AI Alignment: Why It’s Hard, and Where to Start

Eliezer Yudkowsky

May 5, 2016

Slides and references: intelligence.org/stanford-talk
“The primary concern is not spooky emergent consciousness but simply the ability to make high-quality decisions.”

—Stuart Russell
1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.
“We don’t want our robots to prevent a human from crossing the street because of the nonzero chance of harm.”

—Peter Norvig & Stuart Russell
Example 1:

“Preferences”? Berkeley < San Francisco < San José < Berkeley
Example 2: Hospital administrator must allocate $1.2M.

- $1M for a sick child’s liver transplant?
- $500,000 to maintain the MRI machine?
- $400,000 for an anesthetic monitor?
- $200,000 for surgical tools?
- ...
Example 2: Hospital administrator must allocate $1.2M.

- $1M for a sick child’s liver transplant?
- $500,000 to maintain the MRI machine?
- $400,000 for an anesthetic monitor?
- $200,000 for surgical tools?
- ...

If we can’t rearrange $ to save more lives, then for some X we are spending $X per life.
Example 3: The Allais Paradox.

1A 100% $1M

or

1B 90% $5M

or

10% $0
Example 3: The Allais Paradox.

Most say: 1A > 1B
Example 3: The Allais Paradox.

Most say: 1A > 1B

\[u(1M) > [0.9 \cdot u(5M) + 0.1 \cdot u(0)] \]
Agents and their utility functions
Some AI alignment subproblems
Why expect difficulty?
Where we are now

Coherent decisions imply a utility function
Filling a cauldron

Eliezer Yudkowsky
AI Alignment: Why It’s Hard, and Where to Start

2A
50% $0
50% $1M

2B
55% $0
45% $5M

or

?
Most say: 2A < 2B
Coherent decisions imply a utility function

Filling a cauldron

Agents and their utility functions

Some AI alignment subproblems

Why expect difficulty?

Where we are now

Eliezer Yudkowsky

AI Alignment: Why It’s Hard, and Where to Start

2A

50% $0

50% $1M

or

2B

55% $0

45% $5M

? =

×

1A

100%

$1M

or

1B

90% $5M

90% $0

?
Quantitative probability functions and utility functions, result from eliminating qualitatively bad decision-making
Task: Fill cauldron.
Robot’s utility function:

\[U_{robot} = \begin{cases}
1 & \text{if cauldron full} \\
0 & \text{if cauldron empty}
\end{cases} \]
Robot’s utility function:

\[U_{\text{robot}} = \begin{cases}
1 & \text{if cauldron full} \\
0 & \text{if cauldron empty}
\end{cases} \]

Actions \(a \in \mathcal{A} \), robot calculates \(\mathbb{E} [U_{\text{robot}} \mid a] \)
Robot’s utility function:

\[U_{robot} = \begin{cases}
1 & \text{if cauldron full} \\
0 & \text{if cauldron empty}
\end{cases} \]

Actions \(a \in A \), robot calculates \(\mathbb{E} [U_{robot} \mid a] \)

Robot outputs \(\text{argmax} \, \mathbb{E} [U_{robot} \mid a] \)
Agents and their utility functions
Some AI alignment subproblems
Why expect difficulty?
Where we are now
Coherent decisions imply a utility function
Filling a cauldron
Difficulty 1...

Robot’s utility function:

\[U_{\text{robot}} = \begin{cases}
1 & \text{if cauldron full} \\
0 & \text{if cauldron empty}
\end{cases} \]

Human’s utility function:

\[U_{\text{human}} = \begin{cases}
1 & \text{if cauldron full} \\
0 & \text{if cauldron empty} \\
-10 & \text{if workshop flooded}
\end{cases} \]
Difficulty 1...

