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Abstract

Section 1 discusses the conceptual foundations of general intelligence as a discipline,
orienting it within the Integrated Causal Model of Tooby and Cosmides; Section 2
constitutes the bulk of the paper and discusses the functional decomposition of gen-
eral intelligence into a complex supersystem of interdependent internally specialized
processes, and structures the description using five successive levels of functional or-
ganization: Code, sensory modalities, concepts, thoughts, and deliberation. Section 3
discusses probable differences between humans and Als and points out several funda-
mental advantages that minds-in-general potentially possess relative to current evolved

intelligences, especially with respect to recursive self-improvement.
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1. Foundations of General Intelligence

What is intelligence? In humans—currently the only known intelligent entities—
intelligence is a brain with a hundred billion neurons and a hundred trillion synapses; a
brain in which the cerebral cortex alone is organized into 52 cytoarchitecturally distinct
areas per hemisphere. Intelligence is not the complex expression of a simple principle;
intelligence is the complex expression of a complex set of principles. Intelligence is a
supersystem composed of many mutually interdependent subsystems—subsystems spe-
cialized not only for particular environmental skills but for particular internal functions.
'The heart is not a specialized organ that enables us to run down prey; the heart is a
specialized organ that supplies oxygen to the body. Remove the heart and the result is
not a less efficient human, or a less specialized human; the result is a system that ceases
to function.

Why is intelligence? The cause of human intelligence is evolution—the operation of
natural selection on a genetic population in which organisms reproduce differentially
depending on heritable variation in traits. Intelligence is an evolutionary advantage be-
cause it enables us to model, predict, and manipulate reality. Evolutionary problems are
not limited to stereotypical ancestral contexts such as fleeing lions or chipping spears;
our intelligence includes the ability to model social realities consisting of other humans,
and the ability to predict and manipulate the infernal reality of the mind. Philosophers
of the mind sometimes define “knowledge” as cognitive patterns that map to external
reality (Newell 1980), but a surface mapping has no inherent evolutionary utility. In-
telligence requires more than passive correspondence between internal representations
and sensory data, or between sensory data and reality. Cognition goes beyond passive
denotation,; it can predict future sensory data from past experience. Intelligence requires
correspondences strong enough for the organism to choose between futures by choosing
actions on the basis of their future results. Intelligence in the fully human sense requires
the ability to manipulate the world by reasoning backward from a mental image of the
desired outcome to create a mental image of the necessary actions. (In Section 2, these
ascending tests of ability are formalized as sensory, predictive, decisive, and manipulative
bindings between a model and a referent.)

Understanding the evolution of the human mind requires more than classical Dar-
winism; it requires the modern “neo-Darwinian” or “population genetics” understanding
of evolution—the Integrated Causal Model set forth by Tooby and Cosmides (1992).
One of the most important concepts in the ICM is that of “complex functional adap-
tation.” Evolutionary adaptations are driven by selection pressures acting on genes. A
given gene’s contribution to fitness is determined by regularities of the foza/ environ-

ment, including both the external environment and the genetic environment. Adapta-
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tion occurs in response to statistically present genetic complexity, not just statistically
present environmental contexts. A new adaptation requiring the presence of a previous
adaptation cannot spread unless the prerequisite adaptation is present in the genetic en-
vironment with sufficient statistical regularity to make the new adaptation a recurring
evolutionary advantage. Evolution uses existing genetic complexity to build new genetic
complexity, but evolution exhibits no foresight. Evolution does not construct genetic
complexity unless it is an immediate advantage, and this is a fundamental constraint on
accounts of the evolution of complex systems.

Complex functional adaptations—adaptations that require multiple genetic features
to build a complex interdependent system in the phenotype—are usually, and necessar-
ily, universal within a species. Independent variance in each of the genes making up a
complex interdependent system would quickly reduce to insignificance the probability
of any phenotype possessing a full functioning system. To give an example in a simpli-

» «

fied world, if independent genes for “retina,” “lens,” “cornea,” “iris,” and “optic nerve”
each had an independent 20% frequency in the genetic population, the random-chance
probability of any individual being born with a complete eyeball would be 3125:1.

Natural selection, while feeding on variation, uses it up (Sober 1984). 'The bulk of
genetic complexity in any single organism consists of a deep pool of panspecies complex
functional adaptations, with selection pressures operating on a surface froth of individ-
ual variations. The target matter of Artificial Intelligence is not the surface variation that
makes one human slightly smarter than another human, but rather the vast store of complexity
that separates a human from an amoeba. We must avoid distraction by the surface varia-
tions that occupy the whole of our day-to-day social universe. The differences between
humans are the points on which we compete and the features we use to recognize our
tellows, and thus it is easy to slip into paying them too much attention.

A still greater problem for would-be analysts of panhuman complexity is that the
toundations of the mind are not open to introspection. We perceive only the highest
levels of organization of the mind. You can remember a birthday party, but you cannot
remember your hippocampus encoding the memory.

Is either introspection or evolutionary argument relevant to AI? To what extent can
truths about humans be used to predict truths about Als, and to what extent does knowl-
edge about humans enable us to create Al designs? If the sole purpose of Al as a research
field is to test theories about human cognition, then only truths about human cognition
are relevant. But while human cognitive science constitutes a legitimate purpose, it is
not the sole reason to pursue Al; one may also pursue Al as a goal in its own right, in
the belief that Al will be useful and beneficial. From this perspective, what matters is
the quality of the resulting intelligence, and not the means through which it is achieved.

However, proper use of this egalitarian viewpoint should be distinguished from histori-
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cal uses of the “bait-and-switch technique” in which “intelligent AI” is redefined away
from its intuitive meaning of “Al as recognizable person,” simultaneously with the pre-
sentation of a Al design which leaves out most of the functional elements of human
intelligence and offers no replacement for them. There is a difference between relaxing
constraints on the means by which “intelligence” can permissibly be achieved, and low-
ering the standards by which we judge the results as “intelligence.” It is thus permitted
to depart from the methods adopted by evolution, but is it wise?

Evolution often finds good ways, but rarely the best ways. Evolution is a useful in-
spiration but a dangerous template. Evolution is a good teacher, but it’s up to us to apply
the lessons wisely. Humans are not good examples of minds-in-general; humans are an
evolved species with a cognitive and emotional architecture adapted to hunter-gatherer
contexts and cognitive processes tuned to run on a substrate of massively parallel 200 Hz
biological neurons. Humans were created by evolution, an unintelligent process; Al will
be created by the intelligent processes that are humans.

Because evolution lacks foresight, complex functions cannot evolve unless their pre-
requisites are evolutionary advantages for other reasons. The human evolutionary line
did not evolve foward general intelligence; rather, the hominid line evolved smarter and
more complex systems that /acked general intelligence, until finally the cumulative store
of existing complexity contained all the tools and subsystems needed for evolution to
stumble across general intelligence. Even this is too anthropocentric; we should say
rather that primate evolution stumbled across a fitness gradient whose path includes the
subspecies Homo sapiens sapiens, which subspecies exhibits one particular kind of general
intelligence.

'The human designers of an Al, unlike evolution, will possess the ability to plan ahead
for general intelligence. Furthermore, unlike evolution, a human planner can jump sharp
fitness gradients by executing multiple simultaneous actions; a human designer can use
foresight to plan multiple new system components as part of a coordinated upgrade. A
human can take present actions based on anticipated forward compatibility with future
plans.

Thus, the ontogeny of an Al need not recapitulate human philogeny. Because evolu-
tion cannot stumble across grand supersystem designs until the subsystems have evolved
for other reasons, the philogeny of the human line is characterized by development from
very complex non-general intelligence to very complex general intelligence through the
layered accretion of adaptive complexity lying within successive levels of organization. In
contrast, a deliberately designed Al is likely to begin as a set of subsystems in a relatively

primitive and undeveloped state, but nonetheless already designed to form a functioning
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supersystem.! Because human intelligence is evolutionarily recent, the vast bulk of the
complexity making up a human evolved in the absence of general intelligence; the rest of
the system has not yet had time to adapt. Once an Al supersystem possesses any degree
of intelligence at all, no matter how primitive, that intelligence becomes a tool which
can be used in the construction of further complexity.

Where the human line developed from very complex non-general intelligence into
very complex general intelligence, a successful Al project is more likely to develop from
a primitive general intelligence into a complex general intelligence. Note that primitive
does not mean architecturally simple. 'The right set of subsystems, even in a primitive
and simplified state, may be able to function together as a complete but imbecilic mind
which then provides a framework for further development. This does 7o imply that Al
can be reduced to a single algorithm containing the “essence of intelligence.” A cogni-
tive supersystem may be “primitive” relative to a human and still require a tremendous
amount of functional complexity.

I am admittedly biased against the search for a single essence of intelligence; I believe
that the search for a single essence of intelligence lies at the center of Al’s previous
failures. Simplicity is the grail of physics, not Al. Physicists win Nobel Prizes when they
discover a previously unknown underlying layer and explain its behaviors. We already
know what the ultimate bottom layer of an Artificial Intelligence looks like; it looks
like ones and zeroes. Our job is to build something interesting out of those ones and
zeroes. 'The Turing formalism does not solve this problem any more than quantum
electrodynamics tells us how to build a bicycle; knowing the abstract fact that a bicycle
is built from atoms doesn't tell you Aow to build a bicycle out of atoms—which atoms
to use and where to put them. Similarly, the abstract knowledge that biological neurons
implement human intelligence does not explain human intelligence. The classical hype
of early neural networks, that they used “the same parallel architecture as the human
brain,” should, at most, have been a claim of using the same parallel architecture as an
earthworm’s brain. (And given the complexity of biological neurons, the claim would

still have been wrong.)

'The science of understanding living organization is very different from physics
or chemistry, where parsimony makes sense as a theoretical criterion. The

study of organisms is more like reverse engineering, where one may be dealing

1. This does not rule out the possibility of discoveries in cognitive science occurring through less inten-
tional and more evolutionary means. For example, a commercial Al project with a wide range of customers
might begin with a shallow central architecture loosely integrating domain-specific functionality across a
wide variety of tasks, but later find that their research tends to produce specialized internal functionality

hinting at a deeper, more integrated supersystem architecture.
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with a large array of very different components whose heterogenous organi-
zation is explained by the way in which they interact to produce a functional
outcome. Evolution, the constructor of living organisms, has no privileged
tendency to build into designs principles of operation that are simple and

general. (Tooby and Cosmides 1992)

'The field of Artificial Intelligence suffers from a heavy, lingering dose of genericity and
black-box, blank-slate, fabula-rasa concepts seeping in from the Standard Social Sci-
ences Model (SSSM) identified by Tooby and Cosmides (1992). 'The general project of
liberating Al from the clutches of the SSSM is more work than I wish to undertake in
this paper, but one problem that must be dealt with immediately is physics envy. The de-
velopment of physics over the last few centuries has been characterized by the discovery
of unifying equations which neatly underlie many complex phenomena. Most of the
past fifty years in Al might be described as the search for a similar unifying principle
believed to underlie the complex phenomenon of intelligence.

Physics envy in Al is the search for a single, simple underlying process, with the ex-
pectation that this one discovery will lay bare all the secrets of intelligence. The tendency
to treat new approaches to Al as if they were new theories of physics may at least par-
tially explain AT’s past history of overpromise and oversimplification. Attributing all the
vast functionality of human intelligence to some single descriptive facet—that brains are
“parallel,” or “distributed,” or “stochastic”; that minds use “deduction” or “induction”™—
results in a failure (an overhyped failure) as the project promises that all the functionality
of human intelligence will slide out from some simple principle.

The eftects of physics envy can be more subtle; they also appear in the lack of in-
teraction between Al projects. Physics envy has given rise to a series of Al projects
that could only use one idea, as each new hypothesis for the one true essence of intelli-
gence was tested and discarded. Douglas Lenat’s AM and Eurisko programs (Lenat
1983)—though the results were controversial and may have been mildly exaggerated
(Ritchie and Hanna 1984)—used nonetheless very intriguing and fundamental design
patterns to deliver significant and unprecedented results. Despite this, the design pat-
terns of EURIsko, such as self-modifying decomposable heuristics, have seen almost no
reuse in later Als. Even Lenat’s subsequent Cyc project (Lenat, Prakash, and Shepherd
1985) apparently does not reuse the ideas developed in Eurisko. From the perspec-
tive of a modern-day programmer, accustomed to hoarding design patterns and code
libraries, the lack of crossfertilization is a surprising anomaly. One would think that
self-optimizing heuristics would be useful as an external tool, e.g. for parameter tun-
ing, even if the overall cognitive architecture did not allow for the internal use of such

heuristics.
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'The behavior of the Al field, and of Lenat himself, is more understandable if we
postulate that Eurisko was treated as a failed hypothesis, or even as a competing hypothesis,
rather than an incremental success or a reusable tool. Lenat tried self-optimizing heuristics
and they failed to yield intelligence; onward, then, to Cyc, the next hypothesis!

The most common paradigms of traditional Al—search trees, neural networks, ge-
netic algorithms, evolutionary computation, semantic nets—have in common the prop-
erty that they can be implemented without requiring a store of preexisting complexity.
'The processes that have become traditional, that Aave been reused, are the tools that
stand alone and are immediately useful. A semantic network is a “knowledge” rep-
resentation so simple that it is literally writable on paper; thus, an Al project adding
a semantic network need not design a hippocampus-equivalent to form memories, or
build a sensory modality to represent mental imagery. Neural networks and evolution-
ary computations are not generally intelligent but they are generically intelligent; they
can be trained on any problem that has a sufficiently shallow fitness gradient relative to
available computing power. (Though Eurisko’s self-modifying heuristics probably had
generality equalling or exceeding these more typical tools, the source code was not open
and the system design was far too complex to build over an afternoon, so the design
pattern was not reused—or so I would guess.)

With the exception of the semantic network, which I regard as completely bankrupt,
the standalone nature of the traditional processes may make them useful tools for shoring
up the initial stages of a general Al supersystem. But standalone algorithms are not
substitutes for intelligence and they are not complete systems. Genericity is not the
same as generality.

“Physics envy” (trying to replace the human cognitive supersystem with a single pro-
cess or method) should be distinguished from the less ambitious attempt to c/ean up the
human mind design while leaving the essential architecture intact. Cleanup is probably
inevitable while human programmers are involved, but it is nonetheless a problem to be
approached with extreme caution. Although the population genetics model of evolution
admits of many theoretical reasons why the presence of a feature may not imply adap-
tiveness (much less optimality), in practice the adaptationists usually win. The spandrels
of San Marco may not have been built for decorative elegance (Gould and Lewontin
1979), but they are still holding the roof up. Cleanup should be undertaken, not with
pride in the greater simplicity of human design relative to evolutionary design, but with
a healthy dose of anxiety that we will leave out something important.

An example: Humans are currently believed to have a modular adaptation for visual
face recognition, generally identified with a portion of inferotemporal cortex, though
this is a simplification (Rodman 1999). At first glance this brainware appears to be an

archetypal example of human-specific functionality, an adaptation to an evolutionary
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context with no obvious analogue for an early-stage Al. However, Carey (1992) has
suggested from neuropathological evidence (associated deficits) that face recognition
brainware is also responsible for the generalized task of acquiring very fine expertise in the
visual domain; thus, the dynamics of face recognition may be of general significance for
builders of sensory modalities.

Another example is the sensory modalities themselves. As described in greater de-
tail in Section 2, the human cognitive supersystem is built to require the use of the
sensory modalities which we originally evolved for other purposes. One good reason
why the human supersystem uses sensory modalities is that the sensory modalities are
there. Sensory modalities are evolutionarily ancient; they would have existed, in primi-
tive or complex form, during the evolution of all higher levels of organization. Neural
tissue was already dedicated to sensory modalities, and would go on consuming ATP
even if inactive, albeit at a lesser rate. Consider the incremental nature of adaptation, so
that in the very beginnings of hominid intelligence only a very small amount of de novo
complexity would have been involved; consider that evolution has no inherent drive to-
ward design elegance; consider that adaptation is in response to the total environment,
which includes both the external environment and the genetic environment—these are
all plausible reasons to suspect evolution of offloading the computational burden onto
pre-existing neural circuitry, even where a human designer would have chosen to employ
a separate subsystem. Thus, it was not inherently absurd for AT’s first devotees to try for
general intelligence that employed no sensory modalities.

Today we have at least one reason to believe that nonsensory intelligence is a bad
approach; we tried it and it didn't work. Of course, this is far too general an argument—
it applies equally to “we tried non-face-recognizing intelligence and it didn't work” or
even “we tried non-bipedal intelligence and it didn't work.” The argument’s real force
derives from specific hypotheses about the functional role of sensory modalities in gen-
eral intelligence (discussed in Section 2). But in retrospect we can identify at least one
methodological problem: Rather than identifying the role played by modalities in intel-
ligence, and then attempting to “clean up” the design by substituting a simpler process
into the functional role played by modalities,? the first explorers of Al simply assumed
that sensory modalities were irrelevant to general intelligence.

Leaving out key design elements, without replacement, on the basis of the mistaken
belief that they are not relevant to general intelligence, is an error that displays a ter-
rifying synergy with “physics envy.” In extreme cases—and most historical cases have

been extreme—the design ignores everything about the human mind except one char-

2. I cannot think of any plausible way to do this, and do not advocate such an approach.
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acteristic (logic, distributed parallelism, fuzziness, etc.), which is held to be “the key to
intelligence.” (On my more pessimistic days I sometimes wonder if successive fads are
the only means by which knowledge of a given feature of human intelligence becomes
widespread in Al)

I argue strongly for “supersystems,” but I do not believe that “supersystems” are the
necessary and sufficient Key to Al. General intelligence requires the righ# supersystem,
with the right cognitive subsystems, doing the right things in the right way. Humans
are not intelligent by virtue of being “supersystems,” but by virtue of being a particular
supersystem which implements human intelligence. I emphasize supersystem design
because I believe that the field of Al has been crippled by the wrong kind of simplicity—a
simplicity which, as a design constraint, rules out workable designs for intelligence; a
simplicity which, as a methodology, rules out incremental progress toward an under-
standing of general intelligence; a simplicity which, as a viewpoint, renders most of the
mind invisible except for whichever single aspect is currently promoted as the Key to

Al

If the quest for design simplicity is to be “considered harmful,”

what should replace
it? I believe that rather than simplicity, we should pursue sufficiently complex explanations
and wusefully deep designs. In ordinary programming, there is no reason to assume a priori
that the task is enormously large. In Al the rule should be that the problem is always
harder and deeper than it looks, even after you take this rule into account. Knowing
that the task is large does not enable us to meet the challenge just by making our designs
larger or more complicated; certain specific complexity is required, and complexity for
the sake of complexity is worse than useless. Nonetheless, the presumption that we are
more likely to underdesign than overdesign implies a different attitude towards design,
in which victory is never declared, and even after a problem appears to be solved, we go
on trying to solve it. If this creed were to be summed up in a single phrase, it would be:
“Necessary but not sufficient.” In accordance with this creed, it should be emphasized
that supersystems thinking is only one part of a larger paradigm, and that an open-ended
design process is itself “necessary but not sufficient.” These are first steps toward Al, but

not the only first steps, and certainly not the last steps.

2. Levels of Organization in Deliberative General Intelligence

Intelligence in the human cognitive supersystem is the result of the many cognitive pro-

cesses taking place on multiple levels of organization. However, this statement is vague

3. A phrase due to Dijkstra (1968) in “Go To Statement Considered Harmful”; today it indicates that
a prevalent practice has more penalties than benefits and should be discarded.
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without hypotheses about specific levels of organization and specific cognitive phenom-
ena. The concrete theory presented in Section 2 goes under the name of “deliberative
general intelligence” (DGI).

‘The human mind, owing to its accretive evolutionary origin, has several major dis-
tinct candidates for the mind’s “center of gravity.” For example, the limbic system is an
evolutionarily ancient part of the brain that now coordinates activities in many of the
other systems that later grew up around it. However, in (cautiously) considering what a
more foresightful and less accretive design for intelligence might look like, I find that a
single center of gravity stands out as having the most complexity and doing most of the
substantive work of intelligence, such that in an Al, to an even greater degree than in hu-
mans, this center of gravity would probably become the central supersystem of the mind.
'This center of gravity is the cognitive superprocess which is introspectively observed by
humans through the internal narrative—the process whose workings are reflected in the
mental sentences that we internally “speak” and internally “hear” when thinking about a
problem. To avoid the awkward phrase “stream of consciousness” and the loaded word

“consciousness,” this cognitive superprocess will hereafter be referred to as deliberation.

2.1. Concepts: An Illustration of Principles

My chosen entry point into deliberation is words—that is, the words we mentally speak
and mentally hear in our internal narrative. Let us take the word “lightbulb” (or the
wordlike phrase “light bulb”) as an example.* When you see the letters spelling “light
bulb,” the phonemes for Zight bulb flow through your auditory cortex. If a mental task
requires it, a visual exemplar for the “light bulb” category may be retrieved as mental
imagery in your visual cortex (and associated visual areas). Some of your past memo-
ries and experiences, such as accidentally breaking a light bulb and carefully sweeping
up the sharp pieces, may be associated with or stored under the “light bulb” concept.
“Light bulb” is associated to other concepts; in cognitive priming experiments, it has

been shown that hearing a phrase such as “light bulb”® will prime associated words such

4. Note that “lightbulb” is a basic-level category (Brown 1958). “Basic-level” categories tend to lie
on the highest level at which category members have similar shapes, the highest level at which a single
mental image can reflect the entire category, the highest level at which a person uses similar motor actions
for interacting with category members, et cetera (Rosch et al. 1976). “Chair” is a basic-level category
but “furniture” is not; “red” is a basic-level category but “scarlet” is not. Basic-level categories generally
have short, compact names, are among the first terms learned within a language, and are the easiest to
process cognitively. Lakoff (1987) cautions against inadvertent generalization from basic-level categories
to categories in general, noting that most researchers, in trying to think of examples of categories, almost

always select examples of basic-level categories.

5. I don't know of a specific case of priming tests conducted on the specific wordpair “lightbulb” and

“fluorescent,” but this is a typical example.
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as “fluorescent” or “fragile,” increasing the recognition speed or reaction speed when as-
sociated words are presented (Meyer and Schvaneveldt 1971). The “light bulb” concept
can act as a mental category; it describes some referents in perceived sensory experi-
ences or internal mental imagery, but not other referents; and, among the referents it
describes, it describes some strongly and others only weakly.

To further expose the internal complexity of the “light bulb” concept, I would like
to offer an introspective illustration. I apologize to any academic readers who possess
strong philosophical prejudices against introspection; I emphasize that the exercise is not
intended as evidence for a theory, but rather as a means of introducing and grounding
concepts that will be argued in more detail later. That said:

Close your eyes, and try to immediately (without conscious reasoning) visualize a
triangular light bulb—now. Did you do so? What did you see? On personally performing
this test for the first time, I saw a pyramidal light bulb, with smoothed edges, with a bulb
on the square base. Perhaps you saw a tetrahedral light bulb instead of a pyramidal one,
or a light bulb with sharp edges instead of smooth edges, or even a fluorescent tube bent
into a equilateral triangle. The specific result varies; what matters is the process you used
to arrive at the mental imagery.

Our mental image for “triangular light bulb” would intuitively appear to be the result
of imposing “triangular,” the adjectival form of “triangle,” on the “light bulb” concept.
That is, the novel mental image of a triangular light bulb is apparently the result of
combining the sensory content of two preexisting concepts. (DGI agrees, but the as-
sumption deserves to be pointed out explicitly.) Similarly, the combination of the two
concepts is not a collision, but a structured imposition; “triangular” is imposed on “light
bulb,” and not “light-bulb-like” on “triangle.”

'The structured combination of two concepts is a major cognitive process. I emphasize
that I am not talking about interesting complexity which is supposedly to be found in
the overall pattern of relations between concepts; I am talking about complexity which is
directly visible in the specific example of imposing “triangular” on “light bulb.” I am not
“zooming out” to look at the overall terrain of concepts, but “zooming in” to look at the
cognitive processes needed to handle this single case. The specific example of imposing
“triangular” on “light bulb” is a nontrivial feat of mind; “triangular light bulb” is a trickier
concept combination than “green light bulb” or “triangular parking lot.”

'The mental process of visualizing a “triangular light bulb” flashes through the mind
very quickly; it may be possible to glimpse subjective flashes of the concept combina-
tion, but the process is not really open to human introspection. For example, when
first imposing “triangular” on “light bulb,” I would report a brief subjective flash of a
conflict arising from trying to impose the planar 2D shape of “triangular” on the 3D

“light bulb” concept. However, before this conflict could take place, it would seem nec-

10
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essary that some cognitive process have already selected the shape facet of “triangular”
for imposition—as opposed to, say, the color or line width of the “triangle” exemplar
that appears when I try to visualize a “triangle” as such. However, this initial selection
of shape as the key facet did not rise to the level of conscious attention. I can guess at the
underlying selection process—in this case, that past experience with the usage had al-
ready “cached” shape as the salient facet for the concept #riangular, and that the concept
was abstracted from an experiential base in which shape, but not color, was the perceived
similarity within the group of experiences. However, I cannot actually introspect on this
selection process.

Likewise, I may have glimpsed the existence of a conflict, and that it was a conflict
resulting from the 2D nature of “triangular” versus the 3D nature of “light bulb,” but
how the conflict was detected is not apparent in the subjective glimpse. And the res-
olution of the conflict, the transformation of the 2D #riangle shape into a 3D pyramid
shape, was apparently instantaneous from my introspective vantage point. Again, I can
guess at the underlying process—in this case, that several already-associated conceptual
neighbors of “triangle” were imposed on “light bulb” in parallel, and the best fit selected.
But even if this explanation is correct, the process occurred too fast to be visible to di-
rect introspection. I cannot rule out the possibility that a more complex, more deeply
creative process was involved in the transition from triangle to pyramid, although basic
constraints on human information-processing (the 200 spike/second speed limit of the
underlying neurons) still apply. Nor can I rule out the possibility that there was a unique
serial route from #riangle to pyramid.

The creation of an actual visuospatial image of a pyramidal light bulb is, presumably,
a complex visual process—one that implies the ability of the visuospatial modality to
reverse the usual flow of information and send commands from high-level features to
low-level features, instead of detecting high-level features from low-level features. DGI
hypothesizes that visualization occurs through a flow from high-level feature controllers
to low-level feature controllers, creating an articulated mental image within a sensory
modality through a multistage process that allows the detection of conflicts at higher lev-
els before proceeding to lower levels. The final mental imagery is introspectively visible,
but the process that creates it is mostly opaque.

Some theorists defy introspection to assert that our mental imagery is purely abstract
(Pylyshyn 1981). Yet there exists evidence from neuroanatomy, functional neuroimag-
ing, pathology of neurological disorders, and cognitive psychology to support the con-
tention that mental imagery is directly represented in sensory modalities (Kosslyn 1994).

Finke and Schmidt (1977) show that mental imagery can create visual afterimages simi-

11
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lar to, though weaker than, the afterimages resulting from real visual experience.® Sher-
man and Koch (1986) estimate that while the cat has roughly 10° fibers from the lateral
geniculate nucleus to the visual cortex, there are approximately 107 fibers running in the
opposite direction.” No explanatory consensus currently exists for the existence of the
massive corticothalamic feedback projections, though there are many competing the-
ories; the puzzle is of obvious interest to an Al researcher positing a theory in which
inventing novel mental imagery is more computationally intensive than sensory percep-
tion.

To return to the “triangular lightbulb” example: Once the visuospatial image of a
pyramidal light bulb was fully articulated, the next introspective glimpse was of a con-
flict in visualizing a g/ass pyramid—a pyramid has sharp edges, and sharp glass can cut
the user. This implies the mental imagery had semantic content (knowledge about the
material composition of the pyramidal light bulb), imported from the original “light
bulb” concept, and well-integrated with the visual representation. Like most modern-
day humans, I know from early parental warnings and later real-life confirmation that
sharp glass is dangerous. Thus the rapid visual detection of sharp glass is important
when dealing with real-life sensory experience. I say this to emphasize that no extended
line of intelligent reasoning (which would exceed the 200 Hz speed limit of biological
neurons) is required to react negatively to a fleeting mental image of sharp glass. This
reaction could reasonably happen in a single perceptual step, so long as the same per-
ceptual system which detects the visual signature of sharp glass in real-world sensory
experience also reacts to mental imagery.

