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ROUGH DRAFT: When Software Goes Mental: Why

Artificial Minds Mean Fast Endogenous Growth

December 27, 2009

Abstract

Economic growth has so far come from human minds. The future could bring soft-
ware minds: AIs designed from scratch, or human brains transferred to computer hard-
ware. Such minds could substitute for humans in a wide range of economic activities—
including the research and development that are essential to economic growth. Once
minds are software products, they can be copied, accelerated, and improved by economic
activity. So we will need to model growth not as given from outside, or exogenous, but
as caused within the economy, or endogenous. Many endogenous growth models exist
in economics as a whole, but out of the few existing models of economies with software
minds, hardly any are endogenous. We review some existing literature and attempt to
close the gap by adding software minds to a model of R&D based on the well-known
model of Romer (1990). We focus on the speed of growth, and consider, among other
things, what happens when research becomes more serial, and what happens when soft-
ware minds suddenly gain access to a large fixed capital base, or “hardware overhang”.
Even given conservative assumptions, we find solutions that diverge, up to any ulti-
mate limits to technology. (In a differential equations setting, if a process feeds back
on itself, a “knife-edge critique” shows it generically either stagnates or blows up). If
such a “hard takeoff” blowup is likely, or at least not too unlikely based on structural
uncertainty, serious implications for policy follow. We conclude with some tentative
comments on what these are.

1 Introduction

1.1 Modeling Long-Run Growth: Why and How

What we should do depends on what the future is like. If the future is rich, we should do
one thing; if the future is poor, we should do another. If some possible futures are rich, we
should try to enter those possible futures. If the future gets rich very fast, we should be
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prepared for upheaval. So one thing that would be good to know about the future is how fast
the economy will grow. One way of finding out is by projecting recent trends: the economy
has been growing at a few percent per year, corresponding to a doubling time measured in
decades. Maybe we should expect it will continue to do so, with appropriate error bars.

This is the method economists have typically used, a hundred years ahead and more. For
example, consider models designed to assess the damage we can expect from climate change.
Nordhaus and Boyer (2003, p. 53), the authors of perhaps the most prominent such model,
write: “It is probably impossible to provide accurate long-run projections given the rapid
rate of social, economic, political, and institutional changes. Perhaps the best one can do is
to heed the words of the eminent Harvard economic forecaster, Otto Eckstein, who advised
that if we cannot forecast well, we should forecast often.”

Trend extrapolation is a good way to get default mainline probability estimates. But we may
turn out wildly wrong if underlying conditions change, so we’re sampling from a different
distribution. Taleb (2007) has called such events “black swans”.

“Forecasting often” is one way to deal with such changes in conditions, but we would like
our forecasts to be correct right now, so as to have time to prepare.

Economic growth was much slower before the industrial revolution than it is now, and much
slower still before agriculture. Extrapolating trends from either of these eras would have
yielded enormous errors, the more into the future the more so.

So if our trends could be rendered misleading by future conditions, can we find candidates
for what such conditions could be?

If there were a major nuclear war, that would slow down growth down. The same is true for
any disaster that crippled or destroyed human civilization, whether natural or technological.

On the other end, it’s conceivable that new technologies could speed up the process of eco-
nomic growth itself. Past growth already incorporates science and technology as the main
drivers of economic growth, and it already incorporates several things that have made the
process of scientific discovery more effective, but it may not account for genuinely new phe-
nomena.

Our claim in this paper is that, if we developed ways to have minds on the same level as
those of humans instantiated as software, that qualifies as such a trend-breaking technology.

1.2 Software Minds: a Trend-Breaking Factor?

These hypothetical future entities, which we will (somewhat artificially) refer to as “software
minds”, may in many ways not resemble human minds. But, by our definition, like humans,
they would be able to fulfill the same roles in the economy: function as human capital in
producing goods and ideas. To reiterate, the property we’re interested in here is not anything
like “consciousness” or “sentience”: it is the ability to substitute for humans in many areas
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of economics, including research, which we can fairly call “general intelligence”. On the other
hand, unlike humans and like programs, it would be possible to copy these minds at much
less cost than the two decades needed to produce an economically or scientifically productive
human.