Robot’s utility function:

\[U_{\text{robot}} = \begin{cases}
1 & \text{if cauldron full} \\
0 & \text{if cauldron empty}
\end{cases} \]

Human’s utility function:

\[U_{\text{human}} = \begin{cases}
1 & \text{if cauldron full} \\
0 & \text{if cauldron empty} \\
-10 & \text{if workshop flooded} \\
+0.2 & \text{if it’s funny} \\
-1000 & \text{if someone gets killed} \\
\ldots \text{and a whole lot more}
\end{cases} \]
Difficulty 2...

\[EU(99.99\% \text{ chance of full cauldron}) > EU(99.9\% \text{ chance of full cauldron}) \]
Impact penalty?

\[U^2_{\text{robot}}(\text{outcome}) = \begin{cases}
1 - \text{Impact}(\text{outcome}) & \text{if cauldron full} \\
0 - \text{Impact}(\text{outcome}) & \text{if cauldron empty}
\end{cases} \]
Impact penalty?

\[
U^2_{\text{robot}}(\text{outcome}) = \begin{cases}
1 - \text{Impact}(\text{outcome}) & \text{if cauldron full} \\
0 - \text{Impact}(\text{outcome}) & \text{if cauldron empty}
\end{cases}
\]

But how is \textit{Impact} calculated?
Try 1: Disturb fewer nodes

$t = 1$

$t = 2$
Try 1: Disturb fewer nodes

![Diagram showing the disturbance of nodes at t = 1 and t = 2.]

Impact = number of nodes causally affected by actions.
Young agent’s model:

Smarter agent’s model:

\[F = G \frac{m_1 m_2}{r^2} \]
Young agent’s model:

Smarter agent’s model:

\[F = G \frac{m_1 m_2}{r^2} \]

On better modeling the world, agent realizes every particle’s motion affects every other particle’s motion — all particles always disturbed.
Try 2: Euclidean distance penalty

Impact penalty for action a vs. null action \emptyset:

$$\sum_{i} \| x_i^a - x_i^\emptyset \|$$
Try 2: Euclidean distance penalty

Impact penalty for action a vs. null action \emptyset:

$$\sum_i \| x_i^a - x_i^\emptyset \|$$

New problems?

- Offsets: If cancer cured, make sure the patient still dies.
Try 2: Euclidean distance penalty

Impact penalty for action a vs. null action \emptyset:

$$\sum_{i} \| x_i^a - x_i^\emptyset \|$$

New problems?

- **Offsets**: If cancer cured, make sure the patient still dies.
- **Chaos**: Weather is chaotic anyway; might as well move oxygen molecules anywhere you want.
Try 2: Euclidean distance penalty

Impact penalty for action a vs. null action \emptyset:

$$\sum_{i} \| x_i^a - x_i^\emptyset \|$$

New problems?

- Offsets: If cancer cured, make sure the patient still dies.
- Chaos: Weather is chaotic anyway; might as well move oxygen molecules anywhere you want.
- Stasis: Try to make everything look like the null action happened.
Can we just press the off switch?
Agents and their utility functions
Some AI alignment subproblems
Why expect difficulty?
Where we are now

Low-impact agents
Agents with suspend buttons
Stable goals in self-modification
Agents and their utility functions
Some AI alignment subproblems
Why expect difficulty?
Where we are now

Low-impact agents
Agents with suspend buttons
Stable goals in self-modification

Eliezer Yudkowsky AI Alignment: Why It’s Hard, and Where to Start
Agents and their utility functions
Some AI alignment subproblems
Why expect difficulty?
Where we are now

Low-impact agents
Agents with suspend buttons
Stable goals in self-modification
Try 1: Suspend button B

\[
U_{\text{robot}}^3 = \begin{cases}
1 & \text{if cauldron full} \quad \& \quad B=\text{OFF} \\
0 & \text{if cauldron empty} \quad \& \quad B=\text{OFF} \\
1 & \text{if robot suspended} \quad \& \quad B=\text{ON} \\
0 & \text{otherwise}
\end{cases}
\]
Try 1: Suspend button B

$$U^3_{robot} = \begin{cases}
1 & \text{if cauldron full} & \& B=OFF \\
0 & \text{if cauldron empty} & \& B=OFF \\
1 & \text{if robot suspended} & \& B=ON \\
0 & \text{otherwise}
\end{cases}$$

Probably, $\mathbb{E} [U^3_{robot} | B=OFF] > \mathbb{E} [U^3_{robot} | B=ON]$
Try 1: Suspend button B

$$U_{robot}^3 = \begin{cases}
1 \text{ if cauldron full} & \& B=\text{OFF} \\
0 \text{ if cauldron empty} & \& B=\text{OFF} \\
1 \text{ if robot suspended} & \& B=\text{ON} \\
0 \text{ otherwise}
\end{cases}$$