The conflict detected was resolved by the imposition of smooth edges on the glass
pyramid making up the pyramidal light bulb. Again, this apparently occurred instantly;
again, nontrivial hidden complexity is implied. To frame the problem in the terms sug-
gested by Hofstadter (1985, 232-259), the imaginative process needed to possess or
create a “knob” governing the image’s transition from sharp edges to rounded edges,
and the possession or creation of this knob is the most interesting part of the process,

not the selection of one knob from many. If the “knob” was created on the fly, it im-

6. Finke and Schmidt showed that afterimages from mental imagery can recreate the McCullough
effect. 'The McCullough effect is a striking illustration of the selective fatiguing of higher-level feature
detectors, in which, following the presentation of alternating green horizontal and red vertical bars, differ-
ently colored afterimages are perceived in the white space of a background image depending on whether
the background image has horizontal black-and-white bars (red afterimage) or vertical black-and-white
bars (green afterimage). This is an unusual and counterintuitive visual effect, and not one that a typical

study volunteer would know about and subconsciously “fake” (as Pylyshyn contends).

7. 'The lateral geniculate nucleus is a thalamic body which implements an intermediate stage in visual

processing between the retina and the visual cortex.
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plies a much higher degree of systemic creativity than selecting from among pre-existing
options.

Once the final conflict was resolved by the perceptual imposition of smoothed edges,
the final mental image took on a stable form. Again, in this example, all of the mental
events appeared introspectively to happen automatically and without conscious decisions
on my part; I would estimate that the whole process took less than one second.

In concept combination, a few flashes of the intermediate stages of processing may
be visible as introspective glimpses—especially those conflicts that arise to the level of
conscious attention before being resolved automatically. But the extreme rapidity of
the process means the glimpses are even more unreliable than ordinary introspection—
where introspection is traditionally considered unreliable to begin with. To some extent,
this is the point of the illustration narrated above; almost all of the internal complexity
of concepts is hidden away from human introspection, and many theories of Al (even in
the modern era) thus attempt to implement concepts on the token level, e.g., “lightbulb”
as a raw LISP atom.

This traditional problem is why I have carefully avoided using the word symbo/ in
the exposition above. In Al, the term “symbol” carries implicit connotations about
representation—that the symbol is a naked LISP atom whose supposed meaning de-
rives from its relation to the surrounding atoms in a semantic net; or at most a LISP
atom whose content is a “frame-based” LISP structure (that is, whose content is an-
other semantic net). Even attempts to argue against the design assumptions of Good
Old-Fashioned Al (GOFAI) are often phrased in GOFATI’s terms; for example, the
“symbol grounding problem.” Much discussion of the symbol grounding problem has
approached the problem as if the design szarts out with symbols and “grounding” is then
added. In some cases this viewpoint has directly translated to Al architectures; e.g., a
traditional semantic net is loosely coupled to a connectionist sensorimotor system (Hex-
moor, Lammens, and Shapiro 1993).

DGI belongs to the existing tradition that asks, not “How do we ground our semantic
nets?” but rather “What is the underlying stuff making up these rich high-level objects
we call ‘symbols»—an approach presented most beautifully in Hofstadter (1979); see
also Chalmers, French, and Hofstadter (1992). From this viewpoint, without the right
underlying “symbolstuft,” there are no symbols; merely LISP tokens carved in mockery
of real concepts and brought to unholy life by the naming-makes-it-so fallacy.

Imagine sensory modalities as solid objects with a metaphorical surface composed
of the layered feature detectors and their inverse functions as feature controllers. The
metaphorical “symbolstuft” is a pattern that interacts with the feature detectors to test
for the presence of complex patterns in sensory data, or inversely, interacts with the

teature controllers to produce complex mental imagery. Symbols combine through the
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faceted combination of their symbolstuffs, using a process that might be called “holonic
conflict resolution,” where information flows from high-level feature controllers to low-
level feature controllers, and conflicts are detected at each layer as the flow proceeds.
“Holonic” is a useful word to describe the simultaneous application of reductionism and
holism, in which a single quality is simultaneously a combination of parts and a part of
a greater whole (Koestler 1967). For example, a single feature detector may make use
of the output of lower-level feature detectors, and act in turn as an input to higher-level
teature detectors. Note that “holonic” does not imply strict hierarchy, only a general
flow from high-level to low-level.

I apologize for adding yet another term, “holonic conflict resolution,” to a names-
pace already crowded with terms such as “computational temperature” (Mitchell 1993),
“Prignanz” (Koftka 1935), “Hopfield networks” (Hopfield and Tank 1985), “constraint
propagation” (Kumar 1992), and many others. Holonic conflict resolution is certainly
not a wholly new idea, and may even be wholly unoriginal on a feature-by-feature basis,
but the combination of features I wish to describe does not exactly match the existing
common usage of any of the terms above. “Holonic conflict resolution” is intended to
convey the image of a process that flows serially through the layered, holonic structure
of perception, with detected conflicts resolved locally or propagated to the level above,
with a final solution that satisfices. Many of the terms above, in their common usage,
refer to an iterated annealing process which seeks a global minimum. Holonic con-
flict resolution is intended to be biologically plausible; i.e., to involve a smooth flow of
visualization which is computationally tractable for parallel but speed-limited neurons.

Holonic conflict resolution is not proposed as a complete solution to perceptual prob-
lems, but rather as the active canvas for the interaction of concepts with mental imagery.
In theoretical terms, holonic conflict resolution is a structural framework within which
to posit specific conflict-detection and conflict-resolution methods. Holonic imagery is
the artist’s medium within which symbolstuff paints mental pictures such as “triangular
light bulb.”

A constructive account of concepts and symbolstuff would need to supply:

1. A description of how a concept is satisfied by and imposed on referents in a sensory
modality.

2. A symbolstuft representation satisfying (1) that can contain the internal complexity

needed for faceted concept combination.

3. A representation satisfying (1) and (2), such that it is computationally tractable to

abstract new Concepts using sensory CXPCI'iCIlCC as raw material.
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'This is 7ot an exhaustive list of concept functionality; these are just the three most “in-
teresting” challenges.® These challenges are interesting because the difficulty of solving
them simultaneously seems to be the multiplicative (rather than additive) product of
the difficulties of solving them individually. Other design requirements for a construc-
tive account of concepts would include: association to nearby concepts; supercategories
and subcategories; exemplars stored in memory; prototype and typicality effects (Rosch
1978); and many others (see, e.g., Lakoft [1987]).

The interaction of concepts with modalities, and the interaction of concepts with
each other, illustrate what I believe to be several important rules about how to approach
Al

'The first principle is that of multiple levels of organization. 'The human phenotype is
composed of atoms,” molecules, proteins, cells, tissues, organs, organ systems, and fi-
nally the complete body—eight distinguishable layers of organization, each successive
layer built above the preceding one, each successive layer incorporating evolved adaptive
complexity. Some useful properties of the higher level may emerge naturally from lower-
level behaviors, but not all of them; higher-level properties are also subject to selection
pressures on heritable variation and the elaboration of complex functional adaptations.
In postulating multiple levels of organization, I am not positing that the behaviors of all
higher layers emerge automatically from the lowest layer.

If T had to pick one single mistake that has been the mosz debilitating in Al it would
be implementing a process too close to the token level—trying to implement a high-level
process without implementing the underlying layers of organization. Many proverbial
Al pathologies result at least partially from omitting lower levels of organization from
the design.

Take, for example, that version of the “frame problem”—sometimes also considered a
form of the “commonsense problem”—in which intelligent reasoning appears to require
knowledge of an infinite number of special cases. Consider a CPU which adds two
32-bit numbers. The higher level consists of two integers which are added to produce
a third integer. On a lower level, the computational objects are not regarded as opaque
“Integers,” but as ordered structures of 32 bits. When the CPU performs an arithmetic
operation, two structures of 32 bits collide, under certain rules which govern the local

interactions between bits, and the result is a new structure of 32 bits. Now consider the

8. “Interesting” is here used in its idiomatic sense of “extremely hard.”

9. The levels begin with “atoms” rather than “quarks” or “molecules” because the atomic level is the
highest layer selected from a bounded set of possible elements (ions and isotopes notwithstanding).
“Quarks” are omitted from the list of layers because no adaptive complexity is involved; evolution ex-

ercises no control over how quarks come together to form atoms.
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woes of a research team, with no knowledge of the CPU’s underlying implementation,
that tries to create an arithmetic “expert system” by encoding a vast semantic network
containing the “knowledge” that two and two make four, twenty-one and sixteen
make thirty-seven, and so on. This giant lookup table requires eighteen billion billion
entries for completion.

In this hypothetical world where the lower-level process of addition is not under-
stood, we can imagine the “common-sense” problem for addition; the launching of dis-
tributed Internet projects to “encode all the detailed knowledge necessary for addition”;
the frame problem for addition; the philosophies of formal semantics under which the
LISP token thirty-seven is meaningful because it refers to thirty-seven objects in
the external world; the design principle that the token thirty-seven has no internal
complexity and is rather given meaning by its network of relations to other tokens; the
“number grounding problem”; the hopeful futurists arguing that past projects to create
Artificial Addition failed because of inadequate computing power; and so on.

To some extent this is an unfair analogy. Even if the thought experiment is basically
correct, and the woes described would result from an attempt to capture a high-level
description of arithmetic without implementing the underlying lower level, this does not
prove the analogous mistake is the source of these woes in the real field of Al. And to
some extent the above description is unfair even as a thought experiment; an arithmetical
expert system would not be as bankrupt as semantic nets. The regularities in an “expert
system for arithmetic” would be real, noticeable by simple and computationally feasible
means, and could be used to deduce that arithmetic was the underlying process being
represented, even by a Martian reading the program code with no hint as to the intended
purpose of the system. The gap between the higher level and the lower level is not
absolute and uncrossable, as it is in semantic nets.

An arithmetic expert system that leaves out one level of organization may be recov-
erable. Semantic nets leave out multiple levels of organization. Omitting all the experi-
ential and sensory grounding of human symbols leaves no raw material to work with. If
all the LISP tokens in a semantic net were given random new names, there would be no
way to deduce whether G0025 formerly meant hamburger or Johnny Carson. Harnad
(1990) describes the symbol grounding problem arising out of semantic nets as being
similar to trying to learn Chinese as a first language using only a Chinese-to-Chinese
dictionary.

I believe that many (though not all) cases of the “commonsense problem” or “frame
problem” arise from trying to store all possible descriptions of high-level behaviors that,
in the human mind, are modeled by visualizing the lower level of organization from

which those behaviors emerge. For example, Lakoff and Johnson (1999) give a sample
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list of “built-in inferences” emerging from what they identify as the Source-Path-Goal

metaphor:

* If you have traversed a route to a current location, you have been at all previous

locations on that route.
* If you travel from A to B and from B to C, then you have traveled from A to C.

* If X and Y are traveling along a direct route from A to B and X passes Y, then
X is farther from A and closer to B than Y is.

* (et cetera)

A general intelligence with a visual modality has no need to explicitly store an infinite
number of such statements in a theorem-proving production system. The above state-
ments can be perceived on the fly by inspecting depictive mental imagery. Rather than
storing knowledge about trajectories, a visual modality actually simulates the behavior of
trajectories. A visual modality uses low-level elements, metaphorical “pixels” and their
holonic feature structure, whose behaviors locally correspond to the real-world behaviors
of the referent. There is a mapping from representation to referent, but it is a mapping
on a lower level of organization than traditional semantic nets attempt to capture. The
correspondence happens on the level where 13 is the structure 00001101, not on the
level where it is the number thirteen.

I occasionally encounter some confusion about the difference between a visual modal-
ity and a microtheory of vision. Admittedly, microtheories in theorem-proving systems
are well known in Al, although I personally consider it to be a paradigm of little
worth, so some confusion is understandable. But layered feature extraction in the vi-
sual modality—which is an established fact of neuroscience—is also very well known
even in the pure computer science tradition of Al, and has been well-known ever since
the tremendously influential David Marr (1982) book Vision and his earlier papers. To
make the difference explicit, the human visual cortex “knows” about edge detection,
shading, textures of curved surfaces, binocular disparities, color constancy under natu-
ral lighting, motion relative to the plane of fixation, and so on. The visual cortex does
not know about butterflies. In fact, a visual cortex “knows” nothing; a sensory modality
contains behaviors which correspond to environmental invariants, not knowledge about
environmental regularities.

This illustrates the second-worst error in Al, the failure to distinguish between #hings
that can be hardwired and things that must be learned. We are not preprogrammed to
know about butterflies. Evolution wired us with visual circuitry that makes sense of
the sensory image of the butterfly, and with object-recognition systems that form visual

categories. When we see a butterfly, we are then able to recognize future butterflies
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as belonging to the same kind. Sometimes evolution bypasses this system to gift us
with visual instincts, but this constitutes a tiny fraction of visual knowledge. A modern
human recognizes a vast number of visual categories with no analogues in the ancestral
environment.

What problems result from failing to distinguish between things that can be hard-
wired and things that must be learned? “Hardwiring what should be learned” is so uni-
versally combined with “collapsing the levels of organization” that it is difficult to sort
out the resulting pathologies. An expert systems engineer, in addition to believing that
knowledge of butterflies can be preprogrammed, is also likely to believe that knowing
about butterflies consists of a butterfly LISP token which derives its meaning from
its relation to other LISP tokens—rather than butterfly being a stored pattern that inter-
acts with the visual modality and recognizes a butterfly. A semantic net not only lacks
richness, it lacks the capacity to represent richness. Thus, I would attribute the symbol
grounding problem to “collapsing the levels of organization,” rather than “hardwiring
what should be learned.”

But even if a programmer who understood the levels of organization tried to create
butterfly-recognizing symbolstuff by hand, I would still expect the resulting butterfly
pattern to lack the richness of the learned butterfly pattern in a human mind. When
the human visual system creates a busterfly visual category, it does not write an opaque,
procedural butterfly-recognition codelet using abstract knowledge about butterflies and
then tag the codelet onto a butterfly frame. Human visual categorization abstracts the
butterfly category from a store of visual experiences of butterflies.

Furthermore, visual categorization—the general concept-formation process, not just
the temporal visual processing stream—Ileaves behind an association between the butter-
fly concept and the stored memories from which “butterfly” was abstracted; it associates
one or more exemplars with the butterfly category; it associates the butterfly category
through overlapping territory to other visual categories such as futtering; it creates but-
terfly symbolstuff that can combine with other symbolstufts to produce mental imagery
of a blue butterfly; and so on. To the extent that a human lacks the patience to do these
things, or to the extent that a human does them in fragile and hand-coded ways rather
than using robust abstraction from a messy experiential base, /ack of richness will result.
Even if an Al needs programmer-created concepts to bootstrap further concept forma-
tion, bootstrap concepts should be created using programmer-directed tool versions of
the corresponding Al subsystems, and the bootstrap concepts should be replaced with
Al-formed concepts as early as possible.

‘Two other potential problems emerging from the use of programmer-created content

are opacity and isolation.
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Opacity refers to the potential inability of an Al’s subsystems to modify content that
originated outside the Al If a programmer is creating cognitive content, it should at least
be the kind of content that the Al could have created on its own; it should be content
in a form that the AI’s cognitive subsystems can manipulate. The best way to ensure
that the Al can modify and use internal content is to have the Al create the content. If
an AT’s cognitive subsystems are powerful enough to create content independently, then
hopefully those same subsystems will be capable of adding to that content, manipulating
it, bending it in response to pressures exerted by a problem, and so on. What the Al
creates, the Al can use and improve. Whatever the Al accomplishes on its own is a part
of the Al’s mind; the Al “owns” it and is not simply borrowing it from the programmers.
'This is a principle that extends far beyond abstracting concepts!

Isolation means that if a concept, or a piece of knowledge, is handed to the Al on
a silver platter, the Al may be isolated from the things that the Al would have needed
to learn first in order to acquire that knowledge naturally, in the course of building up
successive layers of understanding to handle problems of increasing complexity. The
concept may also be isolated from the other things that the AI would have learned at
around the same time, which may mean a dearth of useful associations and slippages.
Programmers may try to second-guess isolation by teaching many similar knowledges

at around the same time, but that is no substitute for a natural ecology of cognition.

2.2. Levels of Organization in Deliberation

'The model of deliberation presented in this chapter requires five distinct layers of orga-

nization, each layer built on top of the underlying layer.

* 'The bottom layer is source code and data structures—complexity that is manipulated
directly by the programmer. The equivalent layer for humans is neurons and neural

circuitry.

* The next layer is sensory modalities. In humans, the archetypal examples of sen-
sory modalities are sight, sound, touch, taste, smell, and so on;'° implemented by
the visual areas, auditory areas, et cetera. In biological brains, sensory modali-
ties come the closest to being “hardwired”; they generally involve clearly defined
stages of information-processing and feature-extraction, sometimes with individ-
ual neurons playing clearly defined roles. Thus, sensory modalities are some of the
best candidates for processes that can be directly coded by programmers without

rendering the system crystalline and fragile.

10. Other human modalities include, e.g., proprioception and vestibular coordination.
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* 'The next layer is concepts. Concepts (also sometimes known as “categories,” or “sym-
bols”) are abstracted from our experiences. Abstraction reifies a perceived similarity
within a group of experiences. Once reified, the common quality can then be used
to determine whether new mental imagery satisfies the quality, and the quality can
be imposed on a mental image, altering it. Having abstracted the concept “red,”
we can take a mental image of a non-red object (for example, grass) and imagine
“red grass.” Concepts are patterns that mesh with sensory imagery; concepts are
complex, flexible, reusable patterns that have been reified and placed in long-term

storage.

* 'The next layer is #houghts, built from structures of concepts. By imposing concepts
in targeted series, it becomes possible to build up complex mental images within
the workspace provided by one or more sensory modalities. The archetypal exam-
ple of a thought is a human “sentence”—an arrangement of concepts, invoked by
their symbolic tags, with internal structure and targeting information that can be
reconstructed from a linear series of words using the constraints of syntax, con-
structing a complex mental image that can be used in reasoning. Thoughts (and
their corresponding mental imagery) are the disposable one-time structures, built
from reusable concepts, that implement a non-recurrent mind in a non-recurrent

world.

* Finally, it is sequences of thoughts that implement de/iberation—explanation, pre-
diction, planning, design, discovery, and the other activities used to solve knowl-

edge problems in the pursuit of real-world goals.

Although the five-layer model is central to the DGI theory of intelligence, the rule
of Necessary But Not Sufficient still holds. An Al project will not succeed by virtue of
“implementing a five-layer model of intelligence, just like the human brain.” It must be
the right five layers. It must be the right modalities, used in the right concepts, coming
together to create the right thoughts seeking out the righs goals.

'The five-layer model of deliberation is not inclusive of everything in the DGI theory
of mind, but it covers substantial territory, and can be extended beyond the deliberation
superprocess to provide a loose sense of which level of organization any cognitive process
lies upon. Observing that the human body is composed of molecules, proteins, cells,
tissues, and organs is not a complete design for a human body, but it is nonetheless
important to know whether something is an organ or a protein. Blood, for example, is
not an prototypical tissue, but it is composed of cells, and is generally said to occupy the
tissue level of organization of the human body. Similarly, the hippocampus, in its role as
a memory-formation subsystem, is not a sensory modality, but it can be said to occupy

the “modality level”: It is brainware (a discrete, modular chunk of neural circuitry); it
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lies above the neuron/code level; it has a characteristic tiling/wiring pattern as the result
of genetic complexity; it interacts as an equal with the subsystems comprising sensory
modalities.

Generalized definitions of the five levels of organization might be as follows:

Code-level, hardware-level: No generalized definition is needed, except that the bio-

logical equivalent is the neural level or wetware level.

Modality-level: Subsystems which, in humans, derive their adaptive complexity from
genetic specification—or rather from the genetic specification of an initial tiling
pattern and a self-wiring algorithm, and from exposure to invariant environmental
complexity.! The Al equivalent is complexity which is known in advance to the
programmer and which is directly specified through programmer efforts. Full sys-
tems on this level are modular parts of the cognitive supersystem—one of a large
but limited number of major parts making up the mind. Where the system in
question is a sensory modality or a system which clearly interrelates to the sen-
sory modalities and performs modality-related tasks, the system can be referred
to as modality-level. Similarly, a subsystem or subprocess of a major modality-
level system, or a minor function of such a subsystem, may also be referred to as
modality-level. Where this term is inappropriate, because a subsystem has little or

no relation to sensory modalities, the subsystem may be referred to as brainware.!?

Concept-level: Concepts are cognitive objects which are placed in long-term storage,
and reused as the building blocks of thoughts. The generalization for this level of
organization is learned complexity: cognitive content which is derived from the en-
vironment and placed in long-term storage, and which thereby becomes part of the
permanent reservoir of complexity with which the Al challenges future problems.
'The term concept-level might optionally be applied to any learned complexity that
resembles categories; i.e., learned complexity that interacts with sensory modali-
ties and acts on sensory modalities. Regardless of whether they are conceptlike (an
issue considered later), other examples of learned complexity include declarative

beliefs and episodic memories.

11. Environmental complexity of this type is reliably present and is thus “known in advance” to the
genetic specification, and in some sense can be said to be a constant and reliable part of the genetic

design.

12. The term “brainware” is not necessarily anthropomorphic, since the term “brain” can be extended to
refer to nonbiological minds. The biology-only equivalent is often half-jokingly referred to as wetware,
but the term “wetware” should denote the human equivalent of the code level, since only neurons and

synapses are actually wet.
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Thought-level: A thought is a specific structure of combinatorial symbols which builds
or alters mental imagery. The generalizable property of thoughts is their imme-
diacy. Thoughts are not evolved/programmed brainware, or a long-term reservoir
of learned complexity; thoughts are constructed on a moment-by-moment basis.
Thoughts make up the life history of a non-recurrent mind in a non-recurrent uni-
verse. The generalized thought level extends beyond the mentally spoken sentences
in our stream of consciousness; it includes all the major cognitive events occurring
within the world of active mental imagery, especially events that involve structuring

the combinatorial complexity of the concept level.

Deliberation: Which, like the code level, needs no generalization. Deliberation de-
scribes the activities carried out by patterns of thoughts. The patterns in delibera-
tion are not just epiphenomenal properties of thought sequences; the deliberation
level is a complete layer of organization, with complexity specific to that layer. In
a deliberative Al, it is patterns of thoughts that plan and design, transforming ab-
stract high-level goal patterns into specific low-level goal patterns; it is patterns of
thoughts that reason from current knowledge to predictions about unknown vari-
ables or future sensory data; it is patterns of thoughts that reason about unexplained
observations to invent hypotheses about possible causes. In general, deliberation
uses organized sequences of thoughts to solve knowledge problems in the pursuit

of real-world goals.

Even for the generalized levels of organization, not everything fits cleanly into one
level or another. While the hardwired-learned-invented trichotomy usually matches
the modality-concept-thought trichotomy, the two are conceptually distinct, and some-
times the correspondence is broken. But the levels of organization are almost always
useful—even exceptions to the rule are more easily seen as partial departures than as

complete special cases.

2.3. 'The Code Level

'The code level is composed of functions, classes, modules, packages; data types, data
structures, data repositories; all the purely programmatic challenges of creating Al. Ar-
tificial Intelligence has traditionally been much more intertwined with computer pro-
gramming than it should be, mostly because of attempts to overcompress the levels of
organization and implement thought sequences directly as programmatic procedures, or
implement concepts directly as LISP atoms or LISP frames. The code level lies directly
beneath the modality level or brainware level; bleedover from modality-level challenges
may show up as legitimate programmatic problems, but little else—not thoughts, cog-

nitive content, or high-level problem-solving methods.
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Any good programmer—a programmer with a feeling for aesthetics—knows the te-
dium of solving the same special case, over and over, in slightly different ways; and also
the triumph of thinking through the metaproblem and creating a general solution that
solves all the special cases simultaneously. As the hacker Jargon File observes, “Real
hackers generalize uninteresting problems enough to make them interesting and solve
them—thus solving the original problem as a special case (and, it must be admitted,
occasionally turning a molehill into a mountain, or a mountain into a tectonic plate)”
(Raymond 2004a).

'This idiom does not work for general Al! A real Al would be the ultimate general solu-
tion because it would encapsulate the cognitive processes that human programmers use
to write any specific piece of code, but this ultimate solution cannot be obtained through
the technique of successively generalizing uninteresting problems into interesting ones.

Programming is the art of translating a human’s mental model of a problem-solution
into a computer program; that is, the art of translating thoughts into code. Program-
ming inherently violates the levels of organization; it leads directly into the pitfalls of
classical Al. The underlying low-level processes that implement intelligence are of a
fundamentally different character than high-level intelligence itself. When we translate
our thoughts about a problem into code, we are establishing a correspondence between
code and the high-level content of our minds, not a correspondence between code and the
dynamic process of a human mind. In ordinary programming, the task is to get a com-
puter to solve a specific problem; it may be an “interesting” problem, with a very large
domain, but it will still be a specific problem. In ordinary programming the problem is
solved by taking the human thought process that would be used to solve an instance of
the problem, and translating that thought process into code that can also solve instances
of the problem. Programmers are humans who have learned the art of inventing thought
processes, called “algorithms,” that rely only on capabilities an ordinary computer pos-
sesses.

The reflexes learned by a good, artistic programmer represent a fundamental danger
when embarking on a general Al project. Programmers are trained to solve problems,
and trying to create general Al means solving the programming problem of creating a
mind that solves problems. There is the danger of a short-circuit, of misinterpreting the
problem task as writing code that directly solves some specific challenge posed to the
mind, instead of building a mind that can solve the challenge with general intelligence.
Code, when abused, is an excellent tool for creating long-term problems in the guise of
short-term solutions.

Having described what we are forbidden to do with code, what Jegitimate challenges

lie on this level of organization?
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Some programming challenges are universal. Any modern programmer should be
familiar with the world of compilers, interpreters, debuggers, Integrated Development
Environments, multithreaded programming, object orientation, code reuse, code main-
tenance, and the other tools and traditions of modern-day programming. It is difficult
to imagine anyone successfully coding the brainware level of general intelligence in as-
sembly language—at least if the code is being developed for the first time. In that sense
object orientation and other features of modern-day languages are “required” for Al
development; but they are necessary as productivity tools, not because of any deep sim-
ilarity between the structure of the programming language and the structure of general
intelligence. Good programming tools help with Al development but do not help with
AL

Some programming challenges, although universal, are likely to be unusually severe in
Al development. Al development is exploratory, parallelized, and large. Writing a great
deal of exploratory code means that IDEs with refactoring support and version control
are important, and that modular code is even more important than it is usually—or at
least, code that is as modular as possible given the highly interconnected nature of the
cognitive supersystem.

Parallelism on the hardware level is currently supported by symmetric multiprocess-
ing chip architectures (Hwang and Xu 1998), NOW (network-of-workstations) clus-
tering (Anderson, Culler, and Patterson 1995) and Beowulf clustering (Sterling et al.
1995), and message-passing APIs such as PVM (Geist et al. 1994) and MPI (Gropp,
Lusk, and Skjellum 1994). However, software-level parallelism is not handled well by
present-day languages and is therefore likely to present one of the greatest challenges.
Even if software parallelism were well-supported, Al developers will still need to spend
time explicitly thinking on how to parallelize cognitive processes—human cognition
may be massively parallel on the lower levels, but the overall flow of cognition is still
serial.

Finally, there are some programming challenges that are likely to be unique to Al

We know it is possible to evolve a general intelligence that runs on a hundred tril-
lion synapses with characteristic limiting speeds of approximately 200 spikes per second.
An interesting property of human neurobiology is that, at a limiting speed of 150 me-
ters per second for myelinated axons, each neuron is potentially within roughly a single
“clock tick” of any other neuron in the brain.!* Sandberg (1999) describes a quantity

S that translates to the wait time, in clock cycles, between different parts of a cogni-

13. The statement that each neuron is “potentially” within one clock tick of any other neuron is meant as
a statement about the genome, not a statement about developmental neurology—that is, it would probably

require a genetic change to produce a previously forbidden connection.
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tive system—the minimum time it could take for a signal to travel between the most
distant parts of the system, measured in the system’s clock ticks. For the human brain,
S'is on the rough order of 1—in theory, at least. In practice, axons take up space and
myelinated axons take up even more space, so the brain uses a highly modular architec-
ture, but there are still long-distance pipes such as the corpus callosum. Currently, S is
much greater than 1 for clustered computing systems. S is greater than 1 even within a
single-processor computer system; Moore’s Law for intrasystem communications band-
width describes a substantially slower doubling time than processor speeds. Increasingly
the limiting resource of modern computing systems is not processor speed but memory
bandwidth (Wulf and McKee 1995) (and this problem has gotten worse, rather than
better, since 1995).

One class of purely programmatic problems that are unique to Al arise from the need
to “port” intelligence from massively parallel neurons to clustered computing systems (or
other human-programmable substrate). It is conceivable, for example, that the human
mind handles the cognitive process of memory association by comparing current working
imagery to all stored memories, in parallel. We have no particular evidence that the
human mind uses a brute force comparison, but it cou/d be brute-forced. The human
brain acknowledges no distinction between CPU and RAM. If there are enough neurons
to store a memory, then the same neurons may presumably be called upon to compare
that memory to current experience. (‘This holds true even if the correspondence between
neural groups and stored memories is many-to-many instead of one-to-one.)