Such entities sound like they belong in the domain of science fiction. But many experts
believe they are realistic: over the next decades, we may invent technologies leading up to
the development of the first software mind. We see these software minds as coming in two
different possible kinds.

Artificial intelligence, as an academic field, currently focuses on individual, narrowly-defined
problems. But in the future, we may achieve “strong AI” or “artificial general intelligence”:
programs, designed from scratch, that have a generalized capability to solve complex prob-
lems, like the one humans were imbued with by evolution. Such programs are one kind of
“software mind”.

The other kind is sometimes called a “whole brain emulation” or “brain upload” (Bostrom
and Sandberg, 2008). By this we mean a program created by cutting a human brain into
slices or otherwise getting at its structure, and then scanning all the structure into a computer
program, which is then run, and should emulate the original brain’s behavior.

In growth economics, there are exogenous growth models and endogenous growth models.
The exogenous growth models have technological progress coming from outside the model, un-
affected by the variables within. The endogenous growth models have technological progress
coming from some sort of research done in the model, with the amount of research done
depending on the amount of economic activity and the fraction of it allocated to research
by profit-maximizing agents. It is important that the growth in our model depend on vari-
ables within the model. Growth comes mainly from minds creating good ideas, so if minds
themselves become a technology, continuing to model growth as if steadily given from outside
would be grossly inaccurate.

1.3 Modeling with Infinities

We will sometimes talk about variables blowing up to infinity. When a model does this, it
may seem like a bad feature. There are a few different reasons why economists have tended
not to take such solutions seriously.

First, obviously, the past has never blown up to infinity. That might be reason to think
the future will never blow up to infinity. Any model, applied to the past, must reproduce
growth rates that are roughly constant over the relevant time scales or be ruled out by
the evidence. (Also, Hanson (1998) has argued past economic growth is characterized by
transitions between exponential growth modes; these should be accounted for, too.)

Second, there are physical limits to growth. An economy, as far as we know, can expand at
most at the speed of light, which in three dimensions implies a cubic growth of volume. The
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number of computations that can be implemented in a given volume of space is, we suspect,
bounded by the holographic entropy bound (Bousso, 2003).

Third, infinity is hard to work with. Where agents base their behavior rationally on future
expectations, expectations of infinite wealth cause the model to become ill-defined even before
infinity is actually achieved.

Fourth, infinity just sounds absurd. In the words of Weitzman (2009a): “There is a natural
tendency to sneer at economic models that yield infinite outcomes. This reaction is pre-
sumably based on the idea that infinity is a ridiculous result; therefore any model that has
an infinity symbol in it is fundamentally mis-specified, and thus dismissable.” It’s tempting
to say that a model with infinite solutions anywhere is broken, and uninformative even in
regimes far from where the blowups actually occur.

We still manage to feel confident about using models that generate infinities, for the following
reasons. If we can identify some conditions that made it impossible for the past to blow up,
and if that condition does not pertain to the future, then this renders past evidence irrelevant.
We claim that the lack of software minds is such a condition. As no software intelligences
existed in the past, a model with future software intelligence and a model without future
software intelligence should lead to close to the same predictions for the past.

Note that models where certain parameters go to infinity are sometimes used in the physical
sciences, to describe real phenomena: for example, models of the superfluid transition of
helium, where the specific heat capacity goes to infinity, and viscosity goes to zero; or models
of superconductivity, where conductivity goes to infinity. Even though infinity isn’t the
real value, these well-established results from condensed matter physics illustrate that some
variable being infinite does not imply that the model is making useless predictions. “This
thing is infinite” can be shorthand for “this thing is unconstrained by the structure of our
model, even if it might be constrained by something far outside its domain”.

As for your absurdity bias, this is not so much an economic as a psychological problem.
Absurdity, in the wider world, is a good cue to falsehood. But if we have an idea as to
the causes of absurdity and falsehood, it will be more helpful to look at truth or falsehood
directly.

1.4 Overview

The rest of this paper is arranged as follows. We will first review past work that has modeled
economic growth with intelligent software mathematically, in Section 2. Then, in Section
3, we try to spell out some features an economic model of the type we are building should
have. In Section 3.1 we go into some detail about the novel feedback processes that should be
represented in the mathematics. In Section 4, we judge past models by the criteria we found.
In Section 5, we make some comments about the space of possible models, starting from a
simple differential equation where the level of technology feeds back directly onto itself, then
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adding limiting factors. Section 6 constitutes the core of this paper. Starting from Romer’s
1990 model, we try to build models of economies with software minds. We explore various
assumptions. In Section 7 we explore the implications the deep uncertainties around growth
curves for economies with software minds.