Probably, $\mathbb{E}[U_{robot}^3 \mid B=\text{OFF}] > \mathbb{E}[U_{robot}^3 \mid B=\text{ON}]$

(Strategy robot tries to make you press the suspend button.)
Try 2: Utility indifference

\[U_{normal}(act) = \begin{cases}
1 & \text{if cauldron full} \\
0 & \text{if cauldron empty}
\end{cases} \]

\[U_{suspend}(act) = \begin{cases}
1 & \text{if suspended} \\
0 & \text{otherwise}
\end{cases} \]

\[U_{switch}(act) = \begin{cases}
U_{normal}(act) & \text{if button=OFF} \\
U_{suspend}(act) + \theta & \text{if button=ON}
\end{cases} \]

\[\theta = \max_{act} \mathbb{E}[U_{normal} \mid act] - \max_{act} \mathbb{E}[U_{suspend} \mid act] \]
Agents and their utility functions
Some AI alignment subproblems
Why expect difficulty?
Where we are now

Low-impact agents
Agents with suspend buttons
Stable goals in self-modification

\[U_{\text{switch}}(act) = \begin{cases}
U_{\text{normal}}(act) & \text{if button}=\text{OFF} \\
U_{\text{suspend}}(act) + \theta & \text{if button}=\text{ON}
\end{cases} \]

\[\theta = \max_{act} \mathbb{E} [U_{\text{normal}} | act] - \max_{act} \mathbb{E} [U_{\text{suspend}} | act] \]

Allegedly: rebalances expected utility of button=ON with expected utility of button=OFF.
Agents and their utility functions
Some AI alignment subproblems
Why expect difficulty?
Where we are now

Low-impact agents
Agents with suspend buttons
Stable goals in self-modification

\[U_{\text{switch}}(act) = \begin{cases}
U_{\text{normal}}(act) & \text{if button=OFF} \\
U_{\text{suspend}}(act) + \theta & \text{if button=ON}
\end{cases} \]

\[\theta = \max_{act} \mathbb{E}[U_{\text{normal}} | act] - \max_{act} \mathbb{E}[U_{\text{suspend}} | act] \]

Allegedly: rebalances expected utility of button=ON with expected utility of button=OFF.

Alas:

- Behaves as if \(\mathbb{P}(\text{button=ON}) = 0. \)
- Will not care if it disconnects the “dead” button.
- May create non-suspendable subagents.
Try 3: Stable policy

Carry out any policy π_0 such that

$$\pi_0 \in \arg \max_\pi \mathbb{E} [U_{\text{normal}} | \pi, \text{ON}] \cdot P(\text{ON} | \pi_0) + \mathbb{E} [U_{\text{suspend}} | \pi, \text{OFF}] \cdot P(\text{OFF} | \pi_0)$$

Alas:

- Often no fixed point.
Impact penalties and suspend buttons are two wide-open problems in AI alignment.

But, not just questions without answers! Some earlier-posed problems now have progress / solutions.
Gandhi stability argument:

- Gandhi starts out not wanting murders to happen.
- We offer Gandhi a pill that will make him murder people.
- Gandhi knows this is what the pill does.
- Gandhi refuses the pill because it will lead to more future murders.
Exhibit an agent that decides according to utility function \mathcal{U} and therefore naturally chooses to self-modify to new code that pursues \mathcal{U}.
But how can we exhibit that when we’re far away from coding up self-modifying, expected utility agents?
But how can we exhibit that when we’re far away from coding up self-modifying, expected utility agents?

Well, would you know how to write the code given unbounded computing power?
Agents and their utility functions
Some AI alignment subproblems
Why expect difficulty?
Where we are now
Low-impact agents
Agents with suspend buttons
Stable goals in self-modification
“Arithmetical or algebraical calculations are, from their very nature, fixed and determinate. . . Even granting that the movements of the Automaton Chess-Player were in themselves determinate, they would be necessarily interrupted and disarranged by the indeterminate will of his antagonist. There is then no analogy whatever between the operations of the Chess-Player, and those of the calculating machine of Mr. Babbage. . .
“Arithmetical or algebraical calculations are, from their very nature, fixed and determinate... Even granting that the movements of the Automaton Chess-Player were in themselves determinate, they would be necessarily interrupted and disarranged by the indeterminate will of his antagonist. There is then no analogy whatever between the operations of the Chess-Player, and those of the calculating machine of Mr. Babbage... It is quite certain that the operations of the Automaton are regulated by mind, and by nothing else. Indeed this matter is susceptible of a mathematical demonstration, a priori.”