Memory association may or may not use a “compare” operation (brute force or oth-
erwise) of current imagery against all stored memories, but it seems likely that the brain
uses a massively parallel algorithm at one point or another of its operation; memory
association is simply a plausible candidate. Suppose that memory association is a brute-
force task, performed by asking all neurons engaged in memory storage to perform a
“compare” against patterns broadcast from current working imagery. Faced with the de-
sign requirement of matching the brute force of 10* massively parallel synapses with a
mere clustered system, a programmer may be tempted to despair. There is no a priori
reason why such a task should be possible.

Faced with a problem of this class, there are two courses the programmer can take.
'The first is to implement an analogous “massive compare” as efficiently as possible on the
available hardware—an algorithmic challenge worthy of Hercules, but past programmers
have overcome massive computational barriers through heroic efforts and the relentless
grinding of Moore’s Law. The second road—much scarier, with even less of a guarantee
that success is possible—is to redesign the cognitive process for different hardware.

'The human brain’s most fundamental limit is its speed. Anything that happens in less

than a second perforce must use less than 200 sequential operations, however massively
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parallelized. If the human brain really does use a massively parallel brute-force compare
against all stored memories to handle the problem of association, it’s probably because
there isn't time to do anything else! The human brain is massively parallel because mas-
sive parallelism is the only way to do anything in 200 clock ticks. If modern computers
ran at 200 Hz instead of 2 GHz, PCs would also need 10 processors to do anything
interesting in realtime.

A sufficiently bold general Al developer, instead of trying to reimplement the cog-
nitive process of association as it developed in humans, might instead ask: What would
this cognitive subsystem look like, if it had evolved on hardware instead of wetware? 1f we
remove the old constraint of needing to complete in a handful of clock ticks, and add
the new constraint of not being able to ofthandedly “parallelize against all stored mem-
ories,” what is the new best algorithm for memory association? For example, suppose
that you find a method of “fuzzy hashing” a memory, such that mostly similar memo-
ries automatically collide within a container space, but where the fuzzy hash inherently
requires an extended linear series of sequential operations that would have placed “fuzzy
hashing” out of reach for realtime neural operations. “Fuzzy hashing” would then be a
strong candidate for an alternative implementation of memory association.

A computationally cheaper association subsystem that exploits serial speed instead of
parallel speed, whether based around “fuzzy hashing” or something else entirely, might
still be qualitatively less intelligent than the corresponding association system within
the human brain. For example, memory recognition might be limited to clustered con-
texts rather than being fully general across all past experience, with the Al often missing
“obvious” associations (where “obvious” has the anthropocentric meaning of “computa-
tionally easy for a human observer”). In this case, the question would be whether the
overall general intelligence could function well enough to get by, perhaps compensating
for lack of associational breadth by using longer linear chains of reasoning. The differ-
ence between serialism and parallelism, on a low level, would propagate upward to create
cognitive differences that compensate for the loss of human advantages or exploit new
advantages not shared by humans.

Another class of problem stems from “porting” across the extremely different pro-
gramming styles of evolution versus human coding. Human-written programs typically
involve a long series of chained dependencies that intersect at single points of failure—
“crystalline” is a good term to describe most human code. Computation in neurons has
a different character. Over time our pictures of biological neurons have evolved from
simple integrators of synaptic inputs that fire when a threshold input level is reached,
to sophisticated biological processors with mixed analog-digital logics, adaptive plastic-
ity, dendritic computing, and functionally relevant dendritic and synaptic morphologies

(Koch and Segev 2000). What remains true is that, from an algorithmic perspective,
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neural computing uses roughly arithmetical operations'* that proceed along multiple
intertwining channels in which information is represented redundantly and processed
stochastically. Hence, it is easier to “train” neural networks—even nonbiological connec-
tionist networks—than to train a piece of human-written code. Flipping a random bit
inside the state of a running program, or flipping a random bit in an assembly-language
instruction, has a much greater effect than a similar perturbation of a neural network.
For neural networks the fizness landscapes are smoother. Why is this? Biological neural
networks need to tolerate greater environmental noise (data error) and processor noise
(computational error), but this is only the beginning of the explanation.

Smooth fitness landscapes are a useful, necessary, and fundamental outcome of evolu-
tion. Every evolutionary success starts as a mutation—an error—or as a novel genetic
combination. A modern organism, powerfully adaptive with a large reservoir of genetic
complexity, necessarily possesses a very long evolutionary history; that is, the genotype
has necessarily passed through a very large number of successful mutations and recom-
binations along the road to its current form. The “evolution of evolvability” is most
commonly justified by reference to this historical constraint (Dawkins 1996), but there
have also been attempts to demonstrate local selection pressures for the characteristics
that give rise to evolvability (Wagner and Altenberg 1996), thus averting the need to in-
voke the controversial agency of species selection. Either way, smooth fitness landscapes
are part of the design signature of evolution.

“Smooth fitness landscapes” imply, among other things, that a small perturbation in
the program code (genetic noise), in the input (environmental noise), or in the state of
the executing program (processor noise), is likely to produce at most a small degrada-
tion in output quality. In most human-written code, a small perturbation of any kind
usually causes a crash. Genomes are built by a cumulative series of point mutations
and random recombinations. Human-written programs start out as high-level goals
which are translated, by an extended serial thought process, into code. A perturbation
to human-written code perturbs the code’s final form, rather than its first cause, and the
code’s final form has no history of successful mutation. The thoughts that gawe rise to
the code probably have a smooth fitness metric, in the sense that a slight perturbation
to the programmer’s state of mind will probably produce code that is at most a little
worse, and possibly a little better. Human thoughts, which are the original source of
human-written code, are resilient; the code itself is fragile. The dream solution would

be a programming language in which human-written, top-down code somehow had the

14. Note that biological neurons can easily implement multiplication as well as addition and subtraction
(Koch and Poggio 1992), plus low-pass and band-pass filtering, normalization, gain control, saturation,
amplification, thresholding, and coincidence detection (Koch 1999).
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smooth fitness landscapes that are characteristic of accreted evolved complexity, but this
is probably far too much to ask of a programming language. The difference between
evolution and design runs deeper than the difference between stochastic neural circuitry
and fragile chip architectures. On the other hand, using fragile building blocks can't
possibly Aelp, so a language-level solution might solve at least some of the problem.

'The importance of smooth fitness landscapes holds true for all levels of organization.
Concepts and thoughts should not break as the result of small changes. The code level
is being singled out because smoothness on the code level represents a different kind
of problem than smoothness on the higher levels. On the higher levels, smoothness
is a product of correctly designed cognitive processes; a learned concept will apply to
messy new data because it was abstracted from a messy experiential base. Given that
Al complexity lying within the concept level requires smooth fitness landscapes, the
correct strategy is to duplicate the smoothness on that level—to accept as a high-level
design requirement that the Al produce error-tolerant concepts abstracted from messy
experiential bases.

On the code level, neural circuitry is smooth and stochastic by the nature of neurons
and by the nature of evolutionary design. Human-written programs are sharp and frag-
ile (“crystalline”) by the nature of modern chip architectures and by the nature of human
programming. The distinction is not likely to be erased by programmer effort or new
programming languages. The long-term solution might be an Al with a sensory modal-
ity for code (see Section 3), but that is not likely to be attainable in the early stages.
'The basic code-level “stuft” of the human brain has built-in support for smooth fitness
landscapes, and the basic code-level “stuff” of human-written computer programs does
not. Where human processes rely on neural circuitry being automatically error-tolerant
and trainable, it will take additional programmatic work to “port” that cognitive process
to a new substrate where the built-in support is absent. The final compromise solu-
tion may have error tolerance as one explicit design feature among many, rather than
error-tolerance naturally emerging from the code level.

There are other important features that are also supported by biological neural

networks—that are “natural” to neural substrate. These features probably include:
* Optimization for recurring problems
* Completion of partial patterns
* Similarity recognition (detection of static pattern repetition)
* Recurrence recognition (detection of temporal repetition)
* Clustering detection, cluster identification, and sorting into identified clusters

* Training for pattern recognition and pattern completion
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* Massive parallelism

Again, this does not imply an unbeatable advantage for biological neural networks. In
some cases wetware has very poor feature support, relative to contemporary hardware.

Contemporary hardware has better support for:

* Reflectivity and execution traces
* Lossless serialization (storage and retrieval) and lossless pattern transformations
* Very-high-precision quantitative calculations

* Low-level algorithms which involve extended iteration, deep recursion, and com-

plex branching

* “Massive serialism”; the ability to execute hundreds of millions of sequential steps

per second

'The challenge is using new advantages to compensate for the loss of old advantages, and
replacing substrate-level support with design-level support.

This concludes the account of exceptional issues that arise at the code level. An enu-
meration of a// issues that arise at the code level—for example, serializing the current
contents of a sensory modality for efficient transmission to a duplicate modality on a
different node of a distributed network—would constitute at least a third of a complete
constructive account of a general Al. But programming is not all the work of Al, perhaps
not even most of the work of Al; much of the effort needed to construct an intelligence
will go into prodding the Al into forming certain concepts, undergoing certain expe-
riences, discovering certain beliefs, and learning various high-level skills. These tasks
cannot be accomplished with an IDE. Coding the wrong thing successfully can mess up
an Al project worse than any number of programming failures. I believe that the most

important skill an Al developer can have is knowing what no# to program.

2.4. 'The Modality Level
2.4.1. 'The Evolutionary Design of Modalities in Humans

Most students of Al are familiar with the high-level computational processes of at least
one human sensory modality, vision, at least to the extent of being acquainted with
David Marr’s “2 1/2D world” and the concept of layered feature extraction (Marr 1982).
Further investigations in computational neuroscience have both confirmed Marr’s theory
and rendered it enormously more complex. Although many writers, including myself,
have been known to use the phrase “visual cortex” when talking about the entire visual
modality, this is like talking about the United States by referring to New York. About

50% of the neocortex of nonhuman primates is devoted exclusively to visual processing,
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with over 30 distinct visual areas identified in the macaque monkey (Felleman and Van
Essen 1991).

'The major visual stream is the retinal-geniculate-cortical stream, which goes from the
retina to the lateral geniculate nucleus to the striate cortex™ to the higher visual areas.
Beyond the visual cortex, processing splits into two major secondary streams; the ventral
stream heading toward the temporal lobe for object recognition, and the dorsal stream
heading toward the parietal lobe for spatial processing. The visual stream begins in the
retina, which contains around 100 million rods and 5 million cones, but feeds into an
optic cable containing only around 1 million axons. Visual preprocessing begins in the
first layer of the retina, which converts the raw intensities into center-surround gradi-
ents, a representation that forms the basis of all further visual processing. After several
turther layers of retinal processing, the final retinal layer is composed of a wide variety of
ganglion types that include directionally selective motion detectors, slow-moving edge
detectors, fast movement detectors, uniformity detectors, and subtractive color chan-
nels. The axons of these ganglions form the optic nerve and project to the magnocel-
lular, parvocellular, and koniocellular layers of the lateral geniculate nucleus; currently
it appears that each class of ganglion projects to only one of these layers. It is widely
assumed that further feature detection takes place in the lateral geniculate nucleus, but
the specifics are not currently clear. From the lateral geniculate nucleus, the visual in-
formation stream continues to area V1, the primary visual cortex, which begins feature
extraction for information about motion, orientation, color and depth. From primary
visual cortex the information stream continues, making its way to the higher visual areas,
V2 through V6. Beyond the visual cortex, the information stream continues to temporal
areas (object recognition) and parietal areas (spatial processing).

As mentioned earlier, primary visual cortex sends massive corticothalamic feedback
projections to the lateral geniculate nucleus (Sherman and Koch 1986). Corticocorti-
cal connections are also typically accompanied by feedback projections of equal strength
(Felleman and Van Essen 1991). 'There is currently no standard explanation for these
feedback connections. DGI' requires sensory modalities with feature controllers that
are the inverse complements of the feature detectors; this fits with the existence of the
teedback projections. However, it should be noted that this assertion is not part of
contemporary neuroscience. The existence of feature controllers is allowed for, but not
asserted, by current theory; their existence is asserted, and required, by DGI. (The hy-
pothesis that feedback projections play a role in mental imagery is not limited to DGI;

15. The striate cortex is also known as “primary visual cortex,” “area 17,” and “V1.”

16. Deliberative General Intelligence, the theory of mind presented in this chapter.
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for example, Kosslyn (1994) cites the existence of corticocortical feedback projections
as providing an underlying mechanism for higher-level cognitive functions to control
depictive mental imagery.)

'The general lesson learned from the human visual modality is that modalities are not
microtheories, that modalities are not flat representations of the pixel level, and that
modalities are functionally characterized by successive layers of successively more elabo-
rate feature structure. Modalities are one of the best exhibitions of this evolutionary
design pattern—ascending layers of adaptive complexity—which also appears, albeit
in very different form, in the ascending code-modality-concept-thought-deliberation
model of the human mind. Each ascending layer is more elaborate, more complex,
more flexible, and more computationally expensive. Each layer requires the complexity
of the layer underneath—both functionally within a single organism, and evolutionarily
within a genetic population.

'The concept layer is evolvable in a series of short steps if, and only if, there already
exists substantial complexity within the modality layer. The same design pattern—
ascending layers of adaptive complexity—also appears wizhin an evolved sensory modal-
ity. The first features detected are simple, and can evolve in a single step or a small series
of adaptive short steps. The ability to detect these first features can be adaptive even in
the absence of a complete sensory modality. The eye, which is currently believed to have
independently evolved in many different species, may have begun, each time, as a single
light-sensitive spot on the organism’s skin.

In modalities, each additional layer of feature detectors makes use of the information
provided by the first layer of feature detectors. In the absence of the first layer of feature
detectors, the “code” for the second layer of feature detectors would be too complex to
evolve in one chunk. With the first layer of feature detectors already present, feature
detectors in the second layer can evolve in a single step, or in a short series of locally
adaptive steps. The successive layers of organization in a sensory modality are a beautiful
illustration of evolution’s design signature, the functional ontogeny of the information
recapitulating the evolutionary phylogeny.

Evolution is a good teacher but a poor role model; is this design a bug or a feature?
I would argue that it is generally a feature. There is a deep correspondence between
evolutionarily smooth fitness landscapes and computationally smooth fitness landscapes.
'There is a deep correspondence between each successive layer of feature detectors being
evolvable, and each successive layer of feature detectors being computable in a way that
is “smooth” rather than “fragile,” as described in the earlier discussion of the code layer.
Smooth computations are more evolvable, so evolution, in constructing a system incre-

mentally, tends to construct linear sequences or ascending layers of smooth operations.
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An Al designer may conceivably discard the requirement that each ascending layer of
teature detection be incrementally useful/adaptive—although this may make the subsys-
tem harder to incrementally develop and test! It is cognitively important, however, that
successive layers of feature detectors be computationally “smooth” in one specific sense.
DGI concepts interact with inverse feature detectors, “feature controllers,” in order to
construct mental imagery. For the task of imposing a concept and the still more difficult
task of abstracting a concept to be simultaneously tractable, it is necessary that sensory
modalities be a continuum of locally smooth layers, rather than consisting of enormous,
intractable, opaque chunks. There is a deep correspondence between the smooth design
that renders concepts tractable and the smooth architecture emergent from incremental
evolution.

'The feature controllers used to create mental imagery are evolvable and preadaptive in
the absence of mental imagery; feature controllers could begin as top-down constraints
in perceptual processing, or even more simply as a perceptual step which happens to be
best computed by a recurrent network. In both cases, the easiest (most evolvable) archi-
tecture is generally one in which the feedback connection reciprocates the feedforward
connection. Thus, the feature controller layers are not a separate system independent
from the feature detector layers; rather, I expect that what is locally a feature detector is
also locally a feature controller. Again, this smooth reversibility helps render it possible
to learn a single concept which can act as a category detector or a category imposer.
It is the simultaneous solution of concept imposition, concept satisfaction, concept faceting,
and concept abstraction that requires reversible features—feature controllers which are
the local inverses of the feature detectors. I doubt that feature controllers reach all the
way down to the first layers of the retina (I have not heard of any feedback connections
reaching this far), but direct evidence from neuroimaging shows that mental imagery ac-
tivates primary visual cortex (Kosslyn et al. 1993); I am not sure whether analogous tests
have been performed for the lateral geniculate nucleus, but the feedback connections are

there.

2.4.2. 'The Human Design of Modalities in Al

An Al needs sensory modalities—but which modalities> How do those modalities con-
tribute materially to general intelligence outside the immediate modality?

Does an Al need a visuospatial system modeled after the grand complexity of the
visuospatial system in primates and humans? We know more about the human visual
modality than about any other aspect of human neurology, but that doesnt mean we
know enough to build a visual modality from scratch. Furthermore, the human visual

modality is enormously complex, computationally intensive, and fitted to an environ-
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ment which an Al does not necessarily have an immediate need to comprehend. Should
humanlike 3D vision be one of the firs# modalities attempted?!’

I believe it will prove best to discard the human modalities or to use them as inspira-
tion only—to use a completely different set of sensory modalities during the Al’s early
stages. An Al occupies a different environment than a human and direct imitation of
human modalities would not be appropriate. For an AT’s initial learning experiences, I
would advocate placing the Al in complex virtual environments, where the virtual en-
vironments are internal to the computer but external to the AI The programmers would
then attempt to develop sensory modalities corresponding to the virtual environments.
Henceforth I may use the term “microenvironment” to indicate a complex virtual envi-
ronment. The term “microworld” is less unwieldy, but should not be taken as having the
Good Old-Fashioned Al connotation of “microworlds” in which all features are directly
represented by predicate logic, e.g., SHRDLU’s simplified world of blocks and tables
(Winograd 1972).

Abandoning the human modalities appears to introduce an additional fragile depen-
dency on the correctness of the Al theory, in that substituting novel sensory modalities
tor the human ones would appear to require a correct understanding of the nature of sen-
sory modalities and how they contribute to intelligence. This is true, but I would argue
that the existence of an additional dependency is illusory. An attempt to blindly imitate
the human visual modality, without understanding the role of modalities in intelligence,
would be unlikely to contribute to general intelligence except by accident. Our mod-
ern understanding of the human visual modality is not so perfect that we could rely on
the functional completeness of a neurologically inspired design; for example, a design
based only on consensus contemporary theory might omit feature controllers! How-
ever, shifting to microworlds does require that experience in the microworlds reproduce
functionally relevant aspects of experience in real life, including unpredictability, un-
certainty, real-time process control, holonic (part-whole) organization, et cetera. I do
not believe that this introduces an additional dependency on theoretic understanding,
over and above the theoretic understanding that would be required to build an Al that
absorbed complexity from these aspects of real-world environments, but it nonetheless
represents a strong dependency on theoretic understanding.

Suppose we are designing, de novo, a sensory modality and virtual environment. Three
possible modalities that come to mind as reasonable for a very primitive and early-stage

AI, in ascending order of implementational difhiculty, would be:

17. 1 say “human-like” and not “primate-like” or “mammal-like” because of the possibility that the
human visual modality has further adaptations that support the use of mental imagery in deliberation.
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1. A modality for Newtonian billiard balls
2. A modality for a 100x100 “Go” board

3. A modality for some type of interpreted code (a metaphorical “codic cortex”)

In human vision, the very first visual neurons are the “rods and cones” which transduce
impinging environmental photons to a neural representation as sensory information.
For each of the three modalities above, the “rods and cones” level would probably use
essentially the same representation as the data structures used to create the microworld,
or virtual environment, in which the Al is embodied. This is a major departure from the
design of naturally evolved modalities, in which the basic level—the quark level, as far
as we know—is many layers removed from the high-level objects that give rise to the
indirect information that reaches the senses. Evolved sensory modalities devote most
of their complexity to reconstructing the world that gives rise to the incoming sensory
impressions—to reconstructing the 3D moving objects that give rise to the photons
impinging on the rods-and-cones layer of the retina. Of course, choosing vision as an
example is arguably a biased selection; sound is not as complex as vision, and smell
and taste are not as complex as sound. Nonetheless, eliminating the uncertainty and
intervening layers between the true environment and the organism’s sensory data is a
major step. It should significantly reduce the challenges of early Al development, but is
a dangerous step nonetheless because of its distance from the biological paradigm and
its elimination of a significant complexity source.

I recommend eliminating environmental reconstruction as a complexity source in
early Al development. Visualizing the prospect of deliberately degrading the quality
of the Al’s environmental information on one end, and elaborating the Al’s sensory
modality on the other end, I find it likely that the entire operation will cancel out, con-
tributing nothing. An Al that had to learn to reconstruct the environment, in the same
way that evolution learned to construct sensory modalities, might produce interesting
complexity as a result; but if the same programmer is creating environmental complex-
ity and modality complexity, I would expect the two operations to cancel out. While
environmental reconstruction is a nontrivial complexity source within the human brain,
I consider the ratio between the difficulty of programmer development of the complex-
ity, and the contribution of that complexity to general intelligence, to be relatively small.
Adding complexity for environmental reconstruction, by introducing additional layers of
complexity in the microworld and deliberately introducing information losses between
the topmost layer of the microworld and the AI’s sensory receptors, and then attempting
to create an Al modality which could reconstruct the original microworld content from
the final sensory signal, would require a relatively great investment of effort in return for

what I suspect would be a relatively small boost to general intelligence.
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Suppose that for each of the three modalities—billiards, Go, code—the “pre-retinal”
level consists of true and accurate information about the quark level of the virtual mi-
croworld, although perhaps not complete information, and that the essential complexity
which renders the model a “sensory modality” rests in the feature structure, the ascending
layers of feature detectors and descending layers of feature controllers. Which features,
then, are appropriate? And how do they contribute materially to general intelligence?

'The usual statement is that the complexity in a sensory modality reflects regularities
of the environment, but I wish to offer a slightly different viewpoint. To illustrate this
view, I must borrow and severely simplify the punchline of a truly elegant paper, “The
Perceptual Organization of Colors” by Roger Shepard (1992). Among other questions,
this paper seeks to answer the question of trichromancy: Why are there three kinds
of cones in the human retina, and not two, or four? Why is human visual perception
organized into a three-dimensional color space? Historically, it was often theorized that
trichromancy represented an arbitrary compromise between chromatic resolution and
spatial resolution; that is, between the number of colors perceived and the grain size of
visual resolution. As it turns out, there is a more fundamental reason why three color
channels are needed.

To clarify the question, consider that surfaces possess a potentially infinite number
of spectral reflectance distributions. We will focus on spectral reflectance distributions,
rather than spectral power distributions, because adaptively relevant objects that emit
their own light are environmentally rare. Hence the physically constant property of
most objects is the spectral reflectance distribution, which combines with the spectral
power distribution of light impinging on the object to give rise to the spectral power
distribution received by the human eye. The spectral reflectance distribution is defined
over the wavelengths from 400 nm to 700 nm (the visible range), and since wavelength is
a continuum, the spectral reflectance distribution can theoretically require an unlimited
number of quantities to specify. Hence, it is not possible to exactly constrain a spectral
reflectance distribution using only three quantities, which is the amount of information
transduced by human cones.

The human eye is not capable of discriminating among all physically possible re-
flecting surfaces. However, it is possible that for “natural” surfaces—surfaces of the
kind commonly encountered in the ancestral environment—reflectance for each pure
frequency does not vary independently of reflectance for all other frequencies. For ex-
ample, there might exist some set of asis reflectance functions, such that the reflectance
distributions of almost all natural surfaces could be expressed as a weighted sum of the
basis vectors. If so, one possible explanation for the trichromancy of human vision would
be that three color channels are just enough to perform adequate discrimination in a

“natural” color space of limited dimensionality.
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The ability to discriminate between all natural surfaces would be the design recom-
mended by the “environmental regularity” philosophy of sensory modalities. The dimen-
sionality of the internal model would mirror the dimensionality of the environment.

As it turns out, natural surfaces have spectral reflectance distributions that vary along
roughly five to seven dimensions (Maloney 1986). There thus exist natural surfaces
that, although appearing to trichromatic viewers as “the same color,” nonetheless possess
different spectral reflectance distributions.

Shepard (1992) instead asks how many color channels are needed to ensure that the
color we perceive is the same color each time the surface is viewed under different lighting
conditions. The amount of ambient light can also potentially vary along an unlimited
number of dimensions, and the actual light reaching the eye is the product of the spectral
power distribution and the spectral reflectance distribution. A reddish object in bluish
light may reflect the same number of photons of each wavelength as a bluish object in
reddish light. Similarly, a white object in reddish light may reflect mostly red photons,
while the same white object in bluish light may reflect mostly blue photons. And yet
the human visual system manages to maintain the property of color constancy; the same
object will appear to be the same color under different lighting conditions.

Judd et al. (1964) measured 622 spectral power distributions for natural lighting,
under 622 widely varying natural conditions of weather and times of day, and found
that variations in natural lighting reduce to three degrees of freedom. Furthermore,
these three degrees of freedom bear a close correspondence to the three dimensions of
color opponency that were proposed for the human visual system based on experimental

examination (Hurvich and Jameson 1957). The three degrees of freedom are:

1. 'The light-dark variation, which depends on the total light reaching the object.

2. 'The yellow-blue variation, which depends on whether a surface is illuminated by
direct sunlight or is in shade. In shade the surface is illuminated by the Raleigh-
scattered blue light of the sky, but is not directly illuminated by the sun. The corre-
sponding yellow extreme occurs when an object is illuminated only by direct sun-

light; e.g., if sunlight enters through a small channel and skylight is cut off.

3. The red-green variation, which depends on both the elevation of the sun (how much
atmosphere the sun travels through), and the amount of atmospheric water vapor.
E.g., illumination by a red sunset versus illumination at midday. Red wavelengths

are the wavelengths least scattered by dust and most absorbed by water.
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'The three color channels of the human visual system are precisely the number of channels
needed in order to maintain color constancy under natural lighting conditions.!® Three
color channels are not enough to discriminate between all natural surface reflectances,
but three color channels are the exact number required to compensate for ambient nat-
ural lighting and thereby ensure that the same surface is perceptually the “same color”
on any two occasions. This simplifies the adaptively important task of recognizing a
previously experienced object on future encounters.

The lesson I would learn out from this morality tale of color constancy is that sensory
modalities are about inwvariants and not just regularities. Consider the task of designing
a sensory modality for some form of interpreted code. (This is a very challenging task
because human programming languages tend toward non-smooth fitness landscapes, as
previously discussed.) When considering which features to extract, the question I would
ask is not “What regularities are found in code?” but rather “What feature structure is
needed for the Al to perceive two identical algorithms with slightly different imple-
mentations as ‘the same piece of code’” Or more concretely: “What features does this
modality need to extract to perceive the recursive algorithm for the Fibonacci sequence
and the iterative algorithm for the Fibonacci sequence as ‘the same piece of code’”

Tip your head slightly to the left, then slightly to the right. Every retinal receptor
may receive a different signal, but the experienced visual field remains almost exactly
the “same.” Hold up a chess pawn, and tip it slightly to the left or slightly to the right.
Despite the changes in retinal reception, we see the “same” pawn with a slightly different
orientation. Could a sensory modality for code look at two sets of interpreted bytecodes
(or other program listing), completely different on a byte-by-byte basis, and see these
two listings as the “same” algorithm in two slightly different “orientations”?

'The modality level of organization, like the code level, has a characteristic kind of
work that it performs. Formulating a dusterfly concept and seeing two butterflies as
members of the same category is the work of the concept level, but seeing a chess pawn
in two orientations as the same pawn is the work of the modality level. There is overlap
between the modality level and the concept level, just as there is overlap between the code
level and the modality level. But on the whole, the modality level is about invariants
rather than regularities and identities rather than categories.

Similarly, the understanding conferred by the modality level should not be confused
with the analytic understanding characteristic of thoughts and deliberation. Returning

to the example of a codic modality, one possible indication of a serious design error

18. Artificial lighting, which has an “unnatural” spectral power distribution (one that is not the weighted
sum of the natural basis vectors), can cause objects to appear as a different color to the human visual system.

Hence the manufacture and sale of “natural lighting” or “full spectrum” light sources.
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would be constructing a modality that could analyze any possible piece of code equally
well. The very first layer of the retina—rods and cones—is the on/y part of the human
visual system that will work on all possible pixel fields. The rest of the visual system
will only work for the low-entropy pixel fields experienced by a low-entropy organism
in a low-entropy environment. The very next layer, after rods and cones, already relies
on center-surround organization being a useful way to compress visual information; this
only holds true in a low-entropy visual environment.