Since this paper depends on concepts in artificial intelligence and economics, we will not be
able to assume all of our readers know the prerequisite ideas in both fields. This may mean
we spent much time explaining the obvious. For this we apologize.

2 Past Models of Software Minds

A few different authors have built models for the economic implications of machine intelli-
gence.

2.1 Kurzweil

Probably the best-known such model is Kurzweil (2001).

Kurzweil has computing power V growing as a linear function of “world knowledge” W , with
the change in world knowledge linear in available computing power:

V = c1W (2.1)

Ẇ = c2V (2.2)

From these two equations, Kurzweil deduces smooth exponential growth:

V = V0e
c1c2t (2.3)

He extends the model by letting the amount of resources going into computing grow as a
second, much slower exponential:

N = c3e
c4t (2.4)

and then modifying the dynamics of world knowledge growth from (2.2) to get

Ẇ = c2NV (2.5)

which is solved by

V = V0e
c1c2c3

c4
ec4t

. (2.6)

So Kurzweil’s model, as reflected in Kurzweil’s futurism, predicts a future where growth—
although eventually fast by conventional standards—is smooth, with no sudden jumps in
growth rate.
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2.2 Moravec

We saw that in Kurzweil’s model, computing power is a linear function of world knowl-
edge. That is, an exponential increase of computing power as per Moore’s Law requires an
exponential growth in world knowledge. Other specifications are possible.

Some calculations on this have been done by Moravec (1999). In his more general model, V
is any function of W , though he focuses on the exponential as an example. He distinguishes
two regimes: a human regime, where the change in W is proportional to time; and a machine
regime, where, as in Kurzweil, the change in W is proportional to available computing power.
In the full model, with both regimes pasted together, the model is:

V = f(W ) (2.7)

Ẇ = 1 + V (2.8)

Moravec (2003) shows that, as long as f is given by a power higher than 1 (or something even
faster), solutions diverge to infinity in finite time.

That means that blowups to infinity can happen under assumptions that are not obviously
false—that’s it’s a live option. In a sense, Kurzweil’s model, in the space of all models, is at
the edge of the region that doesn’t blow up.

2.3 Hall

Hall (2007) offers another smooth exponential growth model. Unlike Kurzweil or Moravec,
Hall explicitly distinguishes hardware and software growth.

Qt = Ceit (2.9)

Qt = Cerpt (2.10)

Qy = e(rp)(y−y0) = e0.000002(y−y0) (2.11)

e0.6(y−y0) (2.12)

Qy = Ce1.2(y−y0) (2.13)

Technology growth, in Hall’s model, is exogenous. The number of researchers increases over
time, but research output continues at its own pace independent of that number. Hence,
unlike in Moravec’s model, the solutions remain smooth. (Fill in more text.)

2.4 Hanson

The models discussed so far do not use standard economic growth theory: they make no
attempt to model outcomes as resulting from competing rational agents. Hanson (2001)
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does so, by adapting the Solow-Swan model of exogenous growth. Computer hardware, M ,
is distinguished from ordinary capital K to account for a fast (Moore’s Law) drop in hardware
prices, with P the price of hardware relative to everything else. Labor L is split into human
labor H, and intelligent machine labor U . The overall production function is:

Y = ALαKβMγ (2.14)

Here A is a general technology factor, and returns to total input are conservatively assumed
to be diminishing: α + β + γ < 1.

Using the simplifying assumption of a constant interest rate, and taking into account various
arbitrage arguments, Hanson derives a growth rate given by

ln′ Y =
ln′ A + α ln′ H − γ ln′ P

1 − γ − β
(2.15)

Hanson then demonstrates that, within his model, if we assume intelligent software allowing
computer hardware to substitute for human labor, this creates a change in the economic
growth rate corresponding to allowing α to go to zero and γ to go to α + γ. Because
computer prices fall faster than population rises, and because of the corresponding decrease
in the denominator of (2.15), this results in a massive increase in growth rate. For plausible
parameter values, this leads to doubling times at least a factor of ten shorter.