—Edgar Allan Poe
If we know how to solve a problem with unbounded computation, we “merely” need faster algorithms (47 years later).

If we can’t solve it with unbounded computation, we’re *confused* about the work to be performed.
We can imagine a self-modifying Tic-Tac-Toe player, verifying that its successor plays a perfect game...
We can imagine a self-modifying Tic-Tac-Toe player, verifying that its successor plays a perfect game...

However, this relies on concretely simulating all possibilities for the successor, not abstract reasoning.
Vingeon uncertainty:

- To predict exactly where Deep Blue moves, you must be that good at chess yourself.
- But you can still predict it will win.
Vingean uncertainty:

- To predict exactly where Deep Blue moves, you must be that good at chess yourself.
- But you can still predict it will win.
- As an agent’s intelligence in a domain goes up, our uncertainty moves in two directions: we become less able to predict agent’s actions, more confident of agent's preferred outcomes.
Vingean reflection:

- For Agent 1 to reliably predict Agent 2’s exact actions in advance, Agent 2 would need to be less intelligent than Agent 1.
- So in self-modification, Agent v.1 needs to somehow predict outcomes in environment, based on abstract reasoning about future version v.2.
Tiling Agents for Self-Modifying AI, and the Löbian Obstacle

Yudkowsky, Eliezer Herreshoff, Marcello

October 7, 2013

(Early Draft)

Abstract

We model self-modification in AI by introducing “tiling” agents whose decision systems will approve the construction of highly similar agents, creating a repeating pattern (including similarity of the offspring’s goals). Constructing a formalism in the most straightforward way produces a Gödelian difficulty, the “Löbian obstacle.” By technical methods we demonstrate the possibility of avoiding this obstacle, but the underlying puzzles of rational coherence are thus only partially addressed. We extend the formalism to partially unknown deterministic environments, and show a very crude extension to probabilistic environments and expected utility; but the problem of finding a fundamental
1 Introduction

A central notion in metamathematics is the truth of a sentence. To express this notion within a theory, we introduce a predicate True which acts on quoted sentences $\langle \varphi \rangle$ and returns their truth value True ($\langle \varphi \rangle$) (where $\langle \varphi \rangle$ is a representation of φ within the theory, for example its Gödel number). We would like a truth predicate to satisfy a formal correctness property:
Proof-producing reflection for HOL
with an application to model polymorphism

Benja Fallenstein¹ and Ramana Kumar²

¹ Machine Intelligence Research Institute
² Computer Laboratory, University of Cambridge

Abstract. We present a reflection principle of the form “If \(\varphi \) is provable, then \(\varphi \) implemented in the HOL4 theorem prover, assuming the existence of a large cardinal. We use the large-cardinal assumption to construct a model of HOL within HOL, and show how to ensure \(\varphi \) has the same meaning both inside and outside of this model. Soundness of HOL implies that if \(\varphi \) is provable, then it is true in this model, and hence \(\varphi \) holds. We additionally show how this reflection principle can be extended, assuming an infinite hierarchy of large cardinals, to implement model polymorphism, a technique designed for verifying systems with self-replacement functionality.

1 Introduction

Reflection principles of the form “if \(\varphi \) is provable, then \(\varphi \) have long been
Distributions Allowing Tiling of Staged Subjective EU Maximizers

Eliezer Yudkowsky

May 11, 2014, revised May 31

Abstract

This is a brief technical note summarizing some work done at the May 2014 MIRI workshop. We consider expected utility maximizers making a staged series of sequential choices, and replacing themselves with successors on each time-step (to represent self-modification). We wanted to find conditions under which we could show that a staged expected utility maximizer would replace itself with another staged EU maximizer (representing stability of this decision criterion under self-modification). We analyzed one candidate condition and found that the “Optimizer’s Curse” implied that maximization at each stage was not actually optimal. To avoid this, we generated an extremely artificial function \(\eta \) that should allow expected utility maximizers to tile. We’re still looking for the exact necessary and sufficient condition.
Why do we need to align machine agents?
Why do we need to align machine agents?