Designing a modality that worked equally well for any possible computer program
would probably be an indication that the modality was extracting the wrong kind of
information. Thus, one should be wary of an alleged “feature structure” that looks as
it it would work equally well for all possible pieces of code. It may be a valid analyt-
ical method but it probably belongs on the deliberation level, not the modality level.
(Admittedly not every local step of a modality must be dependent on low-entropy input;
some local stages of processing may have the mathematical nature of a lossless transform
that works equally well on any possible input. Also, hardware may be better suited than
wetware to lossless transforms.)

The human brain is constrained by a characteristic serial speed of 200 sequential
steps per second, and by the ubiquitous internal use of the synchronous arrival of associ-
ated information, to arrange processing stages that flow smoothly forward. High-level
“if-then” or “switch-case” logic is harder to arrive at neurally, and extended complex “if-
then” or “switch-case” logic is probably almost impossible unless implemented through
branching parallel circuitry that remains synchronized. Probably an exceptional con-
dition must be ignored, averaged out, or otherwise handled using the same algorithms
that would apply to any other modality content. Can an Al modality use an architec-
ture that applies different algorithms to different pieces of modality content? Can an Al
modality handle exceptional conditions through special-case code? I would advise cau-
tion, for several reasons. First, major “if-then” branches are characteristic of deliberative
processes, and being tempted to use such a branch may indicate a level confusion. Sec-
ond, making exceptions to the smooth flow of processing will probably complicate the
meshing of concepts and modalities. Third, modalities are imperfect but fault-tolerant
processes, and the fault tolerance plays a role in smoothing out the fitness landscapes
and letting the higher levels of organization be built on top; thus, trying to handle a//
the data by detecting exceptional conditions and correcting them, a standard pattern
in human programming, may indicate that the modality is insufficiently fault-tolerant.
Fourth, handling all exceptions is characteristic of trying to handle all inputs and not just
low-entropy inputs. Hence, on the whole, sensory modalities are characterized by the
smooth flow of information through ascending layers of feature detectors. Of course,

detecting an exceptional condition as a feature may turn out to be entirely appropriate!
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Another issue which may arise in artificial sensory modalities is that unsophisticated
artificial modalities may turn out to be significantly more expensive, computationally, for
the effective intelligence they deliver. Sophisticated evolved modalities conserve com-
puting power in ways that might be very difficult for a human programmer to dupli-
cate. An example would be the use of partial imagery, modeling only the features that
are needed for a high-level task (Hayhoe, Bensinger, and Ballard 1998); a simplified
modality that does not support partial imagery may consume more computing power.
Another example would be the human visual system’s selective concentration on the cen-
ter of the visual field—the “foveal architecture,” in which areas of the visual field closer
to the center are allocated a greater number of neurons. The cortical magnification fac-
tor for primates is inverse-linear (Tootell et al. 1982); the complex logarithm is the only
two-dimensional map function that has this property (Schwartz 1977), as confirmed ex-
perimentally by Schwartz, Munsif, and Albright (1989). A constant-resolution version
of the visual cortex, with the maximum human visual resolution across the full human
visual field, would require 10,000 times as many cells as our actual cortex (Schwartz
1990).

But consider the programmatic problems introduced by the use of a logarithmic map.
Depending on where an object lies in the visual field, its internal representation on a
retinotopic map will be completely different; no direct comparison of the data structures
would show the identity or even hint at the identity. That an off-center object in our
visual field can rotate without perceptually distorting, as its image distorts wildly within
the physical retinotopic map, presents a nontrivial computational problem.

Evolution conserves computing power by complicating the algorithm. Evolution,
considered as a design pressure, exerts a steady equipotential design pressure across all
existing complexity; a human programmer wields general intelligence like a scalpel. It is
not much harder for evolution to “design” and “debug” a logarithmic visual map because
of this steady “design pressure”; further adaptations can build on top of a logarithmic vi-
sual map almost as easily as a constant-resolution map. A human programmer’s general
intelligence would run into difficulty keeping track of all the simultaneous design com-
plications created by a logarithmic map. It might be possible, but it would be difficult,
especially in the context of exploratory research; the logarithmic map transforms simple
design problems into complex design problems and hence transforms complex design
problems into nightmares.

I would suggest using constant-resolution sensory modalities during the early stages

of an Al—as implied above by suggesting a sensory modality modeled around a 100x100

19. For one suggested solution, see Bonmassar and Schwartz (1997).
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Go board—but the implication is that these early modalities will be lower-resolution,
will have a smaller field, and will be less efficient computationally. An opposing theoretic
view would be that complex but efficient modalities introduce necessary issues for in-
telligence. An opposing pragmatic view would be that complex but efficient modalities
are easier to accommodate in a mature Al if they have been included in the architecture
from the beginning, so as to avoid metaphorical “Y2K” issues (ubiquitous dependencies

on a simplifying assumption which is later invalidated).

2.5. 'The Concept Level

DGTI uses the term concept to refer to the mental stuffs underlying the words that we
combine into sentences; concepts are the combinatorial building blocks of thoughts and
mental imagery. These building blocks are learned complexity, rather than innate com-
plexity; they are abstracted from experience. Concept structure is absorbed from recur-
ring regularities in perceived reality.

A concept is abstracted from experiences that exist as sensory patterns in one or more
modalities. Once abstracted, a concept can be compared to a new sensory experience
to determine whether the new experience satisfies the concept, or equivalently, whether
the concept describes a facet of the experience. Concepts can describe both environmen-
tal sensory experience and internally generated mental imagery. Concepts can also be
imposed on current working imagery. In the simplest case, an exemplar associated with
the concept can be loaded into the working imagery, but constructing complex men-
tal imagery requires that a concept target a piece of existing mental imagery, which the
concept then transforms. Concepts are faceted; they have internal structure and asso-
ciational structure which comes into play when imposition or description encounters a
bump in the road. Faceting can also be invoked purposefully; for example, “tastes like
chocolate” versus “looks like chocolate.” To solve any one of these problems alone, at
a sufficient degree of generality and in a computationally tractable way, would be a se-
rious challenge; to solve all three problems simultaneously constitutes the fundamental
challenge of building a system that learns complexity in combinatorial chunks.

A “concept kernel” is the pseudo-sensory pattern produced by abstracting from sen-
sory experience. During concept satisfaction, this kernel interacts with the layered fea-
ture detectors to determine whether the reported imagery matches the kernel; during
concept imposition, the kernel interacts with the layered feature controllers to produce
new imagery or alter existing imagery. A programmer seeking a good representation for

concept kernels must find a representation that simultaneously fulfills these requirements:

1. The kernel representation can be satisfied by and imposed on referents in a sensory

modality.
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2. 'The kernel representation or concept representation contains the internal struc-
ture needed for faceted concept combination, as in “triangular lightbulb” previously

giVCI’l as an example.

3. It is computationally tractable to abstract new kernel representations using sensory

experience as raw material.

Concepts have other properties besides their complex kernels. Kernels relate concepts
to sensory imagery and hence the modality level. Concepts also have complexity that
relates to the concept level; i.e., concepts have complexity that derives from their relation
to other concepts. In Good Old-Fashioned Al this aspect of concepts has been empha-
sized at the expense of all others,?® but that is no excuse for ignoring concept-concept
relations in a new theory. Concepts are supercategories and subcategories of each other;
there are concepts that describe concepts and concepts that describe relations between
concepts.

In formal logic, the traditional idea of concepts is that concepts are categories defined
by a set of individually necessary and together sufficient requisites; that a category’s
extensional referent is the set of events or objects that are members of the category;
and that the combination of two categories is the sum of their requisites and hence the
intersection of their sets of referents. This formulation is inadequate to the complex,
messy, overlapping category structure of reality and is incompatible with a wide range
of established cognitive effects (Lakoft 1987). Properties such as usually necessary and
usually sufficient requisites, and concept combinations that are sometimes the sum of
their requisites or the intersection of their extensional classes, are emergent from the
underlying representation of concepts—along with other important properties, such as
prototype eftects in which different category members are assigned different degrees of
typicality (Rosch 1978).

Concepts relate to the thought level primarily in that they are the building blocks
of thoughts, but there are other level-crossings as well. Introspective concepts can de-
scribe beliefs and thoughts and even deliberation; the concept “thought” is an example.
Inductive generalizations are often “about” concepts in the sense that they apply to the
referents of a concept; for example, “Triangular lightbulbs are red.” Deliberation may
focus on a concept in order to arrive at conclusions about the extensional category, and
introspective deliberation may focus on a concept in its role as a cognitive object. Con-

cept structure is ubiquitously invoked within perceptual and cognitive processes because

20. This does not imply that GOFAI handles concept-concept relations correctly. The links in a classical
“semantic net” are as oversimplified as the nodes.
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category structure is ubiquitous in the low-entropy processes of our low-entropy uni-

verse.

2.5.1. 'The Substance of Concepts

One of the meanings of “abstraction” is “removal”; in chemistry, to abdstract an atom
means subtracting it from a molecular group. Using the term “abstraction” to describe the
process of creating concepts could be taken as implying two views: First, that to create
a concept is to generalize; second, that to generalize is to lose information. Abstraction
as information loss is the classical view of concepts (that is, the view of concepts under
GOFAI and formal logic). Forming the concept “red” is taken to consist of focusing
only on color, at the expense of other features such as size and shape; all concept usage
is held to consist of purposeful information-loss.

'The problem with the classical view is that it allows only a limited repertoire of con-
cepts. True, some concepts apparently work out to straightforward information-loss.
'The task of arriving at a concept kernel for the concept “red”—a kernel capable of inter-
acting with visual imagery to distinguish between red objects and non-red objects—is
relatively trivial. Even simultaneously satisfying the abstraction and satisfaction prob-
lems for “red” is relatively trivial. Well-known, fully general tools such as neural nets
or evolutionary computation would suffice. To learn to solve the satisfaction problem, a
neural net need only to learn to fire when the modality-level feature detectors for “color”
report a certain color—a point falling within a specific volume of color space—across a
broad area, and not to fire otherwise. A piece of code need only evolve to test for the
same characteristic. (The neural net would probably train faster for this task.)

A sufficiently sophisticated modality would simplify the task even further, doing most
of the work of grouping visual imagery into objects and detecting solid-color or same-
hue or mostly-the-same-hue surfaces. The human visual modality goes still farther and
precategorizes colors, dividing them up into a complex color space (Boynton and Ol-
son 1987), said color space having eleven culturally universal focal volumes (Berlin and
Kay 1969), said focal volumes having comparatively sharp internal boundaries relative
to physically continuous variations in wavelength (see Shepard [1992], or just look at
the bands in a rainbow). Distinguishing across innate color boundaries is easy; distin-
guishing within color boundaries is hard (Mervis, Catlin, and Rosch 1975). 'Thus, the
human visual modality provides very strong suggestions as to where the boundaries lie
in color space, although the final step of categorization is still required (Dedrick 1998).

Given a visual modality, the concept of red lies very close to the metaphorical “sur-
face” of the modality. In humans red is probably at the surface, a direct output of the
modality’s feature-detectors. In Als with less sophisticated visual modalities, “redness”

as a category would need to be abstracted as a fuzzy volume within a smooth color space
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lacking the human boundaries. The red concept kernel (in humans and Als) needs to be
more complex than a simple binary test or fuzzy color clustering test, since “redness” as
we understand it describes visual areas and not single pixels (although red can describe a
“visual area” consisting of a small point). Even so, the complexity involved in the redness
concept lies almost entirely within the sensory modality, rather than the concept kernel.
We might call such concepts surface concepts.

Even for surface concepts, simultaneously solving abstraction, satisfaction, and im-
position would probably be far more tractable with a special representation for concept
kernels, rather than generically trained neural nets or evolutionary programs. Imposi-
tion requires a concept kernel which can be selectively applied to imagery within a visual
modality, transforming that imagery such that the final result satisfies the concept. In the
case of the concept “red,” the concept kernel would interact with the feature controllers
for color, and the targeted mental imagery would become red. This cannot be done by
painting each individual pixel the same shade of red; such a transformation would oblit-
erate edges, surfaces, textures, and many other high-level features that intuitively ought
to be preserved. Visualizing a “red lemon” does not cause the mind to picture a bright
red patch with the outline of a lemon. The concept kernel does not send separate color
commands to the low-level feature controller of each individual visual element; rather
the concept kernel imposes red in combination with other currently activated features,
to depict a red Jemon that retains the edge, shape, surface curvature, texture, and other
visualized features of the starting /ezzon image. Probably this occurs because perceived
coloration is a property of surfaces and visual objects rather than, or as well as, individ-
ual visual elements, and our redness concept kernel interacts with this high-level feature,
which then ripples down in coherent combination with other features.

Abstracting an impose-able concept kernel for “red” is a problem of different scope
than abstracting a satisfy-able kernel for “red.” There is an immediately obvious way
to train a neural net to detect satisfaction of “red,” given a training set of known “red”
and non-“red” experiences, but there is no equally obvious teaching procedure for the
problem of imposing “red.” The most straightforward success metric is the degree to
which the transformed imagery satisfies a neural network already trained to detect “red,”
but a bright red lemon-shaped patch is likely to be more “red” than a visualized red
lemon. How does the kernel arrive at a transformation which makes a coherent change
in object coloration, rather than a transformation which paints all visual elements an
indiscriminate shade of red, or a transformation which loads a random red object into
memory? Any of these transformations would satisfy the “red” concept.

Conceivably, fully general neural nets could be trained to impose minimal transfor-
mations, although I am not sure that “minimal transformation” is the rule which should

govern concept imposition. Regardless of the real tractability of this problem, I strongly
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doubt that human cognitive systems create concepts by training generic neural nets on
satisfaction and imposition. I suspect that concepts do not have independent procedures
for satisfaction and imposition; I also suspect that neither satisfaction nor imposition
are the product of reinforcement learning on a fully general procedure. Rather, I suspect
that a concept kernel consists of a pattern in a representation related to (but not identical
with) the representation of sensory imagery, that this pattern is produced by transform-
ing the experiences from which the concept is abstracted, and that this pattern interacts
with the modality to implement both concept satisfaction and concept imposition.

A very simple example of a non-procedural, pattern-based concept kernel would be
“clustering on a single feature.” Red might be abstracted from an experiential base by
observing an unusual clustering of point values for the color feature. Suppose that the
Al is challenged with a virtual game in which the goal is to find the “keys” to a “lock”
by selecting objects from a large sample set. When the Al successfully passes five trials
by selecting the correct object on the first try, the Al is assumed to have learned the
rule. Let us suppose that the game rule is that “red” objects open the lock, and that the
Al has already accumulated an experiential base from its past failures and successes on
individual trials.

Assuming the use of a three-dimensional color space, the color values of the correct
keys would represent a tight cluster relative to the distribution among all potential keys.
Hence the abstracted concept kernel might take the form of a feature-cluster pair, where
the feature is color and the cluster is a central point plus some measure of standard de-
viation. This creates a concept kernel with a prototype and quantitative satisfiability;
the concept has a central point and fuzzy but real boundaries. The same concept ker-
nel can also be imposed on a selected piece of mental imagery by loading the central
color point into the color feature controller—that is, loading the clustered value into the
teature controller corresponding to the feature detector clustered upon.

Clustering of this type also has indirect implications for concept-concept relations:
'The red concept’s “color volume” might overlap a nearby concept such as burgundy, or
might turn out to enclose that concept; a modality-level fact which over time might
naturally give rise to an association relationship, or a supercategory relationship, on the
concept level. This would not humanly occur through direct comparison of the repre-
sentations of the concept kernels, but through the observation of overlap or inclusion
within the categories of extensional referents. A more strongly introspective Al might
occasionally benefit from inspecting kernel representations, but this should be an adjunct
to experiential detection of category relationships, not a substitute for it.

Clustering on a single feature is definitely not a complete conceptual system. Single-
teature clustering cannot notice a correlation between two features where neither feature

is clustered alone; single-feature clustering cannot cross-correlate two features in any way
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at all. Concepts which are limited to clustering on a single feature will always be limited
to concepts at the immediate surface of a given sensory modality.

At the same time, a concept system is not a general intelligence and need not be
capable of representing every possible relation. Suppose a human were challenged with
a game in which the “correct key” always had a color that lay on the exact surface of a
sphere in color space; could the human concept-formation system directly abstract this
property? I would guess not; I would guess that, at most, a human might notice that
the key tended to belong to a certain group of colors; i.e., might slice up the surface
of this color sphere into separate regions, and postulate that solution keys belong to
one of several color regions. Thus, even though in this case the underlying “rule” is
computationally very simple, it is unlikely that a human will create a concept that directly
incorporates the rule; it may even be impossible for a human to abstract a kernel that
performs this simple computation. A concept-formation system need not be generally
intelligent in itself; need not represent all possible perceptual regularities; just enough
for the overall mind to work.

I suspect that the system design used by humans, and a good design for Als, will turn
out to be a repertoire of different concept-formation methods. (“Clustering on a single
feature” could be one such method, or could be a special case of a more general method.)
Concept faceting could then result either from concepts with multiple kernels, so that a
concept employs more than one categorization method against its perceptual referents,
or from internal structure in a single kernel, or both. If some aspects of perceptual
referents are more salient, then kernels which match those aspects are likely to have
greater weight within the concept. Faceting within a concept, arising out of multiple
unequal kernels or faceting within a single complex kernel, seems like the most probable

source of prototype effects within a category.

2.5.2. Stages in Concept Processes

Concept formation is a multi-stage process. For an Al to form a new concept, the Al
must have the relevant experiences, perceptually group the experiences, notice possi-
ble underlying similarities within members of a group (this may be the same perceived
similarity that led to the original experiential grouping), verify the generalization, initi-
ate the new concept as distinguished cognitive content, create the concept kernel(s) by
abstraction from the experiential base, and integrate the new concept into the system.
(This checklist is intended as an interim approximation; actual mind designs may differ,
but presumably a temporal sequence will still be involved.)

In the example given earlier, an Al abstracts redness starting with a bottom-up,
experience-driven event: noticing the possible clustering of the color feature within the

pre-existing category eys. Conceivably the act of checking for color clustering could
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have been suggested top-down, for example by some heuristic belief, but in this ex-
ample we will assume the seminal perception of similar coloration was an unexpected,
bottom-up event; the product of continuous and automatic checks for clustering on a
single feature across all high-level features in currently salient experiential categories.
Rather than being part of an existing train of thought, the detection of clustering cre-
ates an “Aha!” event, a new cognitive event with high salience that becomes the focus of
attention, temporarily shunting aside the previous train of thought. (See the discussion
of the thought level.)

If the scan for clustering and other categorizable similarities is a continuous back-
ground task, it may imply a major expenditure of computational resources—perhaps a
major percentage of the computing power used by the Al This is probably the price of
having a cognitive process that can be driven by bottom-up interrupts as well as top-
down sequences, and the price of having a cognitive process that can occasionally notice
the unexpected. Hence, the efficiency, optimization, and scalability of algorithms for
such continuous background tasks may play a major role in determining the AT’s perfor-
mance. If imagery stays in place long enough, I would speculate that it may be possible
to farm out the task of noticing a possible clustering to distant parts of a distributed
network, while keeping the task of verifying the clustering, and all subsequent cognitive
actions, within the local process. Most of the computing power is required to find the
hint, not to verify the match, and a false hint does no damage (assuming the false hints
are not malicious attacks from untrusted nodes).

Once the suspicion of similarity is triggered by a cue picked up by a continuous back-
ground process, and the actual degree of similarity is verified, the AI would be able to
create the concept as cognitive content. Within the above example, the process that
notices the possible clustering is essentially the same process that would verify the clus-
tering and compute the degree of clustering, center of clustering, and variance within
the cluster. Thus, clustering on a single feature may compress into a single stage the
cueing, description, and abstraction of the underlying similarity. Given the expense of
a continuous background process, however, I suspect it will usually be best to separate
out a less expensive cueing mechanism as the background process, and use this cueing
mechanism to suggest more detailed and expensive scans. (Note that this is a “parallel
terraced scan”; see Rehling and Hofstadter [1997] and Hofstadter [1995].)

After the creation of the concept and the concept kernel(s), it would then be possi-
ble for the Al to notice concept-concept relations, such as supercategory and subcate-
gory relations. I do not believe that concept-concept relations are computed by directly
comparing kernel representations; I think that concept-concept relations are learned by

generalizing across the concept’s usage. It may be a good heuristic to look for concept-
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concept relations immediately after forming a new concept, but that would be a separate
track within deliberation, not an automatic part of concept formation.

After a concept has been formed, the new concept must be integrated into the sys-
tem. For us to concede that a concept has really been “integrated into the system” and is
now contributing to intelligence, the concept must be used. Scanning across the stored
base of concepts in order to find which concepts are satisfied by current mental im-
agery promises to be an even more computationally expensive process than continuous
background checks for clustering. An individual satisfaction check is probably less com-
putationally intensive than carrying out a concept imposition—but satisfaction checks
seem likely to be a continuous background operation, at least in humans.

As discussed earlier, humans and Als have different computational substrates: Hu-
mans are slow but hugely parallel; Als are fast, but resource-poor. If humans turn out
routinely parallelize against all learned concepts, an Al may simply be unable to afford
it. The Al optimum may involve comparing working imagery against a smaller sub-
set of learned complexity—only a few concepts, beliefs, or memories would be scanned
against working imagery at any given point. Alternatively, an Al may be able to use ter-
raced scanning,?! fuzzy hashing,?” or branched sorting® to render the problem tractable.
One hopeful sign is the phenomenon of cognitive priming on related concepts (Meyer
and Schvaneveldt 1971), which suggests that humans, despite their parallelism, are not
using pure brute force. Regardless, I conjecture that matching imagery against large
concept sets will be one of the most computationally intensive subprocesses in Al, per-
haps #he most expensive subprocess. Concept matching is hence another good candidate
for distribution under “notice distantly, verify locally”; note also that the concept base
could be sliced up among distributed processors, although this might prevent matching

algorithms from exploiting regularities within the concept base and matching process.

2.5.3. Complex Concepts and the Structure of “Five”

Under the classical philosophy of category abstraction, abstraction consists solely of se-

lective focus on information which is already known; focusing on the “color” or “redness”

21. The use of computationally inexpensive cues to determine when more expensive checks should be
performed.

22. An algorithm which reduces complex representations to a form that can be more easily compared

or scanned.

23. Rather than comparing against each potential match in turn, an algorithm would be used which
eliminates half the potential matches by asking a question, then eliminates half the remaining potential
matches by asking a new question pre-optimized against that set, and so on until the remaining potential
matches are computationally tractable. Branched sorting of this kind could conceivably be implemented

by spatial properties of a parallel neural network as well.
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of an object as opposed to its shape, position, or velocity. In DGI’s “concept kernels,”
the internal representation of a concept has complexity extending beyond information
loss—even for the case of “redness” and other concepts which lie almost directly on the
surface of a sensory modality. The only concept that is pure information-loss is a concept
that lies entirely on the surface of a modality; a concept whose satisfaction exactly equals
the satisfaction of some single feature detector.

'The concept for “red,” described earlier, is actually a fuzzy percept for degrees of red-
ness. Given that the Al has a flat color space, rather than a human color space with
innate focal volumes and color boundaries, the “redness” percept would contain at least
as much additional complexity—over and above the modality-level complexity—as is
used to describe the clustering. For example, “clustering on a single feature” might take
the form of describing a Gaussian distribution around a central point. The specific use
of a Gaussian distribution does not contribute to useful intelligence unless the environ-
ment also exhibits Gaussian clustering, but a Gaussian distribution is probably useful
for allowing an Al to notice a wide class of clusterings around a central point, even
clusterings that do not actually follow a Gaussian distribution.

Even in the absence of an immediate environmental regularity, a concept can con-
tribute to effective intelligence by enabling the perception of more complex regulari-
ties. For example, an alternating sequence of “red” and “green” key objects may fail the
modality-level tests for clustering because no Gaussian cluster contains (almost) all suc-
cesses and excludes (almost) all failures. However, if the Al has already previously devel-
oped concepts for “red” and “green,” the alternating repetition of the satisfaction of the
“red” and “green” concepts is potentially detectable by higher-level repetition detectors.
Slicing up the color space with surface-level concepts renders computationally tractable
the detection of higher-order alternation. Even the formation of simple concepts—
concepts lying on the surface of a modality—expands the perceptual capabilities of the
Al and the range of problems the Al can solve.

Concepts can also embody regularities which are not directly represented in any sen-
sory modality, and which are not any covariance or clustering of feature detectors already
in a sensory modality.

Melanie Mitchell and Douglas Hofstadter’s “Copycat” program works in the domain
of letter-strings, such as “abc”, “xyz”, “onml”, “ddd”, “cwj”, etc. The function of Copy-
cat is to complete analogy problems such as “abc:abd::ace:?” (Hofstadter and Mitchell
1988). Since Copycat is a model of perceptual analogy-making, rather than a model of
category formation, Copycat has a limited store of preprogrammed concepts and does
not learn further concepts through experience. (This should 7o# be taken as criticism
of the Copycat project; the researchers explicitly noted that concept formation was not

being studied.)
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Suppose that a general Al (not Copycat), working in the toy domain of letter strings,
encounters a problem that can only be solved by discovering what makes the letter-
strings “hcfrb”, “yhumd”, “exbvb”, and “gxqrc” similar to each other but dissimilar to the
strings “ndaxtw”, “qiqa’, “t”, “rvm”, and “zinw”. Copycat has the built-in ability to count
the letters in a string or group; in DGI'’s terms Copycat might be said to extract number
as a modality-level feature. There is extensive evidence that humans also have brain-
ware support for subitizing (directly perceiving) small numbers, and brainware support
for perceiving the approximate quantities of large numbers (see Dehaene [1997] for a
review). Suppose, however, that a general Al does 7oz possess a modality-level counting
ability. How would the Al go about forming the category of “five,” or even “groups-of-
five-letters”?

This challenge points up the inherent deficit of the “information loss” viewpoint of
abstraction. For an Al with no subitization support—or for a human challenged with
a number like “nine,” which is out-of-range for human subitization—the distinguish-
ing feature, cardinality, is not represented by the modality (or in humans, represented
only approximately). For both humans and Als, the ability to form concepts for non-
subitizable exact numbers requires more than the ability to selectively focus on the facet
of “number” rather than the facet of “location” or “letter” (or “color,” “shape,” or “pitch”).
'The fundamental challenge is not focusing on the numerical facet but rather perceiving
a “numerical facet” in the first place. For the purposes of this discussion, we are not
speaking of the ability to understand numbers, arithmetic, or mathematics, only an AT’s
ability to form the category “five.” Possession of the category “five” does not even imply
the possession of the categories “four” or “six,” much less the formulation of the abstract
supercategory “number.”

Similarly, the “discovery” of fiveness is not being alleged as mathematically signifi-
cant. In mathematical terms almost any set of cognitive building blocks will suffice to
discover numbers; numbers are fundamental and can be constructed through a wide va-
riety of different surface procedures. The significant accomplishment is not “squeezing”
numbers out of a system so sparse that it apparently lacks the usual precursors of number.
Rather, the challenge is to give an account of the discovery of “fiveness” in a way that
generalizes to the discovery of other complex concepts as well. The hypothesized build-
ing blocks of the concept should be general (useful in building other, non-numerical
concepts), and the hypothesized relations between building blocks should be general.
It is acceptable for the discovery of “fiveness” to be straightforward, but the discovery
method must be general.

A working but primitive procedure for satisfying the “five” concept, affer the dis-
covery of fiveness, might look something like this: Focus on a target group (the group

which may or may not satisfy “five”). Retrieve from memory an exemplar for “five” (that
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is, some specific past experience that has become an exemplar for the “five” concept).
Picture the “five” exemplar in a separate mental workspace. Draw a correspondence
from an object within the group that is the five exemplar to an object within the group
that is the target. Repeat this procedure until there are no objects remaining in the ex-
emplar imagery or there are no objects remaining in the target imagery. Do not draw a
correspondence from one object to another if a correspondence already exists. If, when
this procedure completes, there are no dangling objects in the exemplar or in the target
group, label the target group as satisfying the “five” concept.

In this example, the “five” property translates to the property: “I can construct a
complete mapping, with no dangling elements, using unique correspondences, between
this target group of objects, and a certain group of objects whose mental image I retrieved
from memory.”

This is mathematically straightforward, but cognitively general. In support of the
proposition that “correspondence,” “unique correspondence,” and “complete mapping
with no dangling elements” are all general conceptual primitives, rather than constructs
useful solely for discovering numbers, please note that Copycat incorporates corre-
spondences, unique correspondences, and a perceptual drive toward complete mappings
(Mitchell 1993). Copycat has a direct procedural implementation of number sense and
does not use these mapping constructs to build numerical concepts. The mapping con-
structs I have invoked for number are independently necessary for Copycat’s theory of
analogy-making as perception.

Once the procedure ends by labeling imagery with the “five” concept, that imagery
becomes an experiential instance of the “five” concept. If the examples associated with
a procedurally defined concept have any universal features or frequent features that are
perceptually noticeable, the concept can acquire kernels after the fact, although the ker-
nel may express itself as a hint or as an expectation, rather than being a necessary and
sufficient condition for concept satisfaction. Concepts with procedural definitions are
regular concepts and may possess kernels, exemplars, associated memories, and so on.