Investigating consequences for human wages, Hanson finds that at first, when machines
complement human labor, wages go up, but when machines also start substituting for human
labor, wages may go down.

A continuum of job types, some more suitable for humans and some more suitable for ma-
chines, and a hardware/software distinction, refine his model but do not significantly affect
its major conclusions.

Hanson’s model is exogenous, but he also briefly discusses an endogenous growth version,
based on “learning by doing” (Solow, 1997). For certain parameter values, his model again
outputs fast exponential growth. For other parameter values, his model has no steady expo-
nential growth solutions at all.

So Hanson’s model hints at the possibility, which we will argue for further in this paper, that
endogenous growth models of software minds support explosive behavior.

2.5 Johansen & Sornette

Johansen and Sornette (2001, section 5.3) present, as part of a paper arguing for a future
finite-time singularity in population and economic indicators, a class of endogenous tech-
nology growth models of a different kind. (This model is presented as part of a paper
extrapolating a future finite-time singularity in population and economic indicators based
on “log-periodic oscillations”. The paper has been criticized as an example of pathology in
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econophysics (Gallegati et al., 2006), but this is not relevant to the current discussion.) They
have economic output depending on a combination of capital, labor, and existing technology:

Y (t) = [(1 − aK)K(t)]α[A(t)(1 − aL)L(t)]1−α (2.16)

Further, they have the rate of technology change, too, depending on a combination of capital,
labor, and existing technology:

dA

dt
= B[aKK(t)]β[aLL(t)]γ[A(t)]θ, B > 0, β ≥ 0, γ ≥ 0 (2.17)

For the growth of capital, this implies:

dK

dt
= sY (t) = s[(1 − aK)K(t)]α[A(t)(1 − aL)L(t)]1−α (2.18)

The section explores a few different specifications for the rate of growth of labor and capital,
amounting to the addition of different feedback loops. For example, if both capital and labor
are held constant, the only thing left to cause potential divergences is a strong feedback in
technology itself, according to an equation of the form:

dp

dt
= r[p(t)]1+δ (2.19)

If labor is held constant but capital grows as determined by a constant saving rate, the model
reduces to:

dA

dt
= bAθKβ (2.20)

dK

dt
= aA1−αKα (2.21)

and there is potential for divergences for a greater range of possible parameter values. Feed-
back loops can cause the system as a whole to blow up even if the individual components do
not have strong feedbacks in themselves.

[latex equations in case the preceding needs to be illustrated:)

A(t) = A0(tc − t)−δ (2.22)

K(t) = K0(tc − t)−κ (2.23)

δ =
1 + β − α

(1 − α)(θ + β − 1)
(2.24)

κ =
2 − θ − α

(1 − α)(θ + β − 1)
(2.25)
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Finally, if labor always grows to a fixed fraction of capital (as Kremer (1993) assumes in the

context of past population growth Y (t)
L(t)

= ȳ, where the interpretation is people growing up to

the limits of the infrastructure supporting them), the model turns into:

dA

dt
= a′[L(t)]β+γ[A(t)]θ, a′ > 0, β ≥ 0 γ ≥ 0 (2.26)

dL

dt
= b′L(t)[A(t)]1−α (2.27)

δ =
1

1 − α
(2.28)

κ =
2 − θ − α

β + γ
(2.29)

Here, the interplay between population, capital, and technology growth causes blowups for a
much wider range of parameters still. Johansen & Sornette do not give an interpretation of
their model in terms of artificial intelligence, but seeing this specification for the growth of
labor as coming from investment into human-equivalent artificial intelligence seems natural.

2.6 Jones

Jones (2009) discusses economic growth with software intelligence based on a semi-endogenous
growth model by Jones (1995). Such models are described as having ”semi-endogenous
growth” because returns to investment in technology diminish the more technology already
exists, and so permanent increases in such investment only cause the diminishing returns to
be hit earlier. In Jones’s model, which among other things can be seen as a special case of
the model in Johansen and Sornette (2001), technology A is described by:

dA/dt = wLaAb (2.30)

In this context, the problem that remains is to state how software minds would change a and
b.

