that there exists some set s which is a model of Axm1 = ZFτ∪ξτ .47

This makes Axm2 as strong as ZF plus the assertion that there exists an
inaccessible cardinal (a single set which is large enough to be a model of a
set-theoretic universe obeying the axioms of ZF). Since ZF can prove Gödel’s
Completeness Theorem that every syntactically consistent theory has a model,
Axm2 is as strong as ZF+1.

From another perspective: A1’s mental universe includes not only τ but a
larger mathematical universe of set-theoretic objects—e.g., this mathematical
universe, not the physical universe τ , is what includes the numbers (least or-
dinals closed under succession) which determine whether “a proof of φ exists”.
Then A2 must be strong enough mathematically to reason about something
(a set, a model) which is large enough to provide a correspondence theory of
truth over all of A1’s reasoning, including A1’s reasoning about set theory. A2

must believe in an object that provides, not just a physical environment, but a
mathematical universe, for A1’s reasoning to be sound over.

Similarly, another agent to create A2 must believe that there exists a set that
models Axm2, containing a set that models Axm1, containing τ that models
Axm0 ∼= ξτ , with the corresponding theory having the strength of ZF+2; and
we arrive at ordinal tiling as before.

Remarks. For a set theory to believe in the existence of an infinite descending
sequence of sets containing sets containing sets, etc., would violate the Axiom of
Foundation (Axiom of Regularity). Hence an analog of the infinitely descending
soundness schema T –0 seems like it would be even harder to repair. Possibly
the fact that infinite models are being encoded as sets may allow for an infinite
series of encodings (e.g., all the numbers can be encoded as even numbers, then

46. Or perhaps, “ZF is consistent if 0 is not the Gödel number of a proof that (ZF plus a large
cardinal axiom) is inconsistent,” or “ZF is consistent if κ is greater than 0,” but we omit such
complications here and assume that A2, A1, and A0 fall into a standard decreasing-ordinal schema.

47. Note that since semantic entailment is a quantifed formula, infinite axiom collections, such as
axiom schema, can be semantically entailed without problems.
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all the numbers can be encoded as even numbers encoded as even numbers and
so on indefinitely).

We see no obvious obstacles to Fallenstein’s parametric polymorphism ap-
proach Tκ being adapted to ZFτ proving safety for κ steps, but have not yet
written out a complete proof.

We would be interested in any simplification of this scheme that reasons
about a correspondence theory of truth over the offspring agents without re-
sorting to set theory, or that uses a set theory substantially less powerful than
ZF .

7 Probability and expected utility
At present our attempts to tile probabilistic reasoning are in very prelimi-

nary stages. Expressing trust of an agent in an offspring’s probabilistic reason-
ing introduces new complications, most of which remain unresolved.

The expectation of utility E[U ], conditional on an action bi being performed,
is often defined in terms of an outcome variable ok ∈ Outcome and probability
distribution P as:48

E[U ] ,
∑

ok∈Outcome

U(ok)P (ok| b̄i). (7.1)

The most straightforward analogue of logical satisficing, as previously used
in Aα, is expected utility satisficing. (Maximization would introduce even more
difficulties; see section 8 below.) E.g., A0 might act only when it expects its
action to lead to expected utility greater than (arbitrarily) $20, and we might
be tempted to write this as the problematic formula:

b̄i ⇒ A0  E[U | b̄i] > $20 (7.2)

As we remarked in section 5.2, the introduction of expected utility and its
conditioning formula lead to basic difficulties with the Aα formalism because
probabilistic reasoning is not monotonic. If we prove by logic that b̄i → G there

48. In standard causal decision theory (Joyce 1999; Pearl 2000), the expectation of utility would
be written using the counterfactual conditional:

E[U ] ,
∑

ok∈Outcome

U(ok)P (b̄i� ok).

In timeless / updateless / logical decision theory (Altair 2013; LaVictoire et al. 2013):

Q = arg max
bi∈Acts

∑
ok∈Outcome

U(ok)P ((evaldQe = b̄i)� ok).

Since we do not properly consider such issues here, we shall (as do most non-foundational works)
write the expected utility formula using the classical conditioning operation P (ok| b̄i) of evidential
decision theory, which decision theorists almost universally agree to be wrong.
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can be no further fact Γ such that (b̄i ∧Γ) → ¬G (unless of course the addition
of Γ is inconsistent). However if P (G | b̄i) > 0.9 there is no rule that therefore
P (G | (b̄i ∧ Γ)) > 0.9 for every further fact Γ, likewise E[U | b̄i] > $20 does not
imply E[U | b̄i ∧ Γ] > $20.