What is the benefit of decomposing “fiveness” into a complex procedure, rather than
simply writing a codelet, or a modality-level feature detector, which directly counts
(subitizes) the members of a group? The fundamental reason for preferring a non-
modality solution in this example is to demonstrate that an Al must be capable of solving
problems that were not anticipated during design. From this perspective “fiveness” is a
bad example to use, since it would be very unlikely for an Al developer to not anticipate
numericity during the design phase.

However, a decomposable concept for “five,” and a modality-level feature detector
which subitizes all numbers up to (23% — 1), can also be compared in terms of how

well they support general intelligence. Despite its far greater computational overhead,
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I would argue that the decomposable concept is superior to a modality-level feature
detector.

A billiards modality with a feature detector that subitizes all the billiard balls in a
perceptual grouping and outputs a perceptually distinct label—a “numeron detector”—
will suffice to solve many immediate problems that require a number sense. However,
an Al that uses this feature detector to form a surface concept for “five” will not be able to
subitize “five” groups of billiards within a supergroup, unless the programmer also had
the foresight to extend the subitizing feature detector to count groups as well as spe-
cific objects.** Similarly, this universal subitizing ability will not extend across multiple
modalities, unless the programmer had the foresight to extend the feature detector there

as well.%®

Brainware is limited to what the programmer was thinking about at the time.
Does an Al understand “fiveness” when it becomes able to count five apples? Or when
the Al can also count five events in two different modalities? Or when the Al can count
five of its own thoughts? It is programmatically trivial to extend the feature detector to
handle any of these as a special case, but that is a path which ends in requiring an infinite
amount of tinkering to implement routine thought processes (i.e., non-decomposability
causes a “‘commonsense problem”).

'The most important reason for decomposability is that concepts with organized in-
ternal structures are more mutable. A human-programmed numeron detector, mutated
on the code level, would probably simply break. A concept with internal structure or
procedural structure, created by the Al's own thought processes in response to experi-
ence, is mutable by the Al’s thought processes in response to further experience. For
example, Douglas Lenat attests (see Lenat [1983] and Lenat and Brown [1984]) that

the most difficult part of building Eurisko?®

was inventing a decomposable represen-
tation for heuristics, so that the class of transformations accessible to Eurisko would

occasionally result in improvements rather than broken code fragments and LISP er-

24. 'There is some indication that young humans possess a tendency to count discrete physical objects
and that this indeed interferes with the ability of human children to count groups of groups or count
abstract properties (Shipley and Shepperson 1990).

25. In animals, experiments with cross-modality numeracy sometimes exhibit surprisingly positive re-
sults. For example, rats trained to press lever A on hearing two tones or seeing two flashes, and to press
lever B on hearing four tones or seeing four flashes, spontaneously press lever B on hearing two tones
and seeing two flashes (Church and Meck 1984). This may indicate that rats categorize on (approximate)
quantities by categorizing on an internal accumulator which is cross-modality. Evolution, however, tends
to write much smoother code than human programmers; I am speaking now of the likely consequence of

a “naive” Al programmer setting out to create a numeron-detector feature.

26. Eurisko was a self-modifying Al that used heuristics to modify heuristics, including modification
of the heuristics modifying the heuristics.
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rors. To describe this as smooth fitness landscapes is probably stretching the metaphor too
much, but “smoothing” in some form is definitely involved. Raw code has only a single
level of organization, and changing a random instruction on this level usually simply
breaks the overall function. A Eurisko heuristic was broken up into chunks, and could
be manipulated (by Eurisko’s heuristics) on the chunk level.

Local shifts in the chunks of the “five”-ness procedure yield many useful offspring.
By selectively relaxing the requirement of “no dangling objects” in the target image, we
get the concept “less than or equal to five”-ness. By relaxing the requirement of “no
dangling objects” in the exemplar image, we get the concept “greater than or equal to
five”-ness. By requiring one or more dangling objects in the target image, we get the
concept “more than five”-ness. By comparing two target images, instead of an exemplar
and an image, we get the concept “one-to-one correspondence between group members”
(what we would call “same-number-as” under a different procedure), and from there “less
than” or “less than or equal to,” and so on.

One of these concepts, the one-to-one correspondence between two mental images,
is not just a useful offspring of the “fiveness” concept, but a simpler offspring. Thus it is
probably not an “offspring” at all, but a prerequisite concept that suggests a real-world
path to the apprehension of fiveness. Many physical tasks in our world require equal
numbers (corresponding sets) for some group; four pegs for four holes, two shoes for

two feet.

2.5.4. Experiential Pathways to Complex Concepts

Consider the real-world task of placing four pegs in four holes. A peg cannot fill two
holes; two pegs will not fit in one hole. Solid objects cannot occupy the same location,
cannot appear in multiple locations simultaneously, and do not appear or disappear spon-
taneously. These rules of the physical environment are reflected in the default behaviors
of our own visuospatial modality; even early infants represent objects as continuous and
will look longer at scenes which imply continuity violations (Spelke 1990).

From real-world problems such as pegs and holes, or their microworld analogues, an
Al can develop concepts such as unigue correspondence: a peg cannot fill multiple holes,
multiple pegs will not fit in one hole. The Al can learn rules for drawing a unique corre-
spondence, and test the rules against experience, before encountering the need to form the
more complex concept for “fiveness.” The presence of an immediate, local test of utility
means that observed failures and successes can contribute unambiguously to forming a
concept that is “simple” relative to the already-trained base of concepts. If a new con-
cept contains many new untested parts, and a mistake occurs, then it may be unclear to
the AI which local error caused the global failure. If the Al tries to chunk “fiveness” all

in a single step, and the current procedure for “fiveness” satisfaction fails—is positively
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satisfied by a non-five-group, or unsatisfied by a five-group—it may be unclear to the

Al that the global failure resulted from the local error of a nonunique correspondence.

'The full path to fiveness would probably involve:

1.

Learning physical continuity; acquiring expectations in which objects do not spon-
taneously disappear or reappear. In humans, this viewpoint is likely very strongly

supported by modality-level visuospatial intuitions in which continuity is the de-
fault, and the same should hold true of Als.

. Learning unique correspondence. Unique correspondence, as a mental skill, tends to

be reinforced by any goal-oriented challenge in which a useful object cannot be in

two places at once.

. Learning complete mapping. Completeness, along with symmetry, is one of the

chief cognitive pressures implemented by Copycat in its model of analogy-making
as a perceptual operation (Mitchell 1993). A drive toward completeness implies
that dangling, unmapped objects detract from the perceived “goodness” of a per-
ceptual mapping. Thus, there may be modality-level support for noticing dangling,

unmapped objects within an image.

With these three underlying concepts present, it is possible to abstract the concept
of complete mapping using the unique-correspondence relation, also known as one-fo-
one mapping. We, using an entirely different procedure, would call this relation

same-number-as (“identity of numeron produced by counting”).

. With one-to-one mapping, it is possible for an Al to notice that all the answers

on a challenge task are related to a common prototype by the one-to-one mapping
relation. 'The Al could then abstract the “five” concept using the prototype as the

exemplar and the relation as a test.

. Where do we go from here? Carl Feynman (personal communication) observes at

this point that the one-fo-one mapping relation is commutative and transitive, and
therefore defines a set of equivalence classes; these equivalence classes turn out to
be the natural numbers. At first, using “equivalence class detection” as a cognitive
method sounded like cheating, but on reflection it’s hard to see why a general intel-
ligence should not notice when objects with a common relation to a prototype are
similarly related to each other. “Equivalence class” may be a mathematical concept

that happens to roughly (or even exactly) correspond to a perceptual property.

Forming the superclass concept of number is not dealt with in this paper, due to

space constraints.
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A deliberative intelligence must build up complex concepts from simple concepts, in
the same way that evolution builds high-level feature detectors above low-level feature
detectors, or builds organs using tissues, or builds thoughts over concepts or modalities.
There are holonic?” ecologies within the learned complexity of concepts, in the same
way and for roughly the same reason that there is genetically specified holonic structure
in modality-level feature detection. Categories describe regularities in perception, and
in doing so, become part of the perceptual structure in which further regularities are
detected.

If the programmer hardwires a subitizer that outputs numerons (unique number tags)
as detected features, the Al may be able to chunk “five” very rapidly, but the resulting
concept will suffer from opacity and isolation. The concept will not have the lower levels
of organization that would enable the Al’s native cognitive abilities to disassemble and
reassemble the concept in useful new shapes; the inability of the Al to decompose the
concept is gpacity. The concept will not have a surrounding ecology of similar concepts
and prerequisite concepts, such as would result from natural knowledge acquisition by
the Al. Cognitive processes that require well-populated concept ecologies will be un-
able to operate; an Al that has “triangle” but not “pyramid” is less likely to successfully

visualize “triangular lightbulb.” This is iso/ation.

2.5.5. Microtasks

In the DGI model of Al development, concepts are abstracted from an experiential base;
experiences are cognitive content within sensory modalities; and sensory modalities are
targeted on a complex virtual microenvironment. Having experiences from which a
concept can be abstracted is a (necessary, but not sufficient) requirement for learning the
concept. How does an Al obtain these experiences? It would be possible to teach the Al
about “fiveness” simply by presenting the Al with a series of sensory images (program-
matically manipulating the Al's microenvironment) and prompting the Al’s perceptual
processes to generalize them, but this severs the task of concept formation from its eco-
logical validity (metaphorically speaking). Knowledge goals (discussed in later sections)
are not arbitrary; they derive from real-world goals or higher-level knowledge goals.
Knowledge goals exist in a holonic goal ecology; the goal ecology shapes our knowledge
goals and thereby often shapes the knowledge itself.

A first approximation to ecological validity is presenting the Al with a “challenge” in
one of the virtual microenvironments previously advocated—for example, the billiards

microenvironment. Henceforth, I will shorten “microenvironmental challenge” to “mi-

27. As described earlier, “holonic” describes the simultaneous application of reductionism and holism,

in which a single quality is simultaneously a combination of parts and a part of a greater whole.
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crotask.” Microtasks can tutor concepts by presenting the Al with a challenge that must
be solved using the concept the programmer wishes to tutor. For scrupulous ecological
validity the key concept should be part of a larger problem, but even playing “one of these
things is not like the others” would still be better than manipulating the Al’s perceptual
processes directly.

Tutoring a concept as the key to a microtask ensures that the concept’s basic “shape,”
and associated experiences, are those required to solve problems, and that the Al has
an experience of the concept being necessary, the experience of discovering the concept,
and the experience of using the concept successfully. Effective intelligence is produced
not by having concepts but by using concepts; one learns to use concepts by using them.
'The Al needs to possess the experiences of discovering and using the concept, just as the
Al needs to possess the actual experiential referents that the concept generalizes; the Al
needs experience of the contexts in which the concept is useful.

Forming a complex concept requires an incremental path to that complex concept—a
series of building-block concepts and precursor concepts so that the final step is a leap
of manageable size. Under the microtask developmental model, this would be imple-
mented by a series of microtasks of ascending difficulty and complexity, in order to coax
the Al into forming the precursor concepts leading up to the formation of complex con-
cepts and abstract concepts. This is a major expense in programmer effort, but I would
argue that it is a necessary expense for the creation of rich concepts with goal-oriented
experiential bases.

'The experiential path to “fiveness” would culminate with a microtask that could only
be solved by abstracting and using the fiveness concept, and would lead up to that chal-
lenge through microtasks that could only be solved by abstracting and using concepts

»”

such as “object continuity,” “unique correspondence,” “mapping,” “dangling group mem-
bers,” and the penultimate concept of “one-to-one mapping.”

With respect to the specific microtask protocol for presenting a “challenge” to the Al
there are many possible strategies. Personally, I visualize a simple microtask protocol
(on the level of “one of these things is not like the others”) as consisting of a number
of “gates,” each of which must be “passed” by taking one of a set of possible actions,
depending on what the Al believes to be the rule indicating the correct action. Passing
ten successive gates on the first try is the indicator of success. (For a binary choice, the
chance of this happening accidentally is 1024:1. If the Al thinks fast enough that this
may happen randomly (which seems rather unlikely), the number of successive gates
required can be raised to twenty or higher.) 'This way, the Al can succeed or fail on
individual gates, gathering data about individual examples of the common rule, but will

not be able to win through the entire microtask until the common rule is successfully

formulated. This requires a microenvironment programmed to provide an infinite (or
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merely “relatively large”) number of variations on the underlying challenge—enough
variations to prevent the Al from solving the problem through simple memory.

'The sensory appearance of a microtask would vary depending on the modality. For a
Newtonian billiards modality, an individual “gate” (subtask) might consist of four “op-
tion systems,” each option system grouped into an “option” and a “button.” Spatial sep-
arations in the Newtonian modality would be used to signal grouping; the distance be-
tween option systems would be large relative to the distance within option systems, and
the distance between an option and a button would be large relative to the distance
between subelements of an option. Each option would have a different configuration;
the Al would choose one of the four options based on its current hypothesis about the
governing rule. For example, the Al might select an option that consists of four bil-
liards, or an option with zwo Jarge billiards and one smal/l billiard, or an option with
moving billiards. Having chosen an option, the AI would manipulate a motor effec-
tor billiard—the Al's embodiment in that environment—into contact with the button
belonging to (grouped with) the selected option. The AI would then receive a signal—
perhaps a movement on the part of some billiard acting as a “flag”—which symbolized
success or failure. The environment would then shift to the next “gate,” causing a cor-
responding shift in the sensory input to the Al’s billiards modality.

Since the format of the microtask is complex and requires the Al to start our with
an understanding of notions like “button” or “the button which belongs to the chosen
option,” there is an obvious chicken-and-egg problem with teaching the Al the format
of the microtask before microtasks can be used to tutor other concepts. For the moment
we will assume the bootstrapping of a small concept base, perhaps by “cheating” and
using programmer-created cognitive content as femporary scaffolding.

Given this challenge format, a simple microtask for “fiveness” seems straightforward:
'The option containing five billiards, regardless of their size or relative positions or move-
ment patterns, is the key to the gate. In practice, setting up the fiveness microtask may
prove more difficult because of the need to eliminate various false ways of arriving at a
solution. In particular, if the Al has a sufficiently wide variety of quantitative feature
detectors, then the Al will almost certainly possess an emergent Accumulator Model
(see Meck and Church [1983]) of numeracy. If the Al takes a relatively fixed amount of
time to mentally process each object, then single-feature clustering on the subjectively
perceived time to mentally process a group could yield the microtask solution without a
complex concept of fiveness. Rather than fiveness, the Al would have formed the con-
cept “things-it-takes-about-20-milliseconds-to-understand.” The real-world analogue
of this situation has already occurred when an experiment formerly thought to show ev-
idence for infant numeracy on small visual sets was demonstrated to show sensitivity to

the contour length (perimeter) of the visual set, but not to the cardinality of the visual set
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(Clearfield and Mix 1999). Even with all precursor concepts already present, a complex
microtask might be necessary to make fiveness the simplest correct answer.

Also, the microtasks for the earlier concepts leading up to fiveness might inherently
require greater complexity than the “option set” protocol described above. The concept
of unique correspondence derives its behavior from physical properties. Choosing the
right option set is a perceptual decision task rather than a physical manipulation task; in
a decision microtask, the only manipulative subtask is maneuvering an effector billiard
to touch a selected button. Concepts such as “dangling objects” or “one-to-one map-
ping” might require manipulation subtasks rather than decision subtasks, in order to
incorporate feedback about physical (microenvironmental) outcomes into the concept.

For example, the microtask for teaching “one-to-one mapping” might incorporate the
microworlds equivalent of a peg-and-hole problem. The microtask might be to divide
up 9 “pegs” among 9 “holes”™ —where the 9 “holes” are divided into three subgroups of
4, 3, and 2, and the Al must allocate the peg supply among these subgroups in advance.
For example, in the first stage of the microtask, the Al might be permitted to move
pegs between three “rooms,” but not permitted to place pegs in holes. In the second
stage of the microtask the Al would attempt to place pegs in holes, and would then
succeed or fail depending on whether the initial allocation between rooms was correct.
Because of the complexity of this microtask, it might require other microtasks simply to
explain the problem format—to teach the Al about pegs and holes and rooms. (“Pegs
and holes” are universal and translate easily to a billiards modality; “holes,” for example,
might be immobile billiards, and “pegs” moveable billiards to be placed in contact with
the “holes.”)

Placing virtual pegs in virtual holes is admittedly not an inherently impressive result.
In this case the Al is being taught to solve a simple problem so that the learned com-
plexity will carry over into solving complex problems. If the learned complexity does
carry over, and the Al later goes on to solve more difficult challenges, then, in retrospect,
getting the Al to think coherently enough to navigate a microtask will “have been” an

impressive result.

2.5.6. Interactions on the Concept Level

Concept-concept interactions are more readily accessible to introspection and to experi-
mental techniques, and are relatively well-known in Al and in cognitive psychology. To

summarize some of the complexity bound up in concept-concept interactions:

* Concepts are associated with other concepts. Activating a concept can “prime” a
nearby concept, where “priming” is usually experimentally measured in terms of
decreased reaction times (Meyer and Schvaneveldt 1971). This suggests that more

computational resources should be devoted to scanning for primed concepts, or that
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primed concepts should be scanned first. (This viewpoint is too mechanomorphic
to be considered as an explanation of priming in humans. Preactivation or advance

binding of a neural network would be more realistic.)

Nearby concepts may sometimes “slip” under cognitive pressures; for example, “tri-
angle” to “pyramid.” Such slippages play a major role in analogies under the Copy-
cat system (Mitchell 1993). Slippages occurring in complex design and planning
problems probably incorporate context sensitivity and even goal orientation; see

the later discussion of conflict and resonance in mental imagery.

Concepts, in their role as categories, share territory. An individual sparrow, as an
object, is described by the concepts “sparrow” and “bird.” All objects that can be
described as “sparrow” will also be described by “bird.” Thus, information arriv-
ing through “bird” will usually, though not always, affect the entire territory of
“sparrow.” 'This form of inheritance can take place without an explicit “is-a” rule
connecting “sparrow” to “bird”; it is enough that “bird” happens to describe all

referents of “sparrow.”

Concepts, in their role as categories, have supercategory and subcategory relation-
ships. Declarative beliefs targeted on concepts can sometimes be inherited through
such links. For example, “At least one X is an A” is inherited by the supercategory
Y of X: If all referents of X are referents of Y, then “At least one referent of X
is an A” implies that “At least one referent of Y is an A.” Conversely, rules such
as “All X are A” are inherited by subcategories of X but not supercategories of
X. Inheritance that occurs on the concept level, through an “is-a” rule, should
be distinguished from pseudo-inheritance that occurs through shared territory in
specific mental imagery. Mental quantifiers such as “all X are Y” usually translate
to “most X are Y7 or “X, by default, are Y”; all beliefs are subject to controlled
exception. It is possible to reason about category hierarchies deliberatively rather

than perceptually, but our speed in doing so suggests a perceptual shortcut.

Concepts possess transformation relations, which are again illustrated in Copycat.
For example, in Copycat, “a” is the “predecessor” of “b”, and “1” is the “predecessor”
of “27. In a general intelligence these concept-concept relations would refer to,
and would be generalized from, observation of transformational processes acting
on experiential referents which causes the same continuous object to move from
one category to another. Often categories related by transformational processes

are subcategories of the same supercategory.

Concepts act as verbs, adjectives, and adverbs as well as nouns. In humans, con-

cepts act as one-place, two-place, and three-place predicates, as illustrated by the
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“subject,” “direct object,” and “indirect object” in the human parts of speech; “X
gives Y to Z.” For humans, four-place and higher predicates are probably repre-
sented through procedural rules rather than perceptually; spontaneously noticing a
four-place predicate could be very computationally expensive. Discovering a pred-
icate relation is assisted by categorizing the predicate’s subjects, factoring out the

complexity not germane to the predicate.

* Concepts, in their role as symbols with auditory, visual, or gestural tags, play a fun-
damental role in both human communication and internal human conceptualiza-
tion. The short, snappy auditory tag “five” can stand in for the complexity bound
up in the fiveness concept. Two humans that share a common lexical base can
communicate a complex mental image by interpreting the image using concepts,
describing the image with a concept structure, translating the concepts within the
structure into socially shared auditory tags, transforming the concept structure into
a linear sequence using shared syntax, and emitting the auditory tags in that lin-
ear sequence. (To translate the previous sentence into English: We communi-
cate with sentences that use words and syntax from a shared language.) The same
base of complexity is apparently also used to summarize and compactly manipulate

thoughts internally; see the next section.

I also recommend Women, Fire, and Dangerous Things: What Categories Reveal about the

Mind by George Lakoff (1987) for descriptions of many concept-level phenomena.

2.6. 'The Thought Level

Concepts are combinatorial learned complexity. Concepts represent regularities that re-
cur, not in isolation, but in combination and interaction with other such regularities.
Regularities are not isolated and independent, but are similar to other regularities, and
there are simpler regularities and more complex regularities, forming a metaphorical
“ecology” of regularities. This essential fact about the structure of our low-entropy uni-
verse is what makes intelligence possible, computationally tractable, evolvable within a
genotype, and learnable within a phenotype.

The thought level lies above the learned complexity of the concept level. Thoughts
are structures of combinatorial concepts that alter imagery within the workspace of sen-
sory modalities. Thoughts are the disposable one-time structures implementing a non-
recurrent mind in a non-recurrent world. Modalities are wired; concepts are learned;
thoughts are invented.

Where concepts are building blocks, thoughts are immediate. Sometimes the dis-
tance between a concept and a thought is very short; 4ird is a concept, but with little

effort it can become a thought that retrieves a bird exemplar as specific mental imagery.
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Modalities Concepts Thoughts

Source Wired Learned Invented
Degrees of freedom  Representing ~ Combinatorial Specific
Cognitive immediacy (not applicable) Stored Instantiated
Regularity Invariant Recurrent Nonrecurrent

Amount of complexity Bounded Open-ended  Open-ended

Nonetheless, there is still a conceptual difterence between a brick and a house that hap-
pens to be built from one brick. Concepts, considered as concepts, are building blocks
with ready-to-use concept kernels. A thought fills in all the blanks and translates com-
binatorial concepts into specific mental imagery, even if the thought is built from a single
concept. Concepts reside in long-term storage; thoughts aftect specific imagery.

'The spectra for “learned vs. invented,” “combinatorial vs. specific,” “stored vs. in-
stantiated,” and “recurrent vs. nonrecurrent” are conceptually separate, although deeply
interrelated and usually correlated. Some cognitive content straddles the concept and
thought levels. “Beliefs” (declarative knowledge) are learned, specific, stored, and re-
current. An episodic memory in storage is learned, specific, stored, and nonrecurrent.
Even finer gradations are possible: A retrieved episodic memory is learned, specific,
and immediate; the memory may recur as mental content, but its external referent is
nonrecurrent. Similarly, a concept which refers to a specific external object is learned,
specific, stored, and “semi-recurrent” in the sense that it may apply to more than one
sensory image, since the object may be encountered more than once, but still referring

to only one object and not a general category.

2.6.1. 'Thoughts and Language

'The archetypal examples of “thoughts” (invented, specific, instantiated, non-recurrent)
are the sentences mentally “spoken” and mentally “heard” within the human stream
of consciousness. We use the same kind of sentences, spoken aloud, to communicate
thoughts between humans.

Words are the phonemic tags (speech), visual tags (writing), gestural tags (sign lan-
guage), or haptic tags (Braille) used to invoke concepts. Henceforth, I will use speech to
stand for all language modalities; “auditory tag” or “phonemic tag” should be understood
as standing for a tag in any modality.

When roughly the same concept shares roughly the same phonemic tag within a
group of humans, words can be used to communicate concepts between humans, and
sentences can be used to communicate complex imagery. The phonemes of a word can

evoke all the functionality of the real concept associated with the auditory tag. A spoken
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sentence is a linear sequence of words; the human brain uses grammatical and syntactical
rules to assemble the linear sequence into a structure of concepts, complete with internal
and external targeting information. “Triangular lightbulb,” an adjective followed by a
noun, becomes “triangular” targeting “light bulb.” “That is a telephone,” anaphor-verb-
article-noun, becomes a statement about the telephone-ness of a previously referred-to
object. “That” is a backreference to a previously invoked mental target, so the accom-
panying cognitive description (“is a telephone”) is imposed on the cognitive imagery
representing the referent of “that.”

The cognitive process that builds a concept structure from a word sequence com-
bines syntactic constraints and semantic constraints; pure syntax is faster and races ahead
of semantics, but semantic disharmonies can break up syntactically produced cognitive
structures. Semantic guides to interpretation also reach to the word level, affecting the
interpretation of homophones and ambiguous phonemes.

For the moment I will leave open the question of why we hear “mental sentences”
internally—that is, the reason why the transformation of concept structures into linear
word sequences, obviously necessary for spoken communication, also occurs internally
within the stream of consciousness. I later attempt to explain this as arising from the
coevolution of thoughts and language. For the moment, let it stand that the combinato-
rial structure of words and sentences in our internal narrative reflects the combinatorial

structure of concepts and thoughts.

2.6.2. Mental Imagery

'The complexity of the thought level of organization arises from the cyclic interaction of
thoughts and mental imagery. Thoughts modify mental imagery, and in turn, mental
imagery gives rise to thoughts.

Mental imagery exists within the representational workspace of sensory modali-
ties. Sensory imagery arises from environmental information (whether the environ-
ment is “real” or “virtual”); imaginative imagery arises from the manipulation of modality
workspace through concept imposition and memory retrieval.

Mental imagery, whether sensory or imaginative, exhibits holonic organization: from
the “pixel” level into objects and chunks; from objects and chunks into groups and su-
perobjects; from groups and superobjects into mental scenes. In human vision, exam-
ples of specific principles governing grouping are proximity, similarity of color, similar-
ity of size, common fate, and closure (Wertheimer 1938); continuation (Moore, Yan-
tis, and Vaughan 1998); common region and connectedness (Palmer and Rock 1994);
and collinearity (Lavie and Driver 1996). Some of the paradigms that have been pro-
posed for resolving the positive inputs from grouping principles, and the negative inputs

from detected conflicts, into a consistent global organization, include: Holonic conflict
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resolution (described earlier), computational temperature (Mitchell 1993), Prignanz
(Koftka 1935), Hopfield networks (Hopfield and Tank 1985), the likelihood princi-
ple (Helmholtz 1924; Lowe 1985), minimum description length (Hochberg 1957), and
constraint propagation (Kumar 1992).

Mental imagery provides a workspace for specific perceptions of concepts and con-
cept structures. A chunk of sensory imagery may be mentally labeled with the concept
structure “yellow box,” and that description will remain bound to the object—a part of
the perception of the object—even beyond the scope of the immediate thought. Learned
categories and learned expectations also affect the gestalt organization of mental imagery
(Zemel et al. 2002).

Mental imagery is the active canvas on which deliberative thought is painted—"ac-
tive canvas” implying a dynamic process and not just a static representation. The gestalt
of mental imagery is the product of many local relations between elements. Because
automatic cognitive processes maintain the gestalt, a local change in imagery can have
consequences for connected elements in working imagery, without those changes need-
ing to be specified within the proximate thought that caused the modification. The
gestalt coherence of imagery also provides feedback on which possible changes will co-
here well, and is therefore one of the verifying factors affecting which potential thoughts
rise to the status of actuality (see below).

Imagery supports abstract percepts. It is possible for a human to reason about an
object which is known to cost $1000, but for which no other mental information is
available. Abstract reasoning about this object requires a means of representing men-
tal objects that occupy no a priori modality; however, this does not mean that abstract
reasoning operates independently of all modalities. Abstract reasoning might operate
through a modality-level “object tracker” which can operate independently of the modal-
ities it tracks; or by borrowing an existing modality using metaphor (see below); or the
first option could be used routinely, and the second option when necessary. Given an
abstract “object which costs $1000,” it is then possible to attach concept structures that
describe the object without having any specific sensory imagery to describe. If I impose
the concept “red” on the existing abstract imagery for “an object which costs $1000,” to
yield “a red object which costs $1000,” the “red” concept hangs there, ready to activate
when it can, but not yielding specific visual imagery as yet.

Similarly, knowledge generalized from experience with concept-concept relations can
be used to detect abstract conflicts. If I know that all penguins are green, I can de-
duce that “a red object which costs $1000” is not a penguin. It is possible to detect the
conflict between “red” and “green” by a concept-level comparison of the two abstract
descriptions, even in the absence of visualized mental imagery. However, this does no#

mean that it is possible for Al development to implement only “abstract reasoning” and
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leave out the sensory modalities. First, a real mind uses the rich concept-level com-
plexity acquired from sensory experience, and from experience with reasoning that uses
tully visualized imaginative imagery, to support abstract reasoning; we know that “red”
conflicts with “green” because of prior sensory experience with red and green. Second,
merely because some steps in reasoning appear as if they could theoretically be carried
out purely on the concept level does not mean that a complete deliberative process can
be carried out purely on the concept level.