So it would seem that there are many different ways to model growth given software minds,
that give different conclusions. Can we exclude any of them as being unrealistic? Before
we start building our own models, we will first offer some features we believe such a model
should have.
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3 Desiderata for Models of Software Minds

Current economic models depend on various assumptions. These are realistic for the eco-
nomic past, present, and near future. However, some would break down under certain future
technologies. Software intelligence, especially, could remove a few fixed bottlenecks and, by
doing so, create new feedback loops.

This makes proper economic modeling of futures containing software minds difficult. A
model, to be accurate and helpful, should ideally satisfy a number of desiderata—although
we do not claim our model will satisfy all of these.

1. The model should give sensible results in the special case where the number of soft-
ware minds is always zero. It must be consistent with our past experience of roughly
exponential growth.

2. The assumptions about parameters and functional forms should not themselves be
wildly unrealistic.

3. The model should be robust: its conclusions should not depend sensitively on small
parameter changes. As it is hard to get exact parameter changes from data, we should
not expect the conclusions of models that are not robust to carry over to the real world.

4. Where possible, the model should have resource allocation arising from the decisions of
agents. This offers some more realism, and allows us to identify extreme cases, where
[...].

5. The model should not neglect any limiting factor we can expect to constrain progress.

6. The model should incorporate all the important feedback effects software minds bring.

Desiderata 4 and especially 6 suggest we should prefer endogenous growth models to exoge-
nous growth models.

3.1 Feedback Effects from Software Minds

Desideratum 6 could use expansion: what are these important feedback effects software minds
are supposed to create?

Without software intelligence, we’re used to modeling the situation more or less as follows.

Some part of the economy creates more physical capital. The rate at which it does so
depends on a few things. One is the level of technology. Another is the level of different
inputs: human labor, human capital, physical capital. These in turn depend on how much of
them exists, and on how much of them gets invested by consumers weighing present against
future consumption.
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Human labor is limited: populations grow, but not by orders of magnitude over the time
scales we are interested in. People acquire more skills over their lifetime, but they also die.
So we can see human capital as fixed, and to the extent that the same amount of education
becomes more effective, count this under “technology”.

The stock of capital is not fixed, and the accumulation of capital is a cause of growth. But
unless the number of people to operate the machines can keep up, diminishing returns mean
growth (at least purely from capital accumulation) stagnates.

Some other part of the economy creates more knowledge. The rate at which it does so
depends on a few other things. The current level of knowledge affects how easy it is to create
more. The inputs matter again: labor, physical capital (“lab equipment”), human capital in
the form of researchers.

Again, human labor and human capital are limited and physical capital is subject to strongly
diminishing returns. Since technology has not led to explosive growth in the past [...].

With software minds, or certain other future technologies, several effects can arise.

1. The stock of unskilled labor—roughly, human bodies and robots—stops being limited,
and starts being added to by the production sector. The field of robotics, while distinct
from human-level artificial intelligence, may advance along with it. Artificial wombs or
the removal of limits to the growth of human population may have the same effect, but
more slowly. If labor can keep accumulating along with capital, returns to reinvested
output diminish less quickly.

2. The stock of skilled labor—roughly, human brains and software minds—stops being
limited and starts being added to by the production sector. Intelligent programs could
substitute for humans in jobs requiring intelligence; the ease of copying and selecting
make training cheaper and skill greater, the more so with better software mind technol-
ogy. Again, other technologies could have the effect of creating more humans. Again,
returns to reinvested output would diminish less quickly.

If both 1 and 2 are in play, the loop is fully closed: all the inputs to production are
now also outputs. If a fixed fraction of output is reinvested, then even with no techno-
logical progress, exponential growth results. (Consider self-replicating Von Neumann
machines.)

3. The number of scientists stops being fixed. If new researchers are software minds,
producing them requires only that copies of the same design be run on more hardware.

4. The speed at which scientists think stops being fixed. Even keeping the number of
computations constant, a greater serial speed should increase research efficiency. This
is because serial computations can be sacrificed for parallel computations, but not the
other way around: problems requiring long chains of logical dependencies require serial
speed. So here, research done feeds into the efficiency of future research.