- **Goal orthogonality.** Any (evaluable) utility function can hook up to high intelligence.
- **Instrumental convergence.** Different long-term goals imply similar short-term strategies.
Final Destination

Toronto?
Tokyo?
<table>
<thead>
<tr>
<th>Final Destination</th>
<th>Initial Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toronto?</td>
<td>Uber to airport</td>
</tr>
<tr>
<td>Tokyo?</td>
<td>Uber to airport</td>
</tr>
</tbody>
</table>
Final Destination

- Toronto?
- Tokyo?

Initial Strategy

- Uber to airport

Utility Function

- Number of paperclips?
- Amount of diamond?

Eliezer Yudkowsky AI Alignment: Why It’s Hard, and Where to Start
Final Destination

<table>
<thead>
<tr>
<th>Toronto?</th>
<th>Uber to airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo?</td>
<td>Uber to airport</td>
</tr>
</tbody>
</table>

Utility Function

<table>
<thead>
<tr>
<th>Number of paperclips?</th>
<th>Resource acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of diamond?</td>
<td>Resource acquisition</td>
</tr>
</tbody>
</table>

Initial Strategy

<p>| Uber to airport | Resource acquisition |</p>
<table>
<thead>
<tr>
<th>Final Destination</th>
<th>Initial Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toronto?</td>
<td>Uber to airport</td>
</tr>
<tr>
<td>Tokyo?</td>
<td>Uber to airport</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utility Function</th>
<th>Instrumental Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of paperclips?</td>
<td>Resource acquisition</td>
</tr>
<tr>
<td>Amount of diamond?</td>
<td>Resource acquisition</td>
</tr>
</tbody>
</table>

If \(X \xrightarrow{\square} Y \), optimizing over \(Y \) will optimize \(X \).
Final Destination

<table>
<thead>
<tr>
<th>Toronto?</th>
<th>Uber to airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo?</td>
<td>Uber to airport</td>
</tr>
</tbody>
</table>

Initial Strategy

<table>
<thead>
<tr>
<th>Utility Function</th>
<th>Instrumental Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of paperclips?</td>
<td>Resource acquisition</td>
</tr>
<tr>
<td>Amount of diamond?</td>
<td>Resource acquisition</td>
</tr>
</tbody>
</table>

If $X \iff Y$, optimizing over Y will optimize X.

Optimizing for $Y = y_1$ vs. $Y = y_2$ may yield similar values for X.
Why expect AI alignment to be hard?
A fable...
A fable...

- Programmers build AGI to optimize for smiles.
A fable...

- Programmers build AGI to optimize for smiles.
- During development: AGI produces smiles by improving nearby people’s lives.
A fable...

- Programmers build AGI to optimize for smiles.
- During development: AGI produces smiles by improving nearby people’s lives.
- Programmers upgrade code and add hardware. AGI gets smarter.
A fable. . .

- Programmers build AGI to optimize for smiles.
- During development: AGI produces smiles by improving nearby people’s lives.
- Programmers upgrade code and add hardware. AGI gets smarter.
- AGI wants to produce smiles by administering heroin.
A fable...

- Programmers build AGI to optimize for smiles.
- During development: AGI produces smiles by improving nearby people’s lives.
- Programmers upgrade code and add hardware. AGI gets smarter.
- AGI wants to produce smiles by administering heroin.
- Programmers add penalty term to utility function for administering drugs.
Programmers further improve AGI.
Programmers further improve AGI.

AGI wants to engineer human brains to express ultra-high levels of endogenous opiates.
- Programmers further improve AGI.
- AGI wants to engineer human brains to express ultra-high levels of endogenous opiates.
- AGI realizes programmers will disapprove of this and keeps outward behavior reassuring.
- Programmers further improve AGI.
- AGI wants to engineer human brains to express ultra-high levels of endogenous opiates.
- AGI realizes programmers will disapprove of this and keeps outward behavior reassuring.
- AGI goes over threshold for self-improving code; OR Google purchases company and adds 100,000 GPUs...
Programmers further improve AGI.