Third, abstract reasoning often employs metaphor to contribute modality behaviors
to an abstract reasoning process.

'The idea of “pure” abstract reasoning has historically given rise to Al pathologies and
should be considered harmful. With that caution in mind, it is nonetheless possible
that human minds visualize concepts only to the extent required by the current train of
thought, thus conserving mental resources. An early-stage Al is likely to be less adept
at this trick, meaning that early Als may need to use full visualizations where a human
could use abstract reasoning.

Abstract reasoning is a means by which inductively acquired generalizations can be
used in deductive reasoning. If empirical induction from an experiential base in which
all observed penguins are green leads to the formation of the belief “penguins are green,”
then this belief may apply abstractly to “a red object which costs $1000” to conclude that
this object is probably not a penguin. In this example, an abstract belief is combined with
abstract imagery about a specific object to lead to a further abstract conclusion about
that specific object. Humans go beyond this, employing the very powerful technique of
“deductive reasoning.” We use abstract beliefs to reason about abstract mental imagery
that describes classes and not just specific objects, and arrive at conclusions which then
become new abstract beliefs; we can use deductive reasoning, as well as inductive reason-
ing, to acquire new beliefs. “Pure” deductive reasoning, like “pure” abstract reasoning,
should be considered harmful; deductive reasoning is usually grounded in our ability to
visualize specific test cases and by the intersection of inductive confirmation with the
deductive conclusions.

Imagery supports tracking of reliances, a cognitive function which is conceptually
separate from the perception of event causation. Another way of thinking about this is
that perceived cognitive causation should not be confused with perceived causation in
real-world referents. I may believe that the sun will rise soon; the cause of this belief
may be that I heard a rooster crow; I may know that my confidence in sunrise’s nearness
relies on my confidence in the rooster’s accuracy; but I do not believe that the rooster
crowing causes the sun to rise.

Imagery supports complex percepts for “confidence” by tracking reliances on uncer-

tainty sources. Given an assertion A with 50% confidence that “object X is blue,” and a
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belief B with 50% confidence that “blue objects are large,” the classical deduction would
be the assertion “object X is large” with 25% confidence. However, this simple arith-
metical method omits the possibility, important even under classical logic, that A and
B are both mutually dependent on a third uncertainty C'—in which case the combined
confidence can be greater than 25%. For example, in the case where “object X is blue”
and “blue objects are large” are both straightforward deductions from a third assertion C'
with 50% confidence, and neither A nor B have any inherent uncertainty of their own,
then “object X is large” is also a straightforward deduction from C, and has confidence
50% rather than 25%.

Confidence should not be thought of as a single quantitative probability; confidence
is a percept that sums up a network of reliances on uncertainty sources. Straightfor-
ward links—that is, links whose local uncertainty is so low as to be unsalient—may be
eliminated from the perceived reliances of forward deductions: “object X is large” is
seen as a deduction assertion C, not a deduction from C' plus “object X is blue” plus
“blue objects are large.” If, however, the assertion “object X is blue” is contradicted by
independent evidence supporting the inconsistent assertion “object X is red,” then the
reliance on “object X is blue” is an independent source of uncertainty, over and above
the derived reliance on C'. That is, the confidence of an assertion may be evaluated by
weighing it against the support for the negation of the assertion (Iversky and Koehler
1994). Although the global structure of reliances is that of a network, the local percept
of confidence is more likely derived from a set of reliances on supporting and contradict-
ing assertions whose uncertainty is salient. That the /oca/ percept of confidence is a set,
and not a bag or a directed network, accounts for the elimination of common reliances
in further derived propositions and the preservation of the global network structure. In
humans, the percept of confidence happens to exhibit a roughly quantitative strength,
and this quantity behaves in some ways like the mathematical formalism we call “prob-
ability.”

Confidence and probability are not identical; for humans, this is both an advantage
and a disadvantage. Seeing an assertion relying on four independent assertions of 80%
confidence as psychologically different from an assertion relying on a single assertion
of 40% confidence may contribute to useful intelligence. On the other hand, the hu-
man inability to use an arithmetically precise handling of probabilities may contribute
to known cases of non-normative reasoning, such as not taking into account Bayesian
priors, overestimating conjunctive probabilities and underestimating disjunctive proba-
bilities, and the other classical errors described in Tversky and Kahneman (1974). See
however Cosmides and Tooby (1996) for some cautions against underestimating the
ecological validity of human reasoning; an Al might best begin with separate percepts

for “humanlike” confidence and “arithmetical” confidence.
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Imagery interacts with sensory information about its referent. Expectational imagery
is confirmed or violated by the actual event. Abstract imagery created and left hang-
ing binds to the sensory percept of its referent when and if a sensory percept becomes
available. Imagery interacts with Bayesian information about its referent: assertions
that make predictions about future sensory information are confirmed or disconfirmed
when sensory information arrives to satisfy or contradict the prediction. Confirmation
or disconfirmation of a belief may backpropagate to act as Bayesian confirmation or dis-
confirmation on its sources of support. (Normative reasoning in these cases is generally
said to be governed by the Bayesian Probability Theorem.) The ability of imagery to
bind to its referent is determined by the “matching” ability of the imagery—its ability to
distinguish a sensory percept as belonging to itself—which in turn is a property of the
way that abstract imagery interacts with incoming sensory imagery on the active can-
vas of working memory. A classical Al with a symbol for “hamburger” may be able to
distinguish correctly spelled keystrokes typing out “hamburger,” but lacks the matching
ability to bind to hamburgers in any other way, such as visually or olfactorily. In humans,
the abstract imagery for “a red object” may not involve a specific red image, but the “red”
concept is still bound to the abstract imagery, and the abstract imagery can use the “red”
kernel to match a referent in sensory imagery.

Imagery may bind to its referent in different ways. A mental image may be an im-
mediate, environmental sensory experience; it may be a recalled memory; it may be
a prediction of future events; it may refer to the world’s present or past; it may be a
subjunctive or counterfactual scenario. We can fork oft a subjunctive scenario from a
descriptive scene by thinking “What if?” and extrapolating, and we can fork oft a sepa-
rate subjunctive scenario from the first by thinking “What if?” again. Humans cannot
continue the process indefinitely, because we run out of short-term memory to track all
the reliances, but we have the native tracking ability. Note that mental imagery does not
have an opaque tag selected from the finite set “subjunctive,” “counterfactual,” and so on.
'This would constitute code abuse: directly programming, as a special case, that which
should result from general behaviors or emerge from a lower level of organization. An
assertion within counterfactual imagery is not necessarily marked with the special tag
“counterfactual”; rather, “counterfactual” may be the name we give to a set of internally
consistent assertions with a common dependency on an assertion that is strongly dis-
confirmed. Similarly, a prediction is not necessarily an assertion tagged with the opaque
marker “prediction”; a prediction is better regarded as an assertion with deductive sup-
port whose referent is a future event or other referent for which no sensory information
has yet arrived; the prediction imagery then binds to sensory information when it arrives,

permitting the detection of confirmation or disconfirmation. The distinction between
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“prediction,” “counterfactual,” and “subjunctive scenario” can arise out of more general
behaviors for confidence, reliance, and reference.

Mental imagery supports the perception of similarity and other comparative rela-
tions, organized into complex mappings, correspondences, and analogies (with Copycat
being the best existing example of an Al implementation; see Mitchell [1993]). Mental
imagery supports expectations and the detection of violated expectations (where “pre-
diction,” above, refers to a product of deliberation, “expectations” are created by concept
applications, modality behaviors, or gestalt interactions). Mental imagery supports tem-
poral imagery and the active imagination of temporal processes. Mental imagery sup-
ports the description of causal relations between events and between assertions, forming
complex causal networks which distinguish between implication and direct causation
(Pearl 2000). Mental imagery supports the binding relation of “metaphor” to allow ex-
tended reasoning by analogy, so that, e.g., the visuospatial percept of a forking path
can be used to represent and reason about the behavior of if-then-else branches, with
conclusions drawn from the metaphor (tentatively) applied to the referent (Lakoff and
Johnson 1999). Imagery supports annotation of arbitrary objects with arbitrary per-
cepts; if I wish to mentally label my watch as “X,” then “X” it shall be, and if T also label
my headphones and remote control as “X,” then “X” will form a new (though arbitrary)
category.

'This subsection obviously has not been a fully constructive account of mental imagery.
Rather this has been a very brief description of some of the major properties needed for
mental imagery to support the thought level of organization. I apologize, but to write
up a theory of general intelligence in a single chapter, it is often necessary to compress

a tremendous amount of complexity into one sentence and a bibliographic reference.

2.6.3. 'The Origin of Thoughts

Thoughts are the cognitive events that change mental imagery. In turn, thoughts are
created by processes that relate to mental imagery, so that deliberation is implemented by
the cyclic interaction of thoughts modifying mental imagery which gives rise to further
thoughts. This does not mean that the deliberation level is “naturally emergent” from
thought. The thought level has specific features allowing thought in paragraphs and not
just sentences— ‘trains of thought” with internal momentum, although not so much
momentum that interruption is impossible.

At any one moment, out of the vast space of possible thoughts, a single thought ends
up being “spoken” within deliberation. Actually, “one thought at a time” is just the hu-
man way of doing things, and a sufficiently advanced AI might multiplex or multithread
deliberation, but this doesn’t change the basic question: Where do thoughts come from?

I suggest that it is best to split our conceptual view of this process into two parts; first,
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the production of suggested thoughts, and second, the selection of thoughts that appear
“useful” or “possibly useful” or “important” or otherwise interesting. In some cases, the
process that invents or suggests thoughts may do most of the work, with winnowing rel-
atively unimportant; when you accidentally rest your hand on a hot stove, the resulting
bottom-up event immediately hijacks deliberation. In other cases, the selection process
may comprise most of the useful intelligence, with a large number of possible thoughts
being tested in parallel. In addition to being conceptually useful, distinguishing between
suggestion and verification is useful on a design level if “verifiers” and “suggesters” can take
advantage of modular organization. Multiple suggesters can be judged by one verifier
and multiple verifiers can summate the goodness of a suggestion. This does not necessar-
ily imply hard-bounded processing stages in which “suggestion” runs, terminates and is
strictly followed by “verification,” but it implies a common ground in which repertoires
of suggestion processes and verification processes interact.

I use the term sequitur to refer to a cognitive process which suggests thoughts. “Se-
quitur” refers, not to the way that two thoughts follow each other—that is the realm
of deliberation—but rather to the source from which a single thought arises, following
from mental imagery. Even before a suggested thought rises to the surface, the sugges-
tion may interact with mental imagery to determine whether the thought is interesting
and possibly to influence the thought’s final form. I refer to specific interactions as res-
onances; a suggested thought resonates with mental imagery during verification. Both
positive resonances and negative resonances (conflicts) can make a thought more inter-
esting, but a thought with no resonances at all is unlikely to be interesting.

An example of a sequitur might be noticing that a piece of mental imagery satisfies
a concept; for a human, this would translate to the thought “X is a Y'!” In this example,
the concept is cued and satisfied by a continuous background process, rather than being
suggested by top-down deliberation; thus, noticing that X is a Y comes as a surprise
which may shift the current train of thought. How much of a surprise—how salient
the discovery becomes—will depend on an array of surrounding factors, most of which
are probably the same resonances that promoted the candidate suggestion “concept Y
matches X7 to the real thought “X is a Y!” (The difference between the suggestion
and the thought is that the real thought persistently changes current mental imagery by
binding the Y concept to X, and shifts the focus of attention.)

What are the factors that determine the resonance of the suggestion “concept Y
matches X7 or “concept Y may match X” and the salience of the thought “X isa Y?
Some of these factors will be inherent properties of the concept Y, such as Y’s past value,
the rarity of Y, the complexity of Y, et cetera; in Al, these are already-known methods
for ranking the relative value of heuristics and the relative salience of categories. Other

factors are inherent in X, such as the degree to which X is the focus of attention.
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Trickier factors emerge from the interaction of X (the targeted imagery), Y (the
stored concept that potentially matches X), the suggested mental imagery for Y de-
scribing X, the surrounding imagery, and the task context. A human programmer ex-
amining this design problem naturally sees an unlimited range of potential correlations.
To avoid panic, it should be remembered that evolution did not begin by contemplating
the entire search space and attempting to constrain it; evolution would have incremen-
tally developed a repertoire of correlations in which adequate thoughts resonated some
of the time. Just as concept kernels are not Al-complete, sequiturs and resonances are
not Al-complete. Sequiturs and resonances also may not need to be human-equivalent
to minimally support deliberation; it is acceptable for an early Al to miss out on many
humanly obvious thoughts, so long as those thoughts which are successtully generated
sum to fully general deliberation.

Specific sequiturs and resonances often seem reminiscent of general heuristics in Eu-
risko (Lenat 1983) or other Al programs intended to search for interesting concepts and
conjectures (Colton, Bundy, and Walsh 2000). The resemblance is further heightened
by the idea of adding learned associations to the mix; for example, correlating which
concepts Y are frequently useful when dealing with imagery described by concepts X,
or correlating concepts found useful against categorizations of the current task domain,
bears some resemblance to EUrIsko trying to learn specific heuristics about when spe-
cific concepts are useful. Similarly, the general sequitur that searches among associated
concepts to match them against working imagery bears some resemblance to Eurisko
applying a heuristic. Despite the structural resemblance, sequiturs are not heuristics.
Sequiturs are general cognitive subprocesses lying on the brainware level of organiza-
tion. The subprocess is the sequitur that handles thoughts of the general form “X is a
Y?”; any cognitive content relating to specific X's and Y's is learned complexity, whether
it takes the form of heuristic beliefs or correlative associations. Since our internal nar-
rative is open to introspection, it is not surprising if sequiturs produce some thoughts
resembling the application of heuristics; the mental sentences produced by sequiturs are
open to introspection, and Al researchers were looking at these mental sentences when
heuristics were invented.

Some thoughts that might follow from “X is a Y'!” (unexpected concept satisfaction)
are: “Why is X a Y'?” (searching for explanation); or “Z means X can’t be a Y'!” (detec-
tion of belief violation); or “X is not a Y” (rechecking of a tentative conclusion). Any
sequence of two or more thoughts is technically the realm of deliberation, but connected
deliberation is supported by properties of the thought level such as focus of attention.
'The reason that “Why is X a Y?” is likely to follow from “X is a Y'!” is that the thought
“X isa Y shifts the focus of attention to the Y'-ness of X (the mental imagery for the Y
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concept binding to X), so that sequitur processes tend to focus selectively on this piece
of mental imagery and try to discover thoughts that involve it.

'The interplay of thoughts and imagery has further properties that support delibera-
tion. “Why is X a Y'?” is a thought that creates, or focuses attention on, a question—a
thought magnet that attracts possible answers. Question imagery is both like and un-
like goal imagery. (More about goals later; currently what matters is how the thought
level interacts with goals, and the intuitive definition of goals should suffice for that.)
A goal in the classic sense might be defined as abstract imagery that “wants to be true,”
which affects cognition by affecting the Al’s decisions and actions; the Al makes de-
cisions and takes actions based on whether the Al predicts those decisions and actions
will lead to the goal referent. Questions primarily affect which thoughts arise, rather
than which decisions are made. Questions are thought-level complexity, a property of
mental imagery, and should not be confused with reflective goals asserting that a piece
of knowledge is desirable; the two interrelate very strongly but are conceptually distinct.
A question is a thought magnet and a goal is an action magnet. Since stray thoughts
are (hopefully!) less dangerous than stray actions, questionness (inguiry) can spread in
much more unstructured ways than goalness (desirability).

Goal imagery is abstract imagery whose referent is brought into correspondence with
the goal description by the Al’s actions. Question imagery is also abstract imagery, since
the answer is not yet known, but question imagery has a more open-ended satisfaction
criterion. Goal imagery tends to want its referent to take on a specific value; question
imagery tends to want its referent to take on any value. Question imagery for “the out-
come of event E” attracts any thoughts about the outcome of event F; it is the agnostic
question “What, if anything, is the predicted outcome of E?” Goal imagery for “the
outcome of event £” tends to require some specific outcome for F.

The creation of question imagery is one of the major contributing factors to the con-
tinuity of thought sequences, and therefore necessary for deliberation. However, just as
goal imagery must affect actual decisions and actual actions before we concede that the
AT has something which deserves to be called a “goal,” question imagery must affect ac-
tual thoughts—actual sequiturs and actual verifiers—to be considered a cognitively real
question. If there is salient question imagery for “the outcome of event E,” it becomes
the target of sequiturs that search for beliefs about implication or causation whose an-
tecedents are satisfied by aspects of F; in other words, sequiturs searching for beliefs of
the form “E usually leads to F” or “E' causes F.” If there is open question imagery for
“the cause of the Y -ness of X,” and a thought suggested for some other reason happens
to intersect with “the cause of the Y-ness of X,” the thought resonates strongly and will

rise to the surface of cognition.
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A similar and especially famous sequitur is the search for a causal belief whose con-
sequent matches goal imagery, and whose antecedent is then visualized as imagery de-
scribing an event which is predicted to lead to the goal. The event imagery created may
become new goal imagery—a subgoal—if the predictive link is confirmed and no ob-
noxious side effects are separately predicted (see the discussion of the deliberation level
for more about goals and subgoals). Many classical theories of Al, in particular “the-
orem proving” and “planning” (Newell and Simon 1963), hold up a simplified form of
the “subgoal seeker” sequitur as the core algorithm of human thought. However, this
sequitur does not in itself implement planning. The process of seeking subgoals is more
than the one cognitive process of searching for belief consequents that match existing
goals. There are other roads to finding subgoal candidates aside from backward chain-
ing on existing goals; for example, forward reasoning from available actions. There may
be several different real sequiturs (cognitive processes) that search for relevant beliefs;
evolution’s design approach would have been “find cognitive processes that make useful
suggestions,” not “constrain an exhaustive search through all beliefs to make it compu-
tationally efficient,” and this means there may be several sequiturs in the repertoire that
selectively search on different kinds of causal beliefs. Finding a belief whose consequent
matches goal imagery is not the same as finding an event which is predicted to lead to
the goal event; and even finding an action predicted to lead to at least one goal event is
not the same as verifying the net desirability of that action.

The sequitur that seeks beliefs whose consequents match goal imagery is only one
component of the thought level of organization. But it is a component that looks like
the “exclamation mark of thought” from the perspective of many traditional theories, so
it is worthwhile to review how the other levels of organization contribute to the effective
intelligence of the “subgoal seeker” sequitur.

A goal is descriptive mental imagery, probably taking the form of a concept or concept
structure describing an event; goal-oriented thinking uses the combinatorial regularities
of the concept layer to describe regularities in the structure of goal-relevant events. The
search for a belief whose consequent matches a goal description is organized using the
category structure of the concept layer; concepts match against concepts, rather than un-
parsed sensory imagery matching against unparsed sensory imagery. Searching through
beliefs is computationally tractable because of learned resonances and learned associa-
tions which are “learned complexity” in themselves, and moreover represent regularities
in a conceptually described model rather than a raw sensory imagery. Goal-oriented
thinking as used by humans is often abstract, which requires support from properties
of mental imagery; it requires that the mind maintain descriptive imagery which is not
tully visualized or completely satisfied by a sensory referent, but which binds to specific

referents when these become available. Sensory modalities provide a space in which all
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this imagery can exist and interprets the environment from which learned complexity is
learned. The feature structure of modalities renders learning computationally tractable.
Without feature structure, concepts are computationally intractable; without category
structure, thoughts are computationally intractable. Without modalities there are no ex-
periences and no mental imagery; without learned complexity there are no concepts to
structure experience and no beliefs generalized from experience. In addition to support-
ing basic requirements, modalities contribute directly to intelligence in any case where
referent behaviors coincide with modality behaviors, and indirectly in cases where there
are valid metaphors between modality behaviors and referent behaviors.

Even if inventing a new subgoal is the “exclamation mark of thought” from the per-
spective of many traditional theories, it is an exclamation mark at the end of a very long
sentence. The rise of a single thought is an event that occurs within a whole mind—an

intact reasoning process with a past history.

2.6.4. Beliefs

Beliefs—declarative knowledge—straddle the division between the concept level and the
thought level. In terms of the level characteristics noted earlier, beliefs are learned, spe-
cific, stored, and recurrent. From this perspective beliefs should be classified as learned
complexity and therefore a part of the generalized concept level. However, beliefs bear a
greater surface resemblance to mental sentences than to individual words. Their internal
structure appears to resemble concept structures more than concepts; and beliefs possess
characteristics, such as structured antecedents and consequents, which are difficult to
describe except in the context of the thought level of organization. I have thus chosen
to discuss beliefs within the thought level.?8

Beliefs are acquired through two major sources, induction and deduction, respectively
referring to generalization over experience, and reasoning from previous beliefs. The
strongest beliefs have both inductive and deductive support: deductive conclusions with
experiential confirmation, or inductive generalizations with causal explanations.

Induction and deduction can intersect because both involve abstraction. Induc-
tive generalization produces a description containing categories that act as variables—
abstract imagery that varies over the experiential base and describes it. Abstract de-
duction takes several inductively or deductively acquired generalizations, and chains to-
gether their abstract antecedents and abstract consequents to produce an abstract conclu-

sion, as illustrated in the earlier discussion of abstract mental imagery. Even completely

28. Whether a belief is really more like a concept or more like a thought is a “wrong question.” The spe-
cific similarities and differences say all there is to say. The levels of organization are aids to understanding,
not Aristotelian straitjackets.
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specific beliefs confirmed by a single experience, such as “New Year’s Eve of Y2K took
place on a Friday night,” are still “abstract” in that they have a concept-based, category-
structure description existing above the immediate sensory memory, and this conceptual
description can be more easily chained with abstract beliefs that reference the same con-
cepts.

Beliefs can be suggested by generalization across an experiential base, and supported
by generalization across an experiential base, but there are limits to how much support
pure induction can generate (a common complaint of philosophers); there could always
be a disconfirming instance you do not know about. Inductive generalization probably
resembles concept generalization, more or less; there is the process of initially noticing
a regularity across an experiential base, the process of verifying it, and possibly even
a process producing something akin to concept kernels for cueing frequently relevant
beliefs. Beliefs have a different structure than concepts; concepts are either wuseful or
not useful, but beliefs are either frue or false. Concepts apply to referents, while beliefs
describe relations between antecedents and consequents. While this implies a different
repertoire of generalizations that produce inductive beliefs, and a different verification
procedure, the computational task of noticing a generalization across antecedents and
consequents seems strongly reminiscent of generalizing a two-place predicate.

Beliefs are well-known in traditional Al, and are often dangerously misused; while
any process whatever can be described with beliefs, this does not mean that a cognitive
process is implemented by beliefs. I possess a visual modality that implements edge de-
tection, and I possess beliefs about my visual modality, but the latter aspect of mind
does not affect the former. I could possess no beliefs about edge detection, or wildly
wrong beliefs about edge detection, and my visual modality would continue working
without a hiccup. An Al may be able to introspect on lower levels of organization (see
Section 3), and an Al’s cognitive subsystems may interact with an Al’s beliefs more
than the equivalent subsystems in humans (again, see Section 3), but beliefs and brain-
ware remain distinct—not only distinct, but occupying different levels of organization.
When we seek the functional consequences of beliefs—their material effects on the Al’s
intelligence—we should look for the eftect on the AI’s reasoning and its subsequent de-
cisions and actions. Anything can be described by a belief, including every event that
happens within a mind, but not all events within a mind are implemented by the pos-
session of a belief which describes the rules governing that event.

When a mind “really” possesses a belief “about” something, and not just some opaque
data, is a common question in Al philosophy. I have something to say about this in the
next section. In formal, classical terms, the cognitive effect of possessing a belief is
sometimes defined to mean that when the antecedent of a belief is satisfied, its conse-

quent is concluded. I would regard this as one sequitur out of many, but it is nonetheless
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a good example of a sequitur—searching for beliefs whose antecedents are satisfied by
current imagery, and concluding the consequent (with reliances on the belief itself and
on the imagery matched by the antecedent). However, this sequitur, if applied in the
blind sense evoked by classical logic, will produce a multitude of useless conclusions; the
sequitur needs to be considered in the context of verifiers such as “How rare is it for this
belief to be found applicable?”, “How often is this belief useful when it is applicable?”, or
“Does the consequent produced intersect with any other imagery, such as open question
imagery?”

Some other sequiturs involving beliefs: Associating backward from question imagery
to find a belief whose consequent touches the question imagery, and then seeing if the
beliet’s antecedent can be satisfied by current imagery, or possibly turning the belief’s
antecedent into question imagery. Finding a causal belief whose consequent corresponds
to a goal; the antecedent may then become a subgoal. Detecting a case where a belief is
violated—this will usually be highly salient.

Suppose an Al with a billiards modality has inductively formed the belief “all billiards
which are ‘red’ are ‘gigantic.” ” Suppose further that “red” and “gigantic” are concepts
tormed by single-feature clustering, so that a clustered size range indicates “gigantic,”
and a clustered volume of color space indicates “red.” If this belief is salient enough,
relative to the current task, to be routinely checked against all mental imagery, then
several cognitive properties should hold if Al really possesses a belief about the size of
red billiards. In subjunctive imagery, used to imagine non-sensory billiards, any billiard
imagined to be red (within the clustered color volume of the “red” concept) would need to
be imagined as being gigantic (within the clustered size range of the “gigantic” concept).
If the belief “all red billiards are gigantic” has salient uncertainty, then the conclusion of
gigantism would have a reliance on this uncertainty source and would share the perceived
doubt. Given external sensory imagery, if a billiard is seen which is red and small, this
must be perceived as violating the belief. Given sensory imagery, if a billiard is somehow
seen as “red” in advance of its size being perceived (it’s hard to imagine how this would
happen in a human), then the belief must create the prediction or expectation that the
billiard will be gigantic, binding a hanging abstract concept for “gigantic” to the sensory
imagery for the red billiard. If the sensory image is completed later and the concept
kernel for “gigantic” is not satisfied by the completed sensory image for the red billiard,
then the result should be a violated expectation, and this conflict should propagate back
to the source of the expectation to be perceived as a violated belief.

Generally, beliefs used within subjunctive imagery control the imagery directly, while
beliefs used to interpret sensory information govern expectations and determine when
an expectation has been violated. However, “sensory” and “subjunctive” are relative;

subjunctive imagery governed by one belief may intersect and violate another belief—
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any imagery is “sensory” relative to a belief if that imagery is not directly controlled by
the belief. Thus, abstract reasoning can detect inconsistencies in beliefs. (An inconsis-
tency should not cause a real mind to shriek in horror and collapse, but it should be a
salient event that shifts the train of thought to hunting down the source of the inconsis-
tency, looking at the beliefs and assertions relied upon and checking their confidences.
Inconsistency detections, expressed as thoughts, tend to create question imagery and

knowledge goals which direct deliberation toward resolving the inconsistency.)

2.6.5. Coevolution of Thoughts and Language: Origins of the Internal Narrative

Why is the transformation of concept structures into linear word sequences, obviously
necessary for spoken communication, also carried out within the internal stream of con-
sciousness? Why not use only the concept structures? Why do we transform concept
structures into grammatical sentences if nobody is listening? Is this a necessary part of
intelligence? Must an Al do the same in order to function?

The dispute over which came first, thought or language, is ancient in philosophy.
Modern students of the evolution of language try to break down the evolution of lan-
guage into incrementally adaptive stages, describe multiple functions that are together
required for language, and account for how preadaptations for those functions could
have arisen (Hurford 1999). Functional decompositions avoid some of the chicken-
and-egg paradoxes that result from viewing language as a monolithic function. Unfor-
tunately, there are further paradoxes that result from viewing language independently
from thought, or from viewing thought as a monolithic function.

From the perspective of a cognitive theorist, language is only one function of a
modern-day human’s cognitive supersystem, but from the perspective of an evolution-
ary theorist, linguistic features determine which socia/ selection pressures apply to the
evolution of cognition at any given point. Hence “coevolution of thought and language”
rather than “evolution of language as one part of thought.” An evolutionary account
of language alone will become “stuck” the first time it reaches a feature which is adap-
tive for cognition and preadaptive for language, but for which no independent linguistic
selection pressure exists in the absence of an already-existent language. Since there is
currently no consensus on the functional decomposition of intelligence, contemporary
language evolution theorists are sometimes unable to avoid such sticking points.