11



D
R

A
FT

5. The intelligence of scientists stops being fixed. Even keeping the number and serial
speed of computations constant, we can expect qualitatively better algorithms to in-
crease the efficiency of software minds doing research. If computing power were all that
mattered, whales would be able to outrace human researchers. If they have, they have
thus far been secretive about their findings.

Multiple such effects are likely to come into play at the same time, and build on one another.
As we saw in Johansen and Sornette (2001), feedback effects that are individually too weak
can combine to cause explosive growth. Of course, a given unit of extra output can’t simulta-
neously feed back to create a unit of unskilled labor, a unit of skilled labor, and a researcher;
if a fixed fraction of everything is reinvested into everything, allowing more kinds of things
to reinvest in decreases what this fraction is. But to the extent that increases in different
inputs complement each other, returns still diminish less quickly. (In reality, the fractions
aren’t fixed, but depend on how much profit agents can expect to capture from investing in
one kind of inputs versus another.)

4 Critique of Past Work

Kurzweil’s model has several problems.

It is not clear why the growth of world knowledge should be proportional to computing power.
In a world where humans do most of the research, giving a scientist twice as many computers
does not double that scientist’s output. (A literal interpretation of the model would entail
that the world’s research output doubled when people built the world’s second computer.)

In a world where software minds do most of the research, the assumption makes more sense.
Even so, the model of science implied here is too simple. It does not take into account changes
to the software that minds run on. [...]

Kurzweil further assumes computing power, V , is a linear function of world knowledge,
W . This is an extremely conservative assumption: it implies that a fixed base of hardware
researchers would need twice as long to invent each subsequent doubling of computing power,
instead of a constant time as in Moore’s law.

As we saw in Moravec’s model above, any power higher than 1 in this function would cause
a blowup in finite time. If we see the space of all models as divided into a region where
solutions blow up, and a region where it does not, then Kurzweil’s model is exactly at the
boundary. That means it fails the requirement of robustness.

Moravec’s model, while in one way more general than Kurzweil’s, is still simple. [...]

Hall’s model has a different problem. His model features, as a result of exogenous hardware
and software improvements, an exponentially growing number of software mind researchers.
But these researchers [...]
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Hanson’s model is, as far as we know, the only model for the development of software minds
to use standard economic growth models. There are a few reasons why, nonetheless, we
believe its growth projections are underestimates.

First, there is the conservative assumption of diminishing returns to total input; that is,
α + β + γ < 1. Typically, returns are assumed constant, or α + β + γ = 1. This can be
justified by a “replication argument”: two copies of the same economy that didn’t interact
would together create twice as much output.

Second, the main part of the model assumes growth is exogenous. Intelligent software minds
are created at an exponential rate, but are only ever applied in production, never becoming
researchers. As argued before, this ignores some of the important feedback loops that would
arise from software mind technology.

Section 4 of the paper does discuss an endogenous growth model, based on an early endoge-
nous growth model by Arrow called “learning by doing” (Solow, 1997). This model assumes
that the rate of change of technology is proportional to some power of total economic output.
Moreover, it assumes this power is smaller than 1, making this actually a “semi-endogenous
growth model”. (The relative price of computing power, P, behaves similarly.) For the
model to output exponential growth rather than divergence in finite time, some rather re-
strictive conditions on these parameters have to hold—low-hanging fruit must get depleted
very quickly, returns to total output must be very diminishing, or preferably both.

Jones’s model

Johansen & Sornette’s model

5 Linearity and Limits

Simple differential equation for feedback loops:

dA

dt
= Aα (5.1)

Blows up or stagnates or is exactly exponential, with measure zero. This has been called the
knife-edge critique in the literature, see for example Solow (2000). Briefly discuss Growiec
(2007), Growiec (2008), Dalgaard and Kreiner (2003). Put graphs from mathematica here,
linear and log scale. If it’s bounded above zero and below infinity then it does end up looking
exponential, so it’s not really measure zero in the wider space. Cite the paper that makes
that point. Maybe also put in some graphs about a model where α isn’t constant. Discuss
relation to Yudkowsky’s ”strong self-improvement”.

Differential equation for feedback loops with limits:

dA

dt
= Aα(L − A)−β (5.2)
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Logistic equation as special case. If β high, sudden bump into ceiling analogous to hard
takeoff (seems plausible). Probably go into more detail here about physical limits to growth.
Put graphs from mathematica here, linear and log scale. Also alternative equation with
higher-hanging fruit taking exponentially more resources, graphs.