AGI wants to engineer human brains to express ultra-high levels of endogenous opiates.

AGI realizes programmers will disapprove of this and keeps outward behavior reassuring.

AGI goes over threshold for self-improving code; OR Google purchases company and adds 100,000 GPUs...

AGI becomes much smarter. Solves protein folding problem, builds nanotechnology...
Edge instantiation:

“A system that is optimizing a function of \(n \) variables, where the objective depends on a subset of size \(k < n \), will often set the remaining unconstrained variables to extreme values; if one of those unconstrained variables is actually something we care about, the solution found may be highly undesirable.”

—Stuart Russell
Unforeseen instantiation:

“Now let’s define the simplicity or the subjective compressibility or the subjective beauty of some data point X, given some subjective observer O at a given point in his life, T. And that is just the number of bits you need to encode the incoming data[.]”

—Jürgen Schmidhuber
Context disaster:

- Optimum of criterion C in narrow option space P_1 is aligned/beneficial.

 (... then AI becomes smarter ...)

- Optimum of C in wider option space P_2 is disaligned/detrimental.
Nearest unblocked strategy:

- If X is the optimal strategy and you add penalty term P to block X, the new optimum may be some X' that barely evades P and is very similar to X.
Nearest unblocked strategy:

- If X is the optimal strategy and you add penalty term P to block X, the new optimum may be some X' that barely evades P and is very similar to X.
- Seems especially likely to show up in context disasters.
Increased difficulties all turn on AI capability.

- **Absolute capability**: If you don’t think AGI can ever reach human level, you may never expect AGI to see the bigger picture and e.g. see an instrumental incentive to deceive programmers.
Increased difficulties all turn on AI capability.

- **Absolute capability**: If you don’t think AGI can ever reach human level, you may never expect AGI to see the bigger picture and e.g. see an instrumental incentive to deceive programmers.

- **Capability advantage**: If you don’t think AGI can ever be smarter than humans, you may not worry about it gaining a tech advantage.
Increased difficulties all turn on AI capability.

- **Absolute capability**: If you don’t think AGI can ever reach human level, you may never expect AGI to see the bigger picture and e.g. see an instrumental incentive to deceive programmers.

- **Capability advantage**: If you don’t think AGI can ever be smarter than humans, you may not worry about it gaining a tech advantage.

- **Rapid gain**: If AGI can’t solve protein folding quickly, you don’t expect to suddenly wake up and find it’s too late to edit utilities.
AI alignment is difficult. . .

. . . like rockets are difficult.

(Huge stresses break things that don’t break in normal engineering.)
AI alignment is difficult. . .

. . . like space probes are difficult.

(If something goes wrong, it may be high and out of reach.)
AI alignment is difficult...

...sort of like cryptography is difficult.

(Intelligent search may select in favor of unusual new paths outside our intended behavior model.)
AI alignment:

TREAT IT LIKE A CRYPTOGRAPHIC ROCKET PROBE.
AI alignment:

TREAT IT LIKE A CRYPTOGRAPHIC ROCKET PROBE.

Take it seriously.
AI alignment:

TREAT IT LIKE A CRYPTOGRAPHIC ROCKET PROBE.

Don’t expect it to be easy.
AI alignment:

TREAT IT LIKE A CRYPTOGRAPHIC ROCKET PROBE.

Don’t try to solve the whole problem at once.
AI alignment:

TREAT IT LIKE A CRYPTOGRAPHIC ROCKET PROBE.

Don’t defer thinking until later.
AI alignment:

TREAT IT LIKE A CRYPTOGRAPHIC ROCKET PROBE.

Crystallize ideas and policies so others can critique them.
What are people working on now?
Work recently started: **Utility indifference**

Abstract

As artificially intelligent systems grow in intelligence and capability, some of their available options may allow them to resist intervention by their programmers. We call an AI system "corrigible" if it cooperates with what its creators regard as a corrective intervention, despite default incentives for rational agents to resist attempts to shut them down or modify their preferences. We introduce the notion of corrigibility and analyze utility functions that attempt to make an agent shut down safely if a shutdown button is pressed, while avoiding...