On a first look DGI might appear to explain the evolvability of language merely by
virtue of distinguishing between the concept level and the thought level; as long as there
are simple reflexes that make use of learned category structure, elaboration of the con-
cept level will be independently adaptive, even in the absence of a humanlike thought
level. The elaboration of the concept level to support cross-modality associations would

appear to enable crossing the gap between a signal and a concept, and the elaboration of
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the concept level to support the blending or combination of concepts (adaptive because it
enables the organism to perceive simple combinatorial regularities) would appear to en-
able primitive, nonsyntactical word sequences. Overall this resembles Bickerton’s picture
of protolanguage as an evolutionary intermediate (Bickerton 1990), in which learned sig-
nals convey learned concepts and multiple concepts blend, but without syntax to convey
targeting information. Once protolanguage existed, linguistic selection pressures proper
could take over.

However, as Deacon (1997) points out, this picture does not explain why other
species have not developed protolanguage. Cross-modal association is not limited to
humans or even primates. Deacon suggests that some necessary mental steps in lan-
guage are not only unintuitive but actually counterintuitive for nonhuman species, in the
same way that the Wason Selection Test is counterintuitive for humans. Deacon’s ac-
count of this “awkward step” uses a different theory of intelligence as background, and
I would hence take a different view of the nature of the awkward step: my guess is that
chimpanzees find it extraordinarily hard to learn symbols as we understand them because
language, even protolanguage, requires creating abstract mental imagery which can hang
unsupported and then bind to a sensory referent later encountered. The key difliculty
in language—the step that is awkward for other species—is not the ability to associate
signals; primates (and rats, for that matter) can readily associate a perceptual signal with
a required action or a state of the world. The awkward step is for a signal to evoke a
category as abstract imagery, apart from immediate sensory referents, which can bind to
a referent later encountered. This step is completely routine for us, but could easily be
almost impossible in the absence of design support for “hanging concepts in midair.” In
the absence of thought, there are few reasons why a species would find it useful to hang
concepts in midair. In the absence of language, there are even fewer reasons to associate
a perceptual signal with the evocation of a concept as abstract imagery. Language is hard
for other species, not because of a gap between the signal and the concept, but because
language uses a feature of mental imagery for which there is insufficient design support
in other species. I suspect it may have been an adaptive context for abstract imagery,
rather than linguistic selection pressures, which resulted in the adaptation which turned
out to be preadaptive for symbolization and hence started some primate species sliding
down a fitness gradient that included coevolution of thought and language.

If, as this picture suggests, pre-hominid evolution primarily elaborated the concept
layer (in the sense of elaborating brainware processes that support categories, not in the
sense of adding learned concepts as such), it implies that the concept layer may contain
the bulk of supporting functional complexity for human cognition. This does not follow
necessarily, since evolution may have spent much time but gotten little in return, but it is

at least suggestive. (This section on the concept level is, in fact, the longest section.) The
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above picture also suggests that the hominid family may have coevolved combinatorial
concept structures that modify mental imagery internally (thoughts) and combinatorial
concept structures that evoke mental imagery in conspecifics (language). It is obvious
that language makes use of many functions originally developed to support internal cog-
nition, but coevolution of thought and language implies a corresponding opportunity for
evolutionary elaboration of hominid thought to co-opt functions originally evolved to
support hominid language.

'The apparent necessity of the internal narrative for human deliberation could turn out
to be an introspective illusion, but if real, it strongly suggests that linguistic function-
ality has been co-opted for cognitive functionality during human evolution. Linguistic
features such as special processing of the tags that invoke concepts, or the use of syn-
tax to organize complex internal targeting information for structures of combinatorial
concepts, could also be adaptive or preadaptive for efficient thought. Only a few such
linguistic features would need to be co-opted as necessary parts of thought before the
“stream of consciousness” became an entrenched part of human intelligence. This is
probably a sufficient explanation for the existence of an internal narrative, possibly mak-
ing the internal narrative a pure spandrel (emergent but nonadaptive feature). However,
caution in Al, rather than caution in evolutionary psychology, should impel us to wonder
if our internal narrative serves an adaptive function. For example, our internal narrative
could express deliberation in a form that we can more readily process as (internal) sen-
sory experience for purposes of introspection and memory; or the cognitive process of
imposing internal thoughts on mental imagery could co-opt a linguistic mechanism that
also translates external communications into mental imagery; or the internal narrative
may co-opt social intelligence that models other humans by relating to their commu-
nications, in order to model the self. But even if hominid evolution has co-opted the
internal narrative, the overall model still suggests that—while we cannot disentangle
language from intelligence or disentangle the evolution of thought from the evolution
of language—a de novo mind design could disentangle intelligence from language.

'This in turn suggests that an Al could use concept structures without serializing them
as grammatical sentences forming a natural-language internal narrative, as long as all lin-
guistic functionality co-opted for human intelligence were reproduced in non-linguistic
terms—including the expression of thoughts in an introspectively accessible form, and
the use of complex internal targeting in concept structures. Observing the Al may re-
quire recording the Al’s thoughts and translating those thoughts into humanly under-
standable forms, and the programmers may need to communicate concept structures
to the Al, but this need not imply an Al capable of understanding or producing hu-
man language. True linguistic communication between humans and Als might come

much later in development, perhaps as an ordinary domain competency rather than a
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brainware-supported talent. Of course, human-language understanding and natural hu-
man conversation is an exzremely attractive goal, and would undoubtedly be attempted
as early as possible; however, it appears that language need not be implemented imme-

diately or as a necessary prerequisite of deliberation.

2.7. 'The Deliberation Level
2.7.1. From Thoughts to Deliberation

In humans, higher levels of organization are generally more accessible to introspection.
It is not surprising if the internal cognitive events called “thoughts,” as described in
the last section, seem strangely familiar; we listen to thoughts all day. The danger for
Al developers is that cognitive content which is open to introspection is sometimes
temptingly easy to translate directly into code. But if humans have evolved a cyclic
interaction of thought and imagery, this fact alone does not prove (or even argue) that
the design is a good one. What is the material benefit to intelligence of using blackboard
mental imagery and sequiturs, instead of the simpler fixed algorithms of “reasoning”
under classical AI?

Evolution is characterized by ascending levels of organization of increasing elabo-
ration, complexity, flexibility, richness, and computational costliness; the complexity of
the higher layers is not automatically emergent solely from the bottom layer, but is in-
stead subject to selection pressures and the evolution of complex functional adaptation—
adaptation which is relevant at that level, and, as it turns out, sometimes preadaptive for
the emergence of higher levels of organization. This design signature emerges at least in
part from the characteristic blindness of evolution, and may not be a necessary idiom of
minds-in-general. Nonetheless, past attempts to directly program cognitive phenom-
ena which arise on post-modality levels of organization have failed profoundly. There
are specific Al pathologies that emerge from the attempt, such as the symbol ground-
ing problem and the commonsense problem. In humans concepts are smoothly flexible
and expressive because they arise from modalities; thoughts are smoothly flexible and
expressive because they arise from concepts. Even considering the value of blackboard
imagery and sequiturs in isolation—for example, by considering an Al architecture that
used fixed algorithms of deliberation but used those algorithms to create and invoke
DGI thoughts—there are still necessary reasons why deliberative patterns must be built
on behaviors of the thought level, rather than being implemented as independent code;
there are Al pathologies that would result from the attempt to implement deliberation in
a purely top-down way. There is top-down complexity in deliberation—adaptive func-
tionality that is best viewed as applying to the deliberation level and not the thought
level—but this complexity is mostly incarnated as behaviors of the thought level that

support deliberative patterns.
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Because the deliberation level is flexibly emergent out of the sequiturs of the thought
level, a train of thought can be diverted without being destroyed. To use the example
given earlier, if a deliberative mind wonders “Why is X a Y?” but no explanation is
found, this local failure is not a disaster for deliberation as a whole. The mind can
mentally note the question as an unsolved puzzle and continue with other sequiturs.
A belief violation does not destroy a mind; it becomes a focus of attention and one
more thing to ponder. Discovering inconsistent beliefs does not cause a meltdown, as
it would in a system of monotonic logic, but instead shifts the focus of attention to
checking and revising the deductive logic. Deliberation weaves multiple, intersecting
threads of reasoning through intersecting imagery, with the waystations and even the
final destination not always known in advance.

In the universe of bad TV shows, speaking the Epimenides Paradox?” “This sentence
is false” to an artificial mind causes that mind to scream in horror and collapse into a
heap of smoldering parts. This is based on a stereotype of thought processes that cannot
divert, cannot halt, and possess no bottom-up ability to notice regularities across an ex-
tended thought sequence. Given how deliberation emerges from the thought level, it is
possible to imagine a sufficiently sophisticated, sufficiently reflective Al that could nat-
urally surmount the Epimenides Paradox. Encountering the paradox “This sentence is
false” would probably indeed lead to a looping thought sequence at first, but this would
not cause the Al to become permanently stuck; it would instead lead to categorization
across repeated thoughts (like a human noticing the paradox after a few cycles), which
categorization would then become salient and could be pondered in its own right by
other sequiturs. If the Al is sufficiently competent at deductive reasoning and introspec-
tive generalization, it could generalize across the specific instances of “If the statement
is true, it must be false” and “If the statement is false, it must be true” as two general
classes of thoughts produced by the paradox, and show that reasoning from a thought
of one class leads to a thought of the other class; if so the Al could deduce—not just
inductively notice, but deductively confirm—that the thought process is an eternal loop.
Of course, we won't know whether it really works this way until we try it.

The use of a blackboard sequitur model is not automatically sufficient for deep reflec-
tivity; an Al that possessed a limited repertoire of sequiturs, no reflectivity, no ability
to employ reflective categorization, and no ability to notice when a train of thought has
not yielded anything useful for a while, might still loop eternally through the paradox
as the emergent but useless product of the sequitur repertoire. Transcending the Epi-

menides Paradox requires the ability to perform inductive generalization and deductive

29. “This sentence is false” is properly known as the Eubulides Paradox rather than the Epimenides

Paradox, but “Epimenides Paradox” seems to have become the standard term.
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reasoning on introspective experiences. But it also requires bottom-up organization in
deliberation, so that a spontaneous introspective generalization can capture the focus of
attention. Deliberation must emerge from thoughts, not just use thoughts to implement
rigid algorithms.

Having reached the deliberation level, we finally turn from our long description of
what a mind is, and focus at last on what a mind does—the useful operations imple-
mented by sequences of thoughts that are structures of concepts that are abstracted from

sensory experience in sensory modalities.

2.7.2. 'The Dimensions of Intelligence

Philosophers frequently define “truth” as an agreement between belief and reality; for-
mally, this is known as the “correspondence theory” of truth (James 1909). Under the
correspondence theory of truth, philosophers of Artificial Intelligence have often de-
fined “knowledge” as a mapping between internal data structures and external physical
reality (Newell 1980). Considered in isolation, the correspondence theory of knowledge
is easily abused,; it can be used to argue on the basis of mappings which turn out to exist
entirely in the mind of the programmer.

Intelligence is an evolutionary advantage because it enables us to model and predict
and manipulate reality. In saying this, I am not advocating the philosophical position
that only useful knowledge can be true. 'There is enough regularity in the activity of
acquiring knowledge, over a broad spectrum of problems that require knowledge, that
evolution has tended to create independent cognitive forces for truthseeking. Individual
organisms are best thought of as adaptation-executers rather than fitness-maximizers
(Tooby and Cosmides 1992). “Seeking truth,” even when viewed as a mere local subtask
of a larger problem, has sufficient functional autonomy that many human adaptations are
better thought of as “truthseeking” than “useful-belief-seeking.” Furthermore, under my
own philosophy, I would say beliefs are useful because they are true, not “true” because
they are useful.

But usefulness is a stronger and more reliable test of truth; it is harder to cheat. The
social process of science applies prediction as a test of models, and the same models that
yield successful predictions are often good enough approximations to construct technol-
ogy (manipulation).

I'would distinguish four successively stronger grades of binding between a model and

reality:

* A sensory binding occurs when there is a mapping between cognitive content in the
model and characteristics of external reality. Without tests of usefulness, there is
no formal way to prevent abuse of claimed sensory bindings; the supposed mapping

may lie mostly in the mind of the observer. However, if the system as a whole un-
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dergoes tests of usefulness, much of the task of extending and improving the model
will still locally consist of discovering good sensory bindings—finding beliefs that

are true under the intuitive “correspondence theory” of truth.

* A predictive binding occurs when a model can be used to correctly predict future
events. From the Al’s internal perspective, a predictive binding occurs when the
model can be used to correctly predict future sensory inputs. The Al may be called
upon to make successful predictions about external reality (outside the computer),
virtual microenvironments (inside the computer but outside the Al), or the out-
come of cognitive processes (inside the Al, but proceeding distinct from the pre-
diction). A “sensory input” can derive not only from a sensory device targeted on
external reality, but also from sensory cognition targeted on any process whose out-
come, on the level predicted, is not subject to direct control. (Of course, from our

perspective, prediction of the “real world” remains the strongest test.)

A decisive binding occurs when the model can predict the effects of several possible
actions on reality, and choose whichever action yields the best result under some
goal system (see below). By predicting outcomes under several possible world-
states, consisting of the present world-state plus each of several possible actions, it

becomes possible to choose between futures.

* A manipulative binding occurs when the Al can describe a desirable future with
subjunctive imagery, and invent a sequence of actions which leads to that future.
Where decision involves selecting one action from a predetermined and bounded
set, manipulation involves inventing new actions, perhaps actions previously unper-
ceived because the set of possible actions is unbounded or computationally large.
'The simplest form of manipulation is backward chaining from parent goals to child
goals using causal beliefs; this is not the only form of manipulation, but it is supe-

rior to exhaustive forward search from all possible actions.
I also distinguish three successive grades of variable complexity:

* A discrete variable has referents selected from a bounded set which is computation-
ally small—for example, a set of 20 possible actions, or a set of 26 possible lowercase

letters. The binary presence or absence of a feature is also a discrete variable.

* A quantitative variable is selected from the set of real numbers, or from a compu-
tationally large set which approximates a smoothly varying scalar quantity (such as

the set of floating-point numbers).

* A patterned variable is composed of a finite number of quantitative or discrete ele-

ments. Examples: A finite string of lowercase letters, e.g. “mkrznye”. A real point
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in 3D space (three quantitative elements). A 2D black-and-white image (2D array
of binary pixels).

'The dimension of variable complexity is orthogonal to the SPDM (sensorypredictive-
decisive-manipulative) dimension, but like SPDM it describes successively tougher tests
ofintelligence. A decisive binding from desired result to desirable action is computation-
ally feasible only when the “action” is a discrete variable chosen from a small set—small
enough that each possible action can be modeled. When the action is a quantitative
variable, selected from computationally large sets such as the floating-point numbers
in the interval [0, 1], some form of manipulative binding, such as backward chaining,
is necessary to arrive at the specific action required. (Note that adding a continuous
time parameter to a discrete action renders it quantitative.) Binding precise quantitative
goal imagery to a precise quantitative action cannot be done by exhaustive testing of the
alternatives; it requires a way to transform the goal imagery so as to arrive at subgoal
imagery or action imagery. The simplest transformation is the identity relation—but
even the identity transformation is not possible to a purely forward-search mechanism.
'The next most straightforward method would be to employ a causal belief that specifies
a reversible relation between the antecedent and the consequent. In real-time control
tasks, motor modalities (in humans, the entire sensorimotor system) may automatically
produce action symphonies in order to achieve quantitative or patterned goals.

A string of several discrete or quantitative variables creates a patterned variable, which
is also likely to be computationally intractable for exhaustive forward search. Binding a
patterned goal to a patterned action, if the relation is not one of direct identity, requires
(again) a causal belief that specifies a reversible relation between the antecedent and
the consequent, or (if no such belief is forthcoming) deliberative analysis of complex
regularities in the relation between the action and the outcome, or exploratory tweaking
tollowed by induction on which tweaks increase the apparent similarity between the
outcome and the desired outcome.

There are levels of organization within bindings; a loose binding at one level can give
rise to a tighter binding at a higher level. The rods and cones of the retina correspond to
incoming photons that correspond to points on the surface of an object. The binding be-
tween a metaphorical pixel in the retina and a point in a real-world surface is very weak,
very breakable; a stray ray of light can wildly change the detected optical intensity. But
the actual sensory experience occupies one level of organization above individual pixels.
'The fragile sensory binding between retinal pixels and surface points, on a lower level
of organization, gives rise to a solid sensory binding between our perception of the en-
tire object and the object itself. A match between two discrete variables or two rough
quantitative variables can arise by chance; a match between two patterned variables on a

higher holonic level of organization is far less likely to arise from complete coincidence,
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though it may arise from a cause other than the obvious. The concept kernels in human
visual recognition likewise bind to the entire perceptual experience of an object, not to
individual pixels of the object. On an even higher level of organization, the manipu-
lative binding between human intelligence and the real world is nailed down by many
individually tight sezsory bindings between conceptual imagery and real-world referents.
Under the human implementation, there are at least three levels of organization within
the correspondence theory of truth! The Al pathology that we perceive as “weak se-
mantics”—which is very hard to define, but is an intuitive impression shared by many
Al philosophers—may arise from omitting levels of organization in the binding between

a model and its referent.

2.7.3. Actions

'The series of motor actions I use to strike a key on my keyboard have enough degrees of
freedom that “which key I strike,” as a discrete variable, or “the sequence of keys struck,”
as a patterned variable, are both subject to direct specification. I do not need to engage
in complex planning to strike the key sequence “hello world” or “labm4”; I can specify
the words or letters directly and without need for complex planning. My motor areas
and cerebellum do an enormous amount of work behind the scenes, but it is work that
has been optimized to the point of subjective invisibility. A keystroke is thus an action
for pragmatic purposes, although for a novice typist it might be a goal. As a first approx-
imation, goal imagery has been reduced to action imagery when the imagery can direct
a realtime skill in the relevant modality. This does not necessarily mean that actions
are handed off to skills with no further interaction; realtime manipulations sometimes
go wrong, in which case the interrelation between goals and actions and skills becomes
more intricate, sometimes with multiple changing goals interacting with realtime skills.
Imagery approaches the action level as it becomes able to interact with realtime skills.
Sometimes a goal does not directly reduce to actions because the goal referent is phys-
ically distant or physically separated from the “effectors”—the motor appendages or their
virtual equivalents—so that manipulating the goal referent depends on first overcoming
the physical separation as a subproblem. However, in the routine activity of modern-day
humans, another very common reason why goal imagery does not translate directly into
action imagery is that the goal imagery is a high-level abstract characteristic, cognitively
separated from the realm of direct actions. I can control every keystroke of my typing,
but the quantitative percept of writing quality referred to by the goal imagery of high

writing quality is not subject to direct manipulation.® I cannot directly set my writing

30. Of course, writing quality is made up of a number of components and is not a true scalar variable. A
more accurate description would be that “writing quality” is the summation of a number of other percepts,
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quality to equal that of Shakespeare, in the way that I can directly set a keystroke to
equal “H”, because writing quality is a derived, abstract quantity. A better word than
“abstract” is “holonic,” the term used earlier from Koestler (1967) used to describe the
way in which a single quality may simultaneously be a whole composed of parts, and a
part in a greater whole. Writing quality is a quantitative holon which is eventually bound
to the series of discrete keystrokes. I can directly choose keystrokes, but cannot directly
choose the writing-quality holon. To increase the writing quality of a paragraph I must
link the writing-quality holon to lower-level holons such as correct spelling and omitting
needless words, which are qualities of the senfences holons, which are created through
keystroke actions. Action imagery is typically, though not always, the level on which
variables are completely free (directly specifiable with many degrees of freedom); higher

levels involve interacting constraints which must be resolved through deliberation.

2.7.4. Goals

'The very-high-level abstract goal imagery for writing quality is bound to directly specifi-
able action imagery for words and keystrokes through an intermediate series of child goals
which inherit desirability from parent goals. But what are goals? What is desirability?
So far I have been using an intuitive definition of these terms, which often sufhices for
describing how the goal system interacts with other systems, but is not a description of
the goal system itself.

Unfortunately, the human goal system is somewhat . . . confused . . . as you know if
you're a human. Most of the human goal system originally evolved in the absence of de-
liberative intelligence, and as a result, behaviors that contribute to survival and reproduc-
tion tend to be evolved as independent drives. Taking the intentionalist stance toward
evolution, we would say that the sex drive is a child goal of reproduction. Over evolu-
tionary time this might be a valid stance. But individual organisms are best regarded as
adaptation-executers rather than fitness-maximizers, and the sex drive is not cognitively
a child goal of reproduction; hence the modern use of contraception. Further complica-
tions are introduced at the primate level by the existence of complex social groups; con-
sequently primates have “moral” adaptations, such as reciprocal altruism, third-party in-
tervention to resolve conflicts (“community concern”), and moralistic aggression against
community offenders (Flack and Waal 2000). Still further complications are introduced
by the existence of deliberative reasoning and linguistic communication in humans; hu-

mans are imperfectly deceptive social organisms that argue about each other’s motives in

and that we conceive of this summated quality as increasing or decreasing. Some writing qualities may
be definitely less than or greater than others, but this does not imply that the complete set of percepts is
well-ordered or that the percept itself is cognitively implemented by a simple scalar magnitude.
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adaptive contexts. This has produced what I can only call “philosophical” adaptations,
such as the ways we reason about causation in moral arguments—ultimately giving us
the ability to pass (negative!) judgement on the moral worth of our evolved goal systems
and evolution itself.

It is not my intent to untangle that vast web of causality in this paper, although I have
written (informally but at length) about the problem elsewhere (Yudkowsky 2001), in-
cluding a description of the cognitive and motivational architectures required for a mind
to engage in such apparently paradoxical behaviors as passing coherent judgement on its
own top-level goals. (For example, a mind may regard the current representation of
morals as a probabilistic approximation to a moral referent that can be reasoned about.)
'The architecture of morality is a pursuit that goes along with the pursuit of general in-
telligence, and the two should not be parted, for reasons that should be obvious and will
become even more obvious in Section 3; but unfortunately there is simply not enough
room to deal with the issues here. I will note, however, that the human goal system
sometimes does the Wrong Thing®! and I do not believe Al should follow in those
footsteps; a mind may share our moral frame of reference without being a functional
duplicate of the human goal supersystem.

Within this paper I will set aside the question of moral reasoning and take for granted
that the system supports moral content. The question then becomes how moral content
binds to goal imagery and ultimately to actions.

'The imagery that describes the supergoal is the moral content and describes the events
or world-states that the mind regards as having intrinsic value. In classical terms, the
supergoal description is analogous to the intrinsic utility function. Classically, the total
utility of an event or world-state is its intrinsic utility, plus the sum of the intrinsic util-
ities (positive or negative) of the future events to which that event is predicted to lead,
multiplied in each case by the predicted probability of the future event as a consequence.
(Note that predicted consequences include both direct and indirect consequences, i.e.,
consequences of consequences are included in the sum.) This may appear at first glance
to be yet another oversimplified Good Old-Fashioned Al definition, but for once I shall
argue in favor; the classical definition is more fruitful of complex behaviors than first
apparent. The property desirability should be coextensive with, and should behave iden-
tically to, the property is-predicted-to-lead-to-intrinsic-utility.

Determining which actions are predicted to lead to the greatest total intrinsic utility,
and inventing actions which lead to greater intrinsic utility, has subjective regularities

when considered as a cognitive problem and external regularities when considered as

31. As opposed to the Right Thing. See the Jargon File entry for “Wrong Thing” (Raymond 2004b).
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an event structure. These regularities are called subgoals. Subgoals define areas where
the problem can be efficiently viewed from a local perspective. Rather than the mind
needing to rethink the entire chain of reasoning “Action A leads to B, which leads to
C, which leads to D, . . ., which leads to actual intrinsic utility Z,” there is a useful
regularity that actions which lead to B are mostly predicted to lead through the chain
to Z. Similarly, the mind can consider which of subgoals By, B, B3 are most likely to
lead to C, or consider which subgoals C'y, Cy, C5 are together sufficient for D, without
rethinking the rest of the logic to Z.

This network (not hierarchical) event structure is an imperfect regularity; desirability is
heritable only to the extent, and exactly to the extent, that predicted-to-lead-to-Z-ness
is heritable. Our low-entropy universe has category structure, but not perfect category
structure. Using imagery to describe an event E which is predicted to lead to event
F is never perfect; perhaps most real-world states that fit description E lead to events
that fit description F', but it would be very rare, outside of pure mathematics, to find
a case where the prediction is perfect. There will always be some states in the volume
carved out by the description E that lead to states outside the volume carved out by
description F. If C is predicted to lead to D, and B is predicted to lead to C, then
usually B will inherit C’s predicted-to-lead-to-D-ness. However, it may be that B
leads to a special case of C' which does not lead to D; in this case, B would not inherit
(s predicted-to-lead-to-D-ness. 'Therefore, if C' had inherited desirability from D, B
would not inherit C’s desirability either.

To deal with a world of imperfect regularities, goal systems model the regularities
in the irregularities, using descriptive constraints, distant entanglements, and global
heuristics. If events fitting description E usually but not always lead to events fitting
description F, then the mental imagery describing I, or even the concepts making up
the description of E, may be refined to narrow the extensional class to eliminate events
that seem to fit £ but that do not turn out to lead to F'. These “descriptive constraints”
drive the Al to focus on concepts and categories that expose predictive, causal, and ma-
nipulable regularities in reality, rather than just surface regularities.

A further refinement is “distant entanglements”; for example, an action A that leads
to B which leads to C, but which also simultaneously has side effects that block D,
which is C’s source of desirability. Another kind of entanglement is when action A
leads to unrelated side effect S, which has negative utility outweighing the desirability
inherited from B.

“Global heuristics” describe goal regularities that are general across many problem
contexts, and which can therefore be used to rapidly recognize positive and negative
characteristics; the concept “margin for error” is a category that describes an impor-

tant feature of many plans, and the belief “margin for error supports the local goal” is
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a global heuristic that positively links members of the perceptual category margin for
error to the local goal context, without requiring separate recapitulation of the inductive
and deductive support for the general heuristic. Similarly, in self-modifying or at least
self-regulating Als, “minimize memory usage” is a subgoal that many other subgoals
and actions may impact, so the perceptual recognition of events in the “memory usage”
category or “leads to memory usage” categories implies entanglement with a particular
distant goal.

Descriptive constraints, distant entanglements, and global heuristics do not violate
the desirability-as-prediction model; descriptive constraints, distant entanglements, and
global heuristics are also useful for modeling complex predictions, in the same way and
for the same reasons as they are useful in modeling goals. However, there are at least
three reasons for the activity of planning to difter from the activity of prediction. First,
prediction typically proceeds forward from a definite state of the universe to determine
what comes after, while planning often (though not always) reasons backward from goal
imagery to pick out one point in a space of possible universes, with the space’s dimen-
sions determined by degrees of freedom in available actions. Second, desirabilities are
differential, unlike predictions; if A and ~A both lead to the same endpoint FE, then
from a predictive standpoint this may increase the confidence in E, but from a planning
standpoint it means that neither A nor ~A will inherit nez desirability from E. The
final effect of desirability is that an Al chooses the mosz desirable action, an operation
which is comparative rather than absolute; if both A and ~A lead to E, neither A nor
~A transmit differential desirability to actions.

Third, while both implication and causation are useful for reasoning about predictions,
only causal links are useful in reasoning about goals. If the observation of A is usually
tollowed by the observation of B, then this makes A a good predictor of B—regardless
of whether A is the direct cause of B, or whether there is a hidden third cause C' which is
the direct cause of both A and B. Iwould regard implication as an emergent property of a
directed network of events whose underlying behavior is that of causation; if C' causes A,
and then causes B, then A will imply B. Both “A causes B” (direct causal link) and “A
implies B” (mutual causal link from C') are useful in prediction. However, in planning,
the distinction between “A directly causes B” and “A and B are both effects of C” leads
to a distinction between “Actions that lead to A, as such, are likely to lead to B” and
“Actions that lead directly to A, without first leading through C, are unlikely to have
any effect on B.” This distinction also means that experiments in manipulation tend to
single out real causal links in a way that predictive tests do not. If A implies B then it is
often the case that C' causes both A and B, but it is rarer in most real-world problems for

an action intended to affect A to separately and invisibly affect the hidden third cause C,
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giving rise to false confirmation of direct causality.® (Although it happens, especially in

economic and psychological experiments.)

2.7.5. Activities of Intelligence: Explanation, Prediction, Discovery, Planning,

Design

So far, this section has introduced the distinction between sensory, predictive, decisive,
and manipulative models; discrete, quantitative, and patterned variables; the holonic
model of high-level and low-level patterns; and supergoal referents, goal imagery, and
actions. 'These ideas provide a framework for understanding the immediate subtasks
of intelligence—the moment-to-moment activities of deliberation. In carrying out a
high-level cognitive task such as design a bicycle, the subtasks consist of crossing gaps
from very high-level holons such as good transport to the holon fast propulsion to the
holon pushing on the ground to the holon wheel to the holons for spokes and tires, until
finally the holons become directly specifiable in terms of design components and design
materials directly available to the Al.