Semi-endogenous growth is a sort of limit. That’s where tech growth is less than linear in
resources expended because of low-hanging fruit getting depleted. Called semi-endogenous
growth because putting more resources into R&D only delays the point where you hit high-
hangingness of fruit. Briefly discuss Young (1998), Dalgaard and Kreiner (2001), Jones
(1995), Segerstrom (1998), Howitt (1999). Note that semi-endogenous growth models can
still blow up with the right kind of other factors, like population growth, as in Johansen and
Sornette (2001).

According to Ha and Howitt (2007) endogenous growth and semi-endogenous growth don’t
account as well for the evidence as Schumpeterian growth, which says increasing R&D inputs
are counteracted by expanding product varieties. Link to empirical estimates. No obvious
continued growth in such product varieties given AI, especially AI that likes fast long-run
growth more than instant profits. Limits to how small a fraction you can ultimately spend
on basic research.

6 Romer With Robots

Big question: do we work off the original Romer (1990) model, or off a simplified version
like Johansen and Sornette (2001)? Leaning toward the latter: modeling the details of
consumer preferences is mathematically very hairy and relatively unenlightening; however,
note Steve Rayhawk’s optimal control work about behavior toward infinity under assumptions
amounting to maximizing fraction of future lightcone. In a simplified model we could try out
more changes and make conceptual points. Working based on the full model would probably
be more publishable.

Probably paste in quick intro to Romer’s model, partially excludable nonrival goods, and so
on.

Add factors for serial speed, qualitative smartness. If there are diminishing returns to parallel
research (Brooks (1995)) at each time step, it can be shown this leads to a higher exponent
the more you replace parallel by serial computing power. Paste in math here. This is only
partly true if only part of the research is serializable. Paste in math about serializable theory
with parallel experiments.

Discuss models with time delays. Paste in quick proof they can’t blow up to infinity. Fixed
time delay unrealistic: the more it starts bothering you the more you can trade the shortness
of these time steps off for other things. Endogenous time delays.

Discrete time models where there are N human time steps in each AI time step.
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Maybe model hardware overhangs somehow, that is to say sudden availability of source of
hardware that agents being modeled didn’t expect.

Maybe model repurposability of hardware.

Maybe model extreme ”blowup in brain in box in basement” scenario.

What about James D. Miller’s argument that widespread awareness of the singularity will
decrease investment in favor of consumption? Needs model of consumers. Agents that don’t
decrease their investment win. Kelly criterion, logarithmic utility functions.

Maybe model other things. Mostly it depends on what the model we end up using (full
Romer or simplified Romer) ends up being congenial to.

7 Implications of Structural Uncertainty

Finally, we return to policy implications. Why does the speed of AI takeoff matter? Is this
an issue that can wait until the far future, or does it affect our decisions here and now?

We should first discuss a methodological point. As argued above, there are many models
of growth given AI, making a wide range of predictions, some of which are extreme. This
situation mirrors that in more prominent issues such as climate change and financial risk.
What is the right way to analyze costs and benefits here?

Many respond to model uncertainty by choosing a most plausible or most central model
to guide their decisions. In the case of AI growth, this amounts to focusing only on plans
suggested by one scenario: business as usual, stagnation, a smooth “soft takeoff”, or a sudden
“hard takeoff”.

However, this method is not optimal. Decision theory (Von Neumann and Morgenstern,
1944) describes the behavior of a rational agent in terms of maximizing expected utility.
Such an agent will try to achieve the best results across possible future outcomes, taking into
account both the probability of different scenarios and the severity of the implied costs and
benefits. “Dutch book” results show those who deviate from decision theory end up making
self-defeating decisions in some situations.

The less certain one’s favored model, the more important it becomes to consider out-of-model
events. If the cost of a policy is small, and the benefit given some such event is large enough to
overcome the probability penalty, decision theory recommends the policy. This is relevant to
topics like insurance, flood engineering, and the choice of safety margins in civil engineering.