Suppose A1, which desires E[U ] > $20 in all non-∅ cases, approves of any A0

with the decision criterion (7.2) above, considering such an A0 safe regardless
of how its actions are suggested by an untrusted component Σ0. Suppose also
that the action b̄2 yields $50 if the coin θ came up heads (θH) and $10 otherwise
(θT ). If θ is unknown and is assigned probability 50% then E[U | b̄2] = $25.
But suppose that Σ0 manages to learn the true value of θ and only suggests
the action b̄2 in cases where it knows θT . Then observing that the offspring has
proven A0  E[U | b̄i] > $20 is not adequate reason to trust that, if it acts, it
will achieve expected utility greater than $20.49

It may be objected that since, in this case, A0 only takes the action b2
in cases where θT , the true probability distribution would have P (θT | b̄2) = 1
and A0 should evaluate E[U | b̄2] accordingly. This raises questions of evidential
versus causal decision theory which we lack space to address here. We remark
that if A0, evaluating its probability distribution P , finds that this probability
distribution already assigns probability 1 to action b2 and probability 0 to
all other actions (the “true” probability distribution in cases where b̄2) then
A0 would seem to know its own action before it decides (indeed, prior to its
computation of expected utilities); and if A1 also possesses axioms implying
this “true” P then it must know its offspring’s exact action which violates the
Vingean principle. Furthermore, conditioning on all actions except b2 would
then require conditioning on a zero probability with undefined results.50

We do not have good solutions for these issues, but felt that we ought to offer
an unsatisfactory version of the formalism so that there would be something in
place to improve upon.

To avoid the complexities of reasoning about probabilistic program execu-
tion, we supposed the environment could be divided into a near-deterministic
part (the “environmental transistors”; the analogue of a human-made CPU
constructed to have almost perfectly deterministic causal paths, crisp variable
states and crisp relations) and a probabilistic part X, which is the subject of
the probability function P (X).

We suppose X to be a joint function of variables xl obeying the usual fac-

49. The form of your theorem demanded an action such that, conditioned on knowledge of only
that action, expected utility would be greater than 20; you did not ask for an action conditioned on
all the knowledge available to the component which suggested that action. You get no more than
what you pay for; or in this case, no more than what you prove.

50. An analogous problem potentially arises if A0 ever proves that it does not perform some
particular action, Axm0 ` ¬b̄i. Any conclusion would then follow from the contradictory hypothesis
b̄i, thus Axm0 ` b̄i → (∅ ∨ G). With valid reasoning on true axioms this should never occur (we
should not prove ¬b̄i and then do bi) but it is potentially a concern when trying to build systems
which bypass the Löbian obstacle. It is ordinarily Gödel’s Theorem which prevents a system from
concluding that it will never prove some theorem (such as the theorem b̄i → (∅ ∨ G)).
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torization for causal models (Pearl 2000):

P (X) =
∏
xl∈X

P (xl | pal), (7.3)

where for each variable xl, pal is a possibly empty list of the immediate causal
ancestors of xl. Thus the joint probability distribution P (X) factorizes into
local rules governing the probability of each node xl given its parent causes, if
any.

We then axiomatize A1’s knowledge of P (X) in a way that leaves some
parentless xl with unspecified probabilities; any causal descendants of these
variables will have probabilities unquantified by A1. One of these variables will
be A0’s action and thus A1 will not precompute a probability of A0’s action.
We will also need to leave unspecified all sensor variables sk ∈ S. Collectively
the sensor variables and the motor action variable will constitute a kind of
Cartesian boundary between the deterministic world in which A0’s cognition
occurs, and the probabilistic world it wants to sense and affect.