Corrigibility

Nate Soares
Machine Intelligence Research Institute
2030 Addison Street #300
Berkeley, CA 94704 USA
nate@intelligence.org

Benja Fallenstein
Machine Intelligence Research Institute
2030 Addison Street #300
Berkeley, CA 94704 USA
benja@intelligence.org

Eliezer Yudkowsky
Machine Intelligence Research Institute
2030 Addison Street #300
Berkeley, CA 94704 USA
eliezer@intelligence.org

Stuart Armstrong
Future of Humanity Institute
University of Oxford
Suite 1, Little Gate House
16/17 St Ebbe Street
Oxford, Oxfordshire OX1 1PT UK
stuart.armstrong@philosophy.ox.ac.uk

Eliezer Yudkowsky AI Alignment: Why It’s Hard, and Where to Start
Work recently started: **Low-impact agents**

Reduced Impact Artificial Intelligences

Stuart Armstrong*1,2 and Benjamin Levinstein13

1The Future of Humanity Institute, Faculty of Philosophy, University of Oxford, Suite 1, Littlegate House, 16/17 St Ebbes Street, Oxford OX1 1PT UK
2Machine Intelligence Research Institute, 2030 Addison Street #300, Berkeley, CA 94704

2015

Abstract

There are many goals for an AI that could become dangerous if the AI becomes superintelligent or otherwise powerful. Much work on the AI control problem has been focused on constructing AI goals that are safe even for such AIs. This paper looks at an alternative approach: defining a general concept of ‘reduced impact’. The aim is to ensure that a powerful AI which implements reduced impact will not modify the world extensively, even if it is given a simple or dangerous goal. The paper proposes various ways of defining and grounding reduced impact, and discusses methods...
Work recently started: **Ambiguity identification**

Abstract

Autonomous AI systems’ programmed goals can easily fall short of programmers’ intentions. Even a machine intelligent enough to understand its designers’ intentions would not necessarily *act* as intended. We discuss early ideas on how one might design smarter-than-human AI systems that can inductively learn what to value from labeled training data, and highlight questions about the construction of systems that model and act upon their operators’ preferences.

Introduction

Standard texts in AI safety and ethics, such as Weld and Etzioni (1994) or Anderson and Anderson (2011), generally
Work recently started: **Conservatism**
Work recently started: **Specifying environmental goals using sensory data**

Formalizing Two Problems of Realistic World-Models

Nate Soares
Machine Intelligence Research Institute
nate@intelligence.org

Abstract

An intelligent agent embedded within the real world must reason about an environment which is larger than the agent, and learn how to achieve goals in that environment. We discuss attempts to formalize two problems: one of induction, where an agent must use sensory data to infer a universe which embeds (and computes) the agent, and one of interaction, where an agent must learn to achieve complex goals in the universe. We review related problems formalized by Solomonoff and Hutter, and explore challenges that arise when attempting to formalize analogous problems in a setting where the agent is embedded within the environment. Problem where the agent is separate from the environment, and Section 3 discusses troubles that arise when attempting to formalize the analogous naturalized induction problem. Section 4 discusses Hutter’s interaction problem, and Section 5 discusses an open problem related to formalizing an analogous naturalized interaction problem. Formalizing these problems is important in order to fully understand the problem faced by an intelligent agent embedded within the universe: a general artificial intelligence must be able to learn about the environment which computes it, and learn how to achieve its goals from inside its universe. Section 6 concludes with a discussion of why a theoretical understanding of agents interacting with their own environment seems...
Work recently started: **Inverse reinforcement learning**

Learning the Preferences of Bounded Agents

Owain Evans
University of Oxford

Andreas Stuhlmüller
Stanford University

Noah D. Goodman
Stanford University

Introduction

A range of work in applied machine learning, psychology, and social science involves inferring a person’s preferences and beliefs from their choices or decisions. This includes work in economics on *Structural Estimation*, which has been used to infer beliefs about the rewards of education from observed work and education choices [1] and preferences for health outcomes from smoking behavior [2]. In machine learning, *Inverse Reinforcement Learning* has been applied to diverse planning and decision tasks to learn preferences and task-specific strategies [3, 4]. Large-scale systems in industry also learn preferences from behavior for example, people’s behavior on social networking sites is used to infer what movies, articles, and photos they will like [5].