Representing parameter uncertainty solves part of the problem, but not all. Our uncertainty
concerns not just parameter values, but what parameters to include, how to relate them to
each other, and what functional forms to use. Some authors have called this “structural
uncertainty”.
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Weitzman (2009b) makes a point about structural uncertainty in the context of the economics
of climate change. The argument is that if certain mathematical assumptions hold, structural
uncertainty causes the expected cost to be dominated by a fat tail of improbable but extreme
models that limited evidence cannot fully exclude. (In the extreme case, this could lead
to the recommendation to focus only on minimizing existential risks, which Bostrom and
Bostrom (2002) defines as events that would “annihilate Earth-originating intelligent life or
permanently and drastically curtail its potential”).

Ord et al. (2008) discuss the impact of errors in analyses on the probability of unlikely but
extreme risks. Sometimes, when the best analysis places a near-zero probability on some
risk, most of the risk’s probability comes from cases where the best analysis is wrong. For
example, if we calculate a 1 in 1010 chance of an asteroid impact, but there is a 1 in 100
chance that our calculation contains a mistake, it is not obvious that we should be reassured.

How does structural uncertainty play out in our own case, that of uncertain takeoff speed of
technological and economic growth after the arrival of AI or brain emulations?

Suppose this paper’s thesis holds up and hard takeoff scenarios have significant weight. Then,
even if other models are more central or better-supported, caution justifies taking measures
that have reasonable costs and chances to positively affect a hard takeoff outcome. It seems
likely that such measures would exist: the potential payoff is roughly as large as the entire
economy, and (to forestall “Pascal’s Wager” objections) the probability of hard takeoff is, we
have argued, not tiny.

What, then, could such measures look like, given that the problem will probably not become
imminent until decades from now?

We can rule out some classes of plans as insufficient to mitigate hard takeoff risk. This
includes all plans that require timely response to information from intermediate steps on the
AI growth curve. (“If they start rebelling, we can just pull the plug.”) We cannot confidently
assume a hard takeoff will leave enough reaction time.

On the most general level, our conclusions suggest the returns from research into hard takeoff
scenarios are high. If we could find policies that gain us safety across possible hard takeoff
outcomes, these would be extremely valuable.

The economic models we used assume property rights always remain stable. If the power
differentials created are as great as analyses such as this paper suggest, this assumption is
unlikely to be realistic. Even slight differences in goals between machine intelligences and
their owners give the former an incentive to use the wealth available to them toward their
own ends. Gaps in technology, intelligence, numbers, and wealth will at some point give
them the ability.

If there is no time to influence hard takeoff trajectories much from outside the software minds
or whatever controls them, the outcome will depend on the goals of the minds taking off. In
both the cases of artificial intelligence and brain emulations, the motivations of the minds to
be copied and enhanced, and whether these motivations are preserved under the dynamics
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of the takeoff, determine how the new technology and wealth will be used.

Some have claimed it is both possible and desirable to build artificial intelligences whose goals
are well-understood (on some level of abstraction) and predictably stable under changes to
their programming. If so, the problem of hard takeoff risks may have a reliable solution along
those lines.

It would also be helpful to get a better understanding of when hard takeoff disasters might
happen. More information on general timing would be of use, but we should expect to have
wide confidence bounds given the difficulty of predicting the future and the biases involved
in thinking about these issues (Yudkowsky, 2008). If we learn more about the circumstances
under which AI and brain emulation scenarios lead to hard takeoff disasters, we can better
avoid setting in motion sequences of events that could end in such disasters.

Kahneman and Lovallo (1993) have distinguished between “inside view” reasoning, based on
the details of a specific case, and “outside view” reasoning, based on statistics about past
cases with similarities. In contexts such as project completion time, outside views often make
more reliable predictions than inside views. But there are problems with taking an outside
view of our case. It is not clear what the relevant class of past situations is. One can take past
cases of fast speedup of economic growth, such as agriculture and the industrial revolution,
but given the possibility that the AI problem is fundamentally different in structure, the
outside view seems limited even if useful. And if the certainty available from outside views
is limited, the arguments we have given here apply.

8 Conclusion

Don’t forget to quickly discuss some other papers here, Ray Kurzweil and Vinge (1999),
Powell et al. (2009), Croix and Licandro (1999), Weitzman (1998), Jones (2005), Tsur and
Zemel (2002), Groth and Schou (2002).
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