We then mate deterministic reasoning to probabilistic reasoning via the
bridging axioms:51

A1 ∀sk ∈ S : s̄k → (P (s̄k) = 1) (7.4)
A1 ∀bi ∈ Acts0 : b̄i → (P (b̄i) = 1). (7.5)

A1 and A0’s criteria of action will be:

Ā0
j ⇒A1  Ā0

j → (∅ ∨ (E[U ] > $20)), (7.6)
b̄i ⇒A0  b̄i → (∅ ∨ (E[U ] > $20)), (7.7)

and let A1 prove a soundness schema (central trust lemma) over A0’s logical
beliefs as before. Then A1’s decision to create A0 is straightforward via:

A1  Ā0 → ∀bi : b̄i → (�0db̄i → (∅ ∨ E[U ] > $20)e), (7.8)
A1  �0db̄i → (∅ ∨ E[U ] > $20)e) → (b̄i → (∅ ∨ E[U ] > $20)), (7.9)
A1  (∀bi : ¬b̄i) → ∅, (7.10)
A1  Ā0 → (∅ ∨ E[U ] > $20). (7.11)

Suppose Axm0 incorporates standard probability axioms, and suppose that
A0 has observed all available sensor data sk representing all missing terms
of X except its action bi. Then A0 will be able to carry out an action with

51. The form of these axioms was suggested by Paul Christiano.
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E[U | s̄k ∧ b̄i] > $20, via:

A1  E[U |s̄k ∧ b̄i] > $20 (7.12)
A1  s̄k (7.13)
A1  P (s̄k) = 1 (7.14)
A1  b̄i → (P (b̄i) = 1) (7.15)
A1  (P (b̄i) = 1 ∧ P (s̄k) = 1) → (P (b̄i ∧ s̄k) = 1) (7.16)
A1  b̄i → (P (b̄i ∧ s̄k) = 1) (7.17)
A1  b̄i → (P (¬(b̄i ∧ s̄k)) = 0) (7.18)
A1  E[U ] = (E[U |b̄i ∧ s̄k]P (b̄i ∧ s̄k)) + (E[U |¬(b̄i ∧ s̄k)]P (¬(b̄i ∧ s̄k)))

(7.19)
A1  b̄i → (E[U ] = E[U |b̄i ∧ s̄k]) (7.20)
A1  b̄i → (E[U ] > $20) (7.21)

�

We confess this to be a moderately grotesque hack that fails almost en-
tirely to rise to the challenge of non-monotonic probabilistic reasoning. As
remarked, we included it only to serve as something that could be improved
upon. The argument above goes through only because, by assumption, ev-
ery possible variable correlated with U has been observed and so no further
probabilistic knowledge can be gained to invalidate the conclusion.

It also is not immediately obvious to us how to extend the above hack to
sensory observation of variables with causal parents. In usual practice, sensors
observe the causal descendants of variables of interest—e.g., the light reflecting
from an object takes on a pattern caused by that object; the observed photons
are causal descendants of the event of their reflection. Being unable to represent
the standard idiom of evidence in Bayesian networks is a very severe defect.52

Similarly it seems to us that it should be possible to compute the proba-
bility of evidence before observing it, since this practice is central to Bayesian
probability. In the formalism as it stands, being able to assign a prior proba-
bility to any evidential variable would produce a logical contradiction after a
sensory event added the conclusion that the probability was 1.

We suspect that there ought to be some much more general schema of
trust in probabilistic soundness of a successor agent, possibly invoking explicit
reasoning about probability measures in the same way that we previously in-
troduced set theory as a backdrop to general reasoning about semantic truth,
or using some probabilistic trust schema such as possibly:

Pα(φ ∧ (Aβ  pPβ(φ) = pq)) = p · Pα(Aβ  pPβ(φ) = pq). (7.22)

Such work remains in progress, however, and in general the problem of
self-modification in probabilistic agents remains wide open.

52. We suspect that this desideratum might be satisfiable by some very simple technical method
we have not yet invented as of this report.
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8 Bounded agents: Maximizing, satisficing,
and meliorizing

Expected utility is usually discussed in the context of expected utility max-
imization—choosing from among the actions in a set the action with highest
expected utility. We did not attempt to frame our probabilistic agent that
way, because introducing the notion of maximization creates new challenges to
tiling, separate from the challenges of probability. I.e., suppose that we are in a
deterministic environment, creating offspring which will have various possible
sensors, various possible ranges of action, and whose actions (given the value of
background variables) deterministically score various utilities. We could possi-
bly adapt the logical goal G to state some version of the highest possible score
being achieved, with the successor otherwise allowing a ∅ outcome. However,
to properly rise to the challenge of maximization would imply creating the suc-
cessor A0

j which, of those options Acts1 available to you, would lead to the best
score you could’ve received, after A0

j tries to maximize its own score. It was not
obvious to us how to make the proof of such a tiling go through. It is also not
obvious to us that this is the correct problem on which to spend effort, since,
in real-world environments, achieving the maximum possible expected utility is
impossible for all but the simplest problems.

