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Motivation

I “Probability” Over Logical Statements
I State of belief for a conjecture
I Guessing the outcome of a long computation

I P(“P=NP”) = 0.1?
I Measure of surprise on seeing (dis)proof?
I Measure of calibration on similar statements?

I P(“The 10100 digit of π is a 3”) = 0.1?
I Element of a pseudo-random sequence
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Motivation

I Standard probability theory requires logical omniscience[1]
I Coherence requires knowledge of all logical consequences

of current beliefs
I (eg: same probability on equivalent sentences)
I (can relax in some ways[2, 3])

I Other approaches converge to coherent distribution
eventually[4, 5]

I Generally not computable
I (see sections 1 and 2 of paper)

[1]: Parikh: Knowledge and the Problem of Logical Omniscience
[2]: Cozic: Impossible States at Work: Logical Omniscience and Rational Choice
[3]: Halpern and Pucella: Dealing with Logical Omniscience
[4]: Hutter et al: Probabilities on Sentences in an Expressive Logic
[5]: Demski: Logical Prior Probability.
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Operationalizing Pseudo-randomness in Logic

I Fix an enumeration of sentences, φ1, φ2, . . .

I Pick a finite time bound T (N) ≥ N
I Point to an infinite subset of logic with a Turing machine, Z :

S = {φi |Z halts within T (i) steps, pointing at a 1}

I “Pseudo-random” sentences are decidable, but in more
than T (N) steps

I ie, there is a binary sequence {bi} where

bi =

{
1 if the i th element of S is provable
0 if disprovable

I No simple Turing machine can predict {bi} with odds better
than chance after T(N) steps
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Operationalizing Pseudo-randomness in Logic

I More formally, for a given S and description length K (W ),
consider all Turing machines W :

I Run W with time limit of T (N) steps
I Interpret as selecting a subset of S :

S′ = {φi ∈ S|W halts within T (i) steps, pointing at a 1}

I “Empirical” frequency of provable sentences as a function
of sample size m:

r(m,W ) ≡
∣∣ {s ∈ smallest m elements of S′|φs is provable}

∣∣
m
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Irreducible Patterns

I The law of the iterated logarithm gives a bound that holds
almost surely for any random sequence, as a function of
sample size and the generating frequency p:

|r(m,W )− p| <
c · K (W ) ·

√
log log m√

m

I We call a set of decidable sentences to be an irreducible
pattern with respect to p and k = K (W ) if this bound holds
for all machines of description length k
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Example Irreducible Patterns

I We could construct a machine Z that chooses the
sentences {φi |“The f (i) digit of π is a 3"}

I (where f (i) grows faster than the best π-digit calculator can
manage)

I Conjecture: this is an irreducible pattern with p = 1/10

I Or,
{
φi |“The first digit of 3 ↑i 3 is a 1"

}
I (where x ↑1 y = xy , x ↑n 1 = x , and

x ↑n y = x ↑n−1 (x ↑n (y − 1)))
I Conjecture: since Benford’s Law holds for powers of 3, we

expect this to be an irreducible pattern with p = log10(2)

I We’d like to have a general way to find all such patterns...
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The Generalized Benford Test

I Inspired by Benford’s Law (first digit follows
p(d) = log10 (1 + 1/d))

I We’ll design an algorithm AL,T that on every input N ∈ N
outputs a value P(φN) ∈ [0,1]

I Within time bound “close” to O(T (N)),
I R(N) = T (N) · N4 · log(T (N))

I AL,T passes the generalized Benford test if for all
irreducible patterns S and their respective probabilities p,

lim
N→∞
N∈S

AL,T (N) = p
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Finding Irreducible Patterns

I For a single sentence φN , find a “reference class”
containing it

I eg: all digits of π, first digit of powers of 3

I Use a theorem prover L to test patterns
I L(N) halts pointing at a 1 if ZFC proves φN ,
I Halts pointing at a 0 if ZFC disproves φN ,
I Otherwise doesn’t halt

I Strategy: iterate over pairs of Turing machines X and Y
I X : best irreducible pattern, SX , that contains N
I Y : worst case subsequence, SY ⊆ SX

Asymptotic Logical Uncertainty and the Benford Test (AGI 2016)



Motivation Irreducible Patterns Asymptotic Logical Uncertainty

Finding Irreducible Patterns

I Let S = {i ∈ [0 . . .N]|X and Y accept i within time T (i)}
I Simulate L with time limit T (N) on each i ∈ S; stop at N or

first time-out
I QN(X ,Y ) is number of sentences that were decided in time
I FN(X ,Y ) is the fraction (out of QN ) that were true

I Define an objective BN measuring the deviation in subset
SY from the putative irreducible pattern SX with probability
approximately P

BN(X ,Y ,P) =

max

(
K (X ),

∣∣FN(X ,Y )− P
∣∣√QN(X ,Y )

K (Y )
√

log log QN(X ,Y )

)
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Properties of Our Algorithm

I Algorithm computes (see paper for fuller sketch)

argmin
P∈JN

max
Y∈TM(N)

min
X∈TM(N)

BN(X ,Y ,P),

I JN =
{ 0

N ,
1
N , . . .

N
N

}
I TM(N) is set of Turing machines that accept N within T (N)

steps

I Passes the Generalized Benford Test
I When X enumerates an irreducible pattern, BN has a

constant upper bound
I BN having a constant upper bound implies that for

sufficiently large N, P will be driven arbitrarily close to p
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Summary

I Benford’s Law points at logical uncertainty motivated by
hard-to-compute sequences of logical sentences.

I The law of the iterated logarithm yields an “empirical” test
of randomness that can be used to locate a “reference
class” for a single sentence.

I Although this method yields a fully-specified logical
uncertainty, we don’t yet know how to combine it with
notions of coherence.
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