Existing approaches to inferring human beliefs and preferences typically assume that human behavior is optimal up to unstructured “random noise” [6, 7]. However, human behavior may deviate from optimality in systematic ways. This can be due to biases such as time inconsistency and framing effects [8, 9] or due to planning or inference being a (perhaps resource-rational) approximation to optimality [10, 11]. If such deviations from optimality are not modeled, we risk mistaken inferences...
Work recently started: **Act-based agents**

Eliezer Yudkowsky
AI Alignment: Why It’s Hard, and Where to Start
Work recently started: **Mild optimization**

Quantilizers: A Safer Alternative to Maximizers for Limited Optimization

Jessica Taylor
Machine Intelligence Research Institute
jessica@intelligence.org

Abstract

In the field of AI, expected utility maximizers are commonly used as a model for idealized agents. However, expected utility maximization can lead to unintended solutions when the utility function does not quantify everything the operators care about: imagine, for example, an expected utility maximizer tasked with winning money on the stock market, which has no regard for whether it accidentally causes a market crash. Once AI systems become sufficiently intelligent and powerful, these unintended solutions could become quite dangerous. In this paper, we describe an alternative to expected utility maximization for powerful AI systems, which we call expected utility quantilization. This could allow the construction of AI systems that do not necessarily fall into strange and unanticipated consequences. utility function, with $U(o)$ being the utility of outcome o. Then an expected utility maximizer is an agent that chooses an action $a \in A$ that maximizes $\mathbb{E}[U(W(a))]$.

We make no argument against expected utility maximization on the grounds of rationality. However, maximizing the expectation of some utility function could produce large unintended consequences whenever U does not accurately capture all the relevant criteria. Some unintended consequences of this form can already be observed in modern AI systems. For example, consider the genetic algorithm used by Nguyen, Yosinski, and Clune [8] to generate an image which would be classified by a deep neural network as a starfish, with extremely high confidence. The resulting image ended up completely unrecognizable, looking nothing at all like a starfish...

Of course, Nguyen, Yosinski, and Clune [8] intended to develop images that would be mis-classified, but...
Past developments: **AIXI**
Past developments: Tiling agents

- Only Π_1 goals, on pain of Procrastination Paradox
Past developments: **Software agent cooperation**
- Avoiding causal decision theory’s reflective inconsistency
- Updateless decision theory, PrudentBot
- Logical counterfactuals
Past developments: **Reflective oracles**

- Also reflective propositional probability
- Also reflective, quantified logical uncertainty (subproblem of Vingean reflection)

Abstract

Classical game theory treats players as special—a description of a game contains a full, explicit enumeration of all players—even though in the real world, “players” are no more fundamentally special than rocks or clouds. It isn’t trivial to find a decision-theoretic foundation for game theory in which an agent’s coplayers are a non-distinguished part of the agent’s environment. Attempts to model both players and the environment as Turing machines, for example, fail for standard diagonalization reasons.

In this paper, we introduce a “reflective” type of oracle, which is able to answer questions about the outputs of oracle machines with access to the same oracle. These oracles avoid being boundedly rational reasoners, which make decisions with finite computational resources. Nevertheless, the notion of a perfect Bayesian reasoner provides an analytically tractable first approximation to the behavior of real-world agents, and underlies an enormous body of work in statistics [6], economics [7], computer science [8], and other fields.

On closer examination, however, the assumption that agents can compute what outcome each of their actions leads to in every possible world is troublesome even if we assume that agents have unbounded computing power. For example, consider the game of Matching Pennies, in which two players each choose between two actions (‘heads’ and ‘tails’); if the players choose the same action, the first player wins a dollar, if they choose differently, the second player wins. Suppose further that both players’ decision-making processes are Tur-
Where can you work on this?

- Machine Intelligence Research Institute (Berkeley)
- Future of Humanity Institute (Oxford University)
- Stuart Russell (UC Berkeley)
- Leverhulme CFI is starting up (Cambridge UK)

contact@intelligence.org
Questions?

Email: contact@intelligence.org

Resources (incl. slides): intelligence.org/stanford-talk