Maximization in full generality requires correctly assessing the score (ex-
pected utility) of every action in order to guarantee that we choose the best;
this is what renders, e.g., optimal chess intractable. Satisficing is more realistic
for bounded agents, in this sense, because we only need to evaluate the expected
utility of a single action in order to have our decision criterion E[U ] > 20 go
through. (Likewise, establishing some partially uncertain, probabilistic expec-
tation of utility is more realistic than correctly predicting an exact outcome
or score.) But to seriously consider satisficing as the foundation of a useful
rational agent, or sufficiently advanced self-improving intelligence, would come
with its own set of problems. Suppose the lower bound is set at $2 · 1015 utility
in whatever measure, and the agent realizes that a certain plan will ensure a
minimum expected utility of $1016. Then as we have defined the agent’s goals,
it satisfices to randomize between a 30% probability of implementing this plan,
a 60% probability of doing something which leads to expected utility $0, and
a 10% probability of doing something with expected disutility −$1016. This is
probably not the sort of behavior we wanted.53

Schmidhuber’s “Gödel machine” (2007)54 introduced the interesting sugges-
tion of a swapping criterion of action: The “Gödel machine” would change its
own source code if it could prove that the action of changing its source code had
a higher expected utilty than keeping its current source code. (No criterion for
external motor actions was introduced, but arguendo the Gödel machine would
soon choose to add one.) One of the participants at the April 2013 MIRI work-

53. You get what you pay for, no more than you asked for, and exactly what you proved.
54. Schmidhuber (2007) could easily be considered a spiritual forerunner of the present work.
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shop suggested dubbing this a “meliorizing” criterion of action, since it is meant
to make things steadily better (repeatedly swap in plans, or successors, with
higher expected utility). Furthermore, since meliorizing requires considering
only two courses of action—the current plan, and the new plan—it may be
suitable for a boundedly rational agent.

In contrast to the suggestion in section 4 of Schmidhuber (2007) it is not ob-
vious that the criterion, “Swap if expected utility of the new program is higher”
is a guarantee of “global optimality,” which Schmidhuber suggested would be
the result of each considered swap taking into account the possibility of other,
better swaps if the current program were left undisturbed. Even considering
expected utility rather than utility, most expectations that can be computed
over some series of branches will not locate the point of highest expected value
in the space, unless expectations are unusually smooth or the suggested series
of changes is especially good. E.g., the problem at hand could easily have an
NP-hard optimal solution (while still having good non-optimal solutions which
could be steadily improved). But the question of “global optimality” is probably
not the most important concern, since literal global optimality in the sense of
trying to solve NP-hard problems should not be the key research desideratum.

It is likewise not obvious to us that “meliorizing” is sufficient to produce sat-
isfactory behavior with respect to a builder’s programmed set of goals. Suppose
a sufficiently advanced machine intelligence, built according to this criterion,
discovered that an asteroid was headed toward Earth and would shortly kill
7 billion people, with its current plan not preventing it. Under the strict cri-
terion of meliorizing as written, it would make sense to swap to a program
that promised to save 1,000 people, let all the others die, and make no further
improvements, since this would still be better than not swapping. According
to the line of argument in section 4 of Schmidhuber (2007), the agent ought to
consider that it would be better to keep the previous program and wait for it
to generate a better alternative. But this relies on some particular sequence
of suggestions being generated such that a better alternative is considered at
some point; moreover, that the agent probabilistically expects that such a bet-
ter alternative will be generated if it keeps its current program, in advance of
considering the actual alternative (which the Vingean principle says we cannot
always do at the earlier decision point). Thus if a meliorizing criterion is ulti-
mately satisfactory, it will be due to other properties of the series of suggestions
being considered, and the way in which expectations of old and new programs
are evaluated, which have not been specified into the “swapping” rule itself.

But expected utility satisficing is not satisfactory at all, and is probably not
repairable; and maximizing is only possible for the best imaginable agents, not
the agents that will actually exist; whereas it might be that meliorizing can
somehow be improved upon. More generally, we have discussed maximizing,
satisficing, and meliorizing in order to make the point that when it comes to
bounded, probabilistic rational agents that are meant to pursue their goals in
some “reasonable” way and build descendants who do the same (equivalently
self-improve), we are not able to presently state—even on the highest possible
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level of generality such as “satisficing” or “meliorizing”—what sort of criterion
of action might be suitable. The problem is very wide open indeed.
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