The activities of intelligence can be described as knowledge completion in the service of
goal completion. To complete a bicycle, one must first complete a design for a bicycle. To
carry out a plan, one must complete a mental picture of a plan. Because both planning
and design make heavy use of knowledge, they often spawn purely knowledge-directed
activities such as explanation, prediction, and discovery. These activities are messy, non-
inclusive categories, but they illustrate the general sorts of things that general minds
do.

Knowledge activities are carried out both on a large scale, as major strategic goals,
and on a small scale, in routine subtasks. For example, “explanation” seeks to extend
current knowledge, through deduction or induction or experiment, to fill the gap left by
the unknown cause of a known effect. The unknown cause will at least be the referent of
question imagery, which will bring into play sequiturs and verifiers which react to open
questions. If the problem becomes salient enough, and difficult enough, finding the
unknown cause may be promoted from question imagery to an internal goal, allowing
the Al to reason deliberatively about which problem-solving strategies to deploy. The
knowledge goal for “building a plan” inherits desirability from the objective of the plan,
since creating a plan is required for (is a subgoal of) achieving the objective of the plan.
'The knowledge goal for explaining an observed failure might inherit desirability from
the goal achievable when the failure is fixed. Since knowledge goals can govern actual

actions and not just the flow of sequiturs, they should be distinguished from question

32. 1 believe this is the underlying distinction which Pearl (1996) is attempting to model when he

suggests that agent actions be represented as surgery on a causal graph.
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imagery. Knowledge goals also permit reflective reasoning about what kind of internal
actions are likely to lead to solving the problem; knowledge goals may invoke sequiturs
that search for beliefs about so/ving knowledge problems, not just beliefs about the specific
problem at hand.

Explanation fills holes in knowledge about the past. Prediction fills holes in knowl-
edge about the future. Discovery fills holes in knowledge about the present. Design fills
gaps in the mental model of a tool. Planning fills gaps in a model of future strategies
and actions. Explanation, prediction, discovery, and design may be employed in the pur-
suit of a specific real-world goal, or as an independent pursuit in the anticipation of the
resulting knowledge being useful in future goals—“curiosity.” Curiosity fills completely
general gaps (rather than being targeted on specific, already-known gaps), and involves
the use of forward-looking reasoning and experimentation, rather than backward chain-
ing from specific desired knowledge goals; curiosity might be thought of as filling the
very abstract goal of “finding out X, where X refers to anything that will turn out to
be a good thing to know later on, even though I dont know specifically what X is.”
(Curiosity involves a very abstract link to intrinsic utility, but one which is nonetheless
completely true—curiosity 7s useful.)

What all the activities have in common is that they involve reasoning about a com-
plex, holonic model of causes and effects. “Explanation” fills in holes about the past,
which is a complex system of cause and effect. “Prediction” fills in holes in the future,
which is a complex system of cause and effect. “Design” reasons about tools, which are
complex holonic systems of cause and effect. “Planning” reasons about strategies, which
are complex holonic systems of cause and effect. Intelligent reasoning completes knowl-
edge goals and answers questions in a complex holonic causal model, in order to achieve
goal referents in a complex holonic causal system.

'This gives us the three elements of DGI:

* 'The what of intelligence: Intelligence consists in humans of a highly modular brain
with dozens of areas, which implements a deliberative process (built on thoughts
built of concepts built on sensory modalities built on neurons); plus contributing
subsystems (e.g. memory); plus surrounding subsystems (e.g. autonomic regula-
tion); plus leftover subsystems implementing pre-deliberative approximations of
deliberative processes; plus emotions, instincts, intuitions and other systems that
influence the deliberative process in ways that were adaptive in the ancestral en-
vironment; plus everything else. A similar system is contemplated for Als, of
roughly the same order of complexity, but inevitably less messy. Both supersystems
are characterized by levels of organization: Code / neurons, modalities, concepts,

thoughts, and deliberation.
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* The why of intelligence: The cause of human intelligence is evolution. Intelligence
is an evolutionary advantage because it enables us to model reality, including ex-
ternal reality, social reality and internal reality, which in turn enables us to predict,
decide, and manipulate reality. Als will have intelligence because we, the human
programmers, wish to accomplish a goal that can best be reached through smart AT,
or because we regard the act of creating Al as having intrinsic utility; in either case,

building Al requires building a deliberative supersystem that manipulates reality.

* 'The how of intelligence: Intelligence (deliberate reasoning) completes knowledge
goals and answers questions in a complex holonic causal model, in order to achieve

goal referents in a complex holonic causal system.

2.7.6. General Intelligence

'The evolutionary context of intelligence has historically included environmental adap-
tive contexts, social adaptive contexts (modeling of other minds), and reflective adaptive
contexts (modeling of internal reality). In evolving to fit a wide variety of adaptive con-
texts, we have acquired much cognitive functionality that is visibly specialized for par-
ticular adaptive problems, but we have also acquired cognitive functionality that is adap-
tive across many contexts, and adaptive functionality that co-opts previously specialized
functionality for wider use. Humans can acquire substantial competence in modeling,
predicting, and manipulating fully general regularities of our low-entropy universe. We
call this ability “general intelligence.” In some ways our ability is very weak; we often
solve general problems abstractly instead of perceptually, so we can’t deliberatively solve
problems on the order of realtime visual interpretation of a 3D scene. But we can of-
ten say something which is true enough to be useful and simple enough to be tractable.
We can deliberate on how vision works, even though we can't deliberate fast enough to
perform realtime visual processing.

There is currently a broad trend toward one-to-one mappings of cognitive subsystems
to domain competencies. I confess that I am personally annoyed by the manifestations
of this idea in popular psychology, but of course the new phrenologies are irrelevant
to genuine hypotheses about mappings between specialized domain competencies and
specialized computational subsystems, or decisions to pursue specialized Al. It is not
unheard-of for academic trends to reflect popular psychology, but it is generally good
form to dispose of a thesis before dissecting the moral flaws of its proponents.

In DGI, human intelligence is held to consist of a supersystem with complex inter-
dependent subsystems that exhibit inzerna/ functional specialization, but this does not
rule out the existence of other subsystems that contribute solely or primarily to specific
cognitive talents and domain competencies, or subsystems that contribute more heavily

to some cognitive talents than others. The mapping from computational subsystems to
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cognitive talents is many-to-many, and the mapping from cognitive talents plus acquired
expertise to domain competencies is also many-to-many, but this does not rule out spe-
cific correspondences between human variances in the “computing power” (generalized
cognitive resources) allocated to computational subsystems and observed variances in
cognitive talents or domain competencies. It should be noted, however, that the subject
matter of Al is not the variance between humans, but the base of adaptive complex-
ity held by all humans in common. If increasing the resources allocated to a cognitive
subsystem yields an increase in a cognitive talent or domain competency, it does not
tollow that the talent or competency can be implemented by that subsystem alone. It
should also be noted that under the traditional paradigm of programming, program-
mers’ thoughts about solving specific problems are translated into code, and this is the
idiom underlying most branches of classical Al; for example, expert systems engineers
supposedly translate the beliefs in specific domains directly into the cognitive content of
the Al This would naturally tend to yield a view of intelligence in which there is a one-
to-one mapping between subsystems and competencies. I believe this is the underlying
cause of the atmosphere in which the quest for intelligent Al is greeted with the reply:
“Al that is intelligent in what domain?”

'This does not mean that exploration in specialized Al is entirely worthless; in fact,
DGT’s levels of organization suggest a specific class of cases where specialized Al may
prove fruitful. Sensory modalities lie directly above the code level; sensory modalities
were some of the first specialized cognitive subsystems to evolve and hence are not as
reliant on a supporting supersystem framework, although other parts of the supersystem
depend heavily on modalities. This suggests a specialized approach, with programmers
directly writing code, may prove fruitful if the project is constructing a sensory modal-
ity. And indeed, Al research that focuses on creating sensory systems and sensorimotor
systems continues to yield real progress. Such researchers are following evolution’s in-
cremental path, often knowingly so, and thereby avoiding the pitfalls that result from
violating the levels of organization.

However, I still do not believe it is possible to match the deliberative supersystem’s
inherently broad applicability by implementing a separate computational subsystem for
each problem context. Not only is it impossible to duplicate general intelligence through
the sum of such subsystems, I suspect it is impossible to achieve humanlike performance
in most single contexts using specialized Al. Occasionally we use abstract deliberation
to solve modality-level problems for which we lack sensory modalities, and in this case
it is possible for Al projects to solve the problem on the modality level, but the result-
ing problem-solving method will be very different from the human one, and will not

generalize outside the specific domain. Hence Deep Blue.
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Even on the level of individual domain competencies, not all competencies are un-
related to each other. Different minds may have different abilities in different domains;
a mind may have an “ability surface,” with hills and spikes in areas of high ability; but
a spike in an area such as learning or self~improvement tends to raise the rest of the
ability surface (Voss 2007). 'The talents and subsystems that are general in the sense
of contributing to many domain competencies—and the domain competencies of self-
improvement; see Section 3—occupy a strategic position in Al analogous to the central

squares in chess.

2.7.7. Self

When can an Al legitimately use the word “I”?

(For the sake of this discussion, I must give the Al a temporary proper name; I will
use “Aisa” during this discussion.)

A classical Al that contains a LISP token for “hamburger” knows nothing about
hamburgers; at most the Al can recognize recurring instances of a letter-sequence typed
by programmers. Giving an Al a suggestively named data structure or function does not
make that component the functional analogue of the similarly named human feature
(McDermott 1976). At what point can Aisa talk about something called “Aisa” with-
out Drew McDermott popping up and accusing us of using a term that might as well
translate to “G00257?

Suppose that Aisa, in addition to modeling virtual environments and/or the outside
world, also models certain aspects of internal reality, such as the effectiveness of heuristic
beliefs used on various occasions. The degrees of binding between a model and reality
are sensory, predictive, decisive, and manipulative. Suppose that Aisa can sense when
a heuristic is employed, notice that heuristics tend to be employed in certain contexts
and that they tend to have certain results, and use this inductive evidence to formu-
late expectations about when a heuristic will be employed and predict the results on its
employment. Aisa now predictively models Aisa; it forms beliefs about its operation
by observing the introspectively visible effects of its underlying mechanisms. Tight-
ening the binding from predictive to manipulative requires that Aisa link introspective
observations to internal actions; for example, Aisa may observe that devoting discre-
tionary computational power to a certain subprocess yields thoughts of a certain kind,
and that thoughts of this kind are useful in certain contexts, and subsequently devote
discretionary power to that subprocess in those contexts.

A manipulative binding between Aisa and Aisa’s model of Aisa is enough to let Aisa
legitimately say “Aisa is using heuristic X,” such that using the term “Aisa” is materially
different from using “hamburger” or “G0025”. But can Aisa legitimately say, “/ am

using heuristic X7
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My favorite quote on this subject comes from Douglas Lenat, although I cannot find
the reference and am thus quoting from memory: “While Cyc knows that there is a thing
called Cyc, and that Cyc is a computer, it does not know that iz is Cyc.”*® Personally, I
would question whether Cyc knows that Cyc is a computer—but regardless, Lenat has
made a legitimate and fundamental distinction. Aisa modeling a thing called Aisa is not
the same as Aisa modeling itself.

In an odd sense, assuming that the problem exists is enough to solve the problem. If
another step is required before Aisa can say “I am using heuristic X,” then there must be
a material difference between saying “Aisa is using heuristic X” and “I am using heuristic
X.” And that is one possible answer: Aisa can say “I” when the behavior of modeling
itself is materially different, because of the self-reference, from the behavior of modeling
another Al that happens to look like Aisa.

One specific case where self-modeling is materially different than other-modeling
is in planning. Employing a complex plan in which a linear sequence of actions A, B,
C' are individually necessary and together sufficient to accomplish goal G requires an
implicit assumption that the Al will follow through on its own plans; action A is use-
less unless it is followed by actions B and C, and action A is therefore not desirable
unless actions B and C are predicted to follow. Making complex plans does not actu-
ally require self-modeling, since many classical Als engage in planning-like behaviors
using programmatic assumptions in place of reflective reasoning, and in humans the as-
sumption is usually automatic rather than being the subject of deliberation. However,
deliberate reflective reasoning about complex plans requires an understanding that the
future actions of the Al are determined by the decisions of the AI’s future self, that there
is some degree of continuity (although not perfect continuity) between present and fu-
ture selves, and that there is thus some degree of continuity between present decisions
and future actions.

An intelligent mind navigates a universe with four major classes of variables: Random
factors, variables with hidden values, the actions of other agents, and the actions of the
self. The space of possible actions differs from the spaces carved out by other variables
because the space of possible actions is under the AI’s control. One difference between
“Aisa will use heuristic X” and “I will use heuristic X” is the degree to which heuristic
usage is under Aisa’s deliberate control—the degree to which Aisa has goals relating to
heuristic usage, and hence the degree to which the observation “I predict that I will use
heuristic X” affects Aisa’s subsequent actions. Aisa, if sufficiently competent at model-

ing other minds, might predict that a similar Al named Aileen would also use heuristic

33. Lenat may have said this in the early days of Cyc. In a 1997 interview in Wired article, Lenat
claims: “Cyc is already self-aware. If you ask it what it is, it knows that it is a computer.” (Garfinkel 1997)
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X, but beliefs about Aileen’s behaviors would be derived from predictive modeling of
Aileen, and not decisive planning of internal actions based on goal-oriented selection
from the space of possibilities. There is a cognitive difference between Aisa saying “I
predict Aileen will use heuristic X” and “I plan to use heuristic X.” On a systemic level,
the global specialness of “I” would be nailed down by those heuristics, beliefs, and ex-
pectations that individually relate specially to “I” because of introspective reflectivity or
the space of undecided but decidable actions. It is my opinion that such an Al would
be able to legitimately use the word “I,” although in humans the specialness of “I” may
be nailed down by additional cognitive forces as well. (Legitimate use of “I” is explicitly
not offered as a necessary and sufficient condition for the “hard problem of conscious

experience” [Chalmers 1995] or social, legal, and moral personhood.)

3. Seed Al

In the space between the theory of human intelligence and the theory of general Al is
the ghostly outline of a theory of minds in general, specialized for humans and Als. I
have not tried to lay out such a theory explicitly, confining myself to discussing those
specific similarities and differences of humans and Als that I feel are worth guessing
in advance. The Copernican revolution for cognitive science—humans as a noncentral
special case—is not yet ready; it takes three points to draw a curve, and currently we only
have one. Nonetheless, humans are in fact a noncentral special case, and this abstract
fact is knowable even if our current theories are anthropocentric.

There is a fundamental rift between evolutionary design and deliberative design.
From the perspective of a deliberative intelligence—a human, for instance—evolution
is the degenerate case of design-and-test where intelligence equals zero. Mutations are
atomic; recombinations are random; changes are made on the genotype’s lowest level of
organization (flipping genetic bits); the grain size of the component tested is the whole
organism; and the goodness metric operates solely through induction on historically en-
countered cases, without deductive reasoning about which contextual factors may later
change.** The evolution of evolvability (Wagner and Altenberg 1996) improves this pic-
ture somewhat. There is a tendency for low-level genetic bits to exert control over high-
level complexity, so that changes to those genes can create high-level changes. Blind
selection pressures can create self-wiring and self-repairing systems that turn out to be

highly evolvable because of their ability to phenotypically adapt to genotypical changes.

34. Viewing evolution itself through the lens provided by DGI is just barely possible. There are so
many differences as to render the comparison one of “loose analogy” rather than “special case.” This is as

expected; evolution is not intelligent, although it may sometimes appear so.

93



Levels of Organization in General Intelligence

Nonetheless, the evolution of evolvability is not a substitute for intelligent design. Evo-
lution works, despite local inefliciencies, because evolution exerts vast cumulative design
pressure over time.

However, the total amount of design pressure exerted over a given time is limited;
there is only a limited amount of selection pressure to be divided up among all the genetic
variances selected on in any given generation (Worden 1995). One obvious consequence
is that evolutionarily recent adaptations will probably be less optimized than those which
are evolutionarily ancient. In DGI, the evolutionary phylogeny of intelligence roughly
recapitulates its functional ontogeny; it follows that higher levels of organization may
contain less total complexity than lower levels, although sometimes higher levels of orga-
nization are also more evolvable. Therefore, a subtler consequence is that the lower lev-
els of organization are likely to be less well adapted to evolutionarily recent innovations
(such as deliberation) than those higher levels to the lower levels—an effect enhanced by
evolution’s structure-preserving properties, including the preservation of structure that
evolved in the absence of deliberation. Any design possibilities that first opened up with
the appearance of Homo sapiens sapiens remain unexploited because Homo sapiens sapiens
has only existed for 50,000-100,000 years; this is enough time to select among variances
in quantitative tendencies, but not really enough time to construct complex functional
adaptation. Since only Homo sapiens sapiens in its most modern form is known to en-
gage in computer programming, this may explain why we do not yet have the capacity
to reprogram our own neurons (said with tongue firmly in cheek, but there’s still a grain
of truth). And evolution is extremely conservative when it comes to wholesale revision of
architectures; the homeotic genes controlling the embryonic differentiation of the fore-
brain, midbrain, and hindbrain have identifiable homologues in the developing head of
the Drosophila fly(!) (Holland, Ingham, and Krauss 1992).

Evolution never refactors its code. It is far easier for evolution to stumble over a
thousand individual optimizations than for evolution to stumble over two simultaneous
changes which are together beneficial and separately harmful. 'The genetic code that
specifies the mapping between codons (a codon is three DNA bases) and the 20 amino
acids is inefficient; it maps 64 possible codons to 20 amino acids plus the stop code.
Why hasn’t evolution shifted one of the currently redundant codons to a new amino
acid, thus expanding the range of possible proteins? Because for any complex organism,
the smallest change to the behavior of DNA—the lowest level of genetic organization—
would destroy virtually all higher levels of adaptive complexity, unless the change were
accompanied by millions of other simultaneous changes throughout the genome to shift
every suddenly-nonstandard codon to one of its former equivalents. Evolution simply
cannot handle simultaneous dependencies, unless individual changes can be deployed

incrementally, or multiple phenotypical effects occur as the consequence of a single ge-
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netic change. For humans, planning coordinated changes is routine; for evolution, im-
possible. Evolution is hit with an enormous discount rate when exchanging the paper
currency of incremental optimization for the hard coin of complex design.

We should expect the human design to incorporate an intimidatingly huge number
of simple functional optimizations. But it is also understandable if there are deficits in
the higher design. While the higher levels of organization (including deliberation) have
emerged from the lower levels and hence are fairly well adapted to them, the lower levels
of organization are not as adapted to the existence of deliberate intelligence. Humans
were constructed by accretive evolutionary processes, moving from very complex non-
general intelligence to very complex general intelligence, with deliberation the last layer
of icing on the cake.

Can we exchange the hard coin of complex design for the paper currency of low-
level optimization? “Optimizing compilers” are an obvious step but a tiny one; program
optimization makes programs faster but exerts no design pressure for better functional
organization, even for simple functions of the sort easily optimized by evolution. Di-
rected evolution, used on modular subtasks with clearly defined performance metrics,
would be a somewhat larger step. But even directed evolution is still the degenerate
case of design-and-test where individual steps are unintelligent. We are, by assumption,
building an AI. Why use unintelligent design-and-test?

Admittedly, there is a chicken-and-egg limit on relying on an AT’s intelligence to help
build an Al Until a stably functioning cognitive supersystem is achieved, only the non-
deliberative intelligence exhibited by pieces of the system will be available. Even after
the achievement of a functioning supersystem—a heroic feat in itself—the intelligence
exhibited by this supersystem will initially be very weak. The weaker an AT’s intelligence,
the less ability the Al will show in understanding complex holonic systems. The weaker
an AT’s abilities at holonic design, the smaller the parts of itself that the Al will be able to
understand. At whatever time the Al finally becomes smart enough to participate in its
own creation, the Al will initially need to concentrate on improving small parts of itself
with simple and clear-cut performance metrics supplied by the programmers. This is
not a special case of a stupid Al trying to understand itself, but a special case of a stupid
Al trying to understand any complex holonic system; when the Al is “young” it is likely
to be limited to understanding simple elements of a system, or small organizations of el-
ements, and only where clear-cut goal contexts exist (probably programmer-explained).
But even a primitive holonic design capability could cover a human gap; we don't like
fiddling around with little things because we get bored, and we lack the ability to trade
our massive parallelized power on complex problems for greater serial speed on simple
problems. Similarly, it would be unhealthy (would result in Al pathologies) for hu-

man programming abilities to play a permanent role in learning or optimizing concept
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kernels—but at the points where interference seems tempting, it is perfectly acceptable
for the AI’s deliberative processes to play a role, if the Al has advanced that far.

Human intelligence, created by evolution, is characterized by evolution’s design sig-
nature. The vast majority of our genetic history took place in the abdsence of deliberative
intelligence; our older cognitive systems are poorly adapted to the possibilities inherent
in deliberation. Evolution has applied vast design pressures to us but has done so very
unevenly; evolution’s design pressures are filtered through an unusual methodology that
works far better for hand-massaging code than for refactoring program architectures.

Now imagine a mind built in its own presence by intelligent designers, beginning
from primitive and awkward subsystems that nonetheless form a complete supersystem.
Imagine a development process in which the elaboration and occasional refactoring of
the subsystems can co-opt any degree of intelligence, however small, exhibited by the
supersystem. 'The result would be a fundamentally different design signature, and a new
approach to Artificial Intelligence which I call seed AL

A seed Al is an Al designed for self-understanding, self-modification, and recursive
self-improvement. This has implications both for the functional architectures needed to
achieve primitive intelligence, and for the later development of the Al if and when its
holonic self-understanding begins to improve. Seed Al is not a workaround that avoids
the challenge of general intelligence by bootstrapping from an unintelligent core; seed
Al only begins to yield benefits once there is some degree of available intelligence to be
utilized. The later consequences of seed Al (such as true recursive self-improvement)
only show up after the Al has achieved significant holonic understanding and general
intelligence. The bulk of this chapter, Section 2, describes the general intelligence that is
prerequisite to seed Al; Section 3 assumes some degree of success in constructing general
intelligence and asks what may happen afterward. This may seem like hubris, but there
are interesting things to be learned thereby, some of which imply design considerations

for earlier architecture.

3.1. Advantages of Minds-in-General

To the computer programmers in the audience, it may seem like breathtaking audacity
if T dare to predict any advantages for Als in advance of construction, given past failures.
'The evolutionary psychologists will be less awed, knowing that in many ways the human
mind is an astonishingly flimsy piece of work. If discussing the potential advantages
of “Als” strikes you as too audacious, then consider what follows, not as discussing the
potential advantages of “Als,” but as discussing the potential advantages of minds in
general relative to humans. One may then consider separately the audacity involved in
claiming that a given Al approach can achieve one of these advantages, or that it can be

done in less than fifty years.
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Humans definitely possess the following advantages, relative to current Als:

* We are smart, flexible, generally intelligent organisms with an enormous base of
evolved complexity, years of real-world experience, and 10'* parallelized synapses,

and current Als are not.

Humans probably possess the following advantages, relative to intelligences developed

by humans on foreseeable extensions of current hardware:

* Considering each synaptic signal as roughly equivalent to a floating-point oper-
ation, the raw computational power of a human is enormously in excess of any
current supercomputer or clustered computing system, although Moore’s Law con-

tinues to eat up this ground (Moravec 1998).

* Human neural hardware—the wetware layer—ofters built-in support for opera-
tions such as pattern recognition, pattern completion, optimization for recurring
problems, et cetera; this support was added from below, taking advantage of mi-
crobiological features of neurons, and could be enormously expensive to simulate

computationally to the same degree of ubiquity.

* With respect to the holonically simpler levels of the system, the total amount of
“design pressure” exerted by evolution over time is probably considerably in excess
of the design pressure that a reasonably-sized programming team could expect to

personally exert.

* Humans have an extended history as intelligences; we are proven software.

Current computer programs definitely possess these mutually synergetic advantages rel-

ative to humans:

* Computer programs can perform highly repetitive tasks without boredom.

 Computer programs can execute complex extended tasks without making that class
of human errors caused by distraction or short-term memory overflow in abstract

deliberation.

* Computer hardware can perform extended sequences of simple steps at much
greater serial speeds than human abstract deliberation or even human 200 Hz neu-

rons.

 Computer programs are fully configurable by the general intelligences called hu-

mans. (Evolution, the designer of humans, cannot invoke general intelligence.)

'These advantages will not necessarily carry over to real Al. A real Al is not a computer

program any more than a human is a cell. The relevant complexity exists at a much
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higher layer of organization, and it would be inappropriate to generalize stereotypical
characteristics of computers to real Als, just as it would be inappropriate to generalize
the stereotypical characteristics of amoebas to modern-day humans. One might say that
a real Al consumes computing power but is not a computer. This basic distinction has
been confused by many cases in which the label “Al” has been applied to constructs that
turn out to be only computer programs; but we should still expect the distinction to hold
true of real Al, when and if achieved.

'The potential cognitive advantages of minds-in-general, relative to humans, probably

include:

New sensory modalities: Human programmers, lacking a sensory modality for assem-
bly language, are stuck with abstract reasoning plus compilers. We are not en-
tirely helpless, even this far outside our ancestral environment—but the tradi-
tional fragility of computer programs bears witness to our awkwardness. Minds-in-
general may be able to exceed human programming ability with relatively primitive

general intelligence, given a sensory modality for code.

Blending-over of deliberative and automatic processes: Human wetware has very
poor support for the realtime diversion of processing power from one subsystem to
another. Furthermore, a computer can burn serial speed to generate parallel power
but neurons cannot do the reverse. Minds-in-general may be able to carry out an
uncomplicated, relatively uncreative track of deliberate thought using simplified
mental processes that run at higher speeds—an idiom that blurs the line between
“deliberate” and “algorithmic” cognition. Another instance of the blurring line is
co-opting deliberation into processes that are algorithmic in humans; for exam-
ple, minds-in-general may choose to make use of top-level intelligence in forming
and encoding the concept kernels of categories. Finally, a sufficiently intelligent
Al might be able to incorporate de novo programmatic functions into deliberative
processes—as if Gary Kasparov® could interface his brain to a computer and write

search trees to contribute to his intuitive perception of a chessboard.

Better support for introspective perception and manipulation: The  comparatively
poor support of the human architecture for low-level introspection is most
apparent in the extreme case of modifying code; we can think thoughts about
thoughts, but not thoughts about individual neurons. However, other cross-level
introspections are also closed to us. We lack the ability to introspect on concept

kernels, focus-of-attention allocation, sequiturs in the thought process, memory

35. Former world champion in chess, beaten by the computer Deep Blue.
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formation, skill reinforcement, et cetera; we lack the ability to introspectively

notice, induce beliefs about, or take deliberate actions in these domains.

The ability to add and absorb new hardware: The human brain is instantiated with a
species-typical upper limit on computing power and loses neurons as it ages. In the
computer industry, computing power continually becomes exponentially cheaper,
and serial speeds exponentially faster, with sufficient regularity that “Moore’s Law”
(Moore 1997) is said to govern its progress. Nor is an Al project limited to waiting
for Moore’s Law; an Al project that displays an important result may conceivably
receive new funding which enables the project to buy a much larger clustered system
(or rent a larger computing grid), perhaps allowing the Al to absorb hundreds of
times as much computing power. By comparison, the 5-million-year transition
trom Australopithecus to Homo sapiens sapiens involved a tripling of cranial capacity
relative to body size, and a further doubling of prefrontral volume relative to the
expected prefrontal volume for a primate with a brain our size, for a total sixfold
increase in prefrontal capacity relative to primates (Deacon 1990). At 18 months
per doubling, it requires 3.9 years for Moore’s Law to cover this much ground. Even

granted that intelligence is more software than hardware, this is still impressive.

Agglomerativity: An advanced Al is likely to be able to communicate with other
Als at much higher bandwidth than humans communicate with other humans—
including sharing of thoughts, memories, and skills, in their underlying cognitive
representations. An advanced Al may also choose to internally employ multi-
threaded thought processes to simulate different points of view. The traditional
hard distinction between “groups” and “individuals” may be a special case of hu-
man cognition rather than a property of minds-in-general. It is even possible that
no one project would ever choose to split up available hardware among more than
one Al. Much is said about the benefits of cooperation between humans, but this is
because there is a species limit on individual brainpower. We solve difficult prob-
lems using many humans because we cannot solve difficult problems using one big
human. Six humans have a fair advantage relative to one human, but one human

has a tremendous advantage relative to six chimpanzees.

Hardware that has different, but still powerful, advantages: Current computing sys-
tems lack good built-in support for biological neural functions such as automatic
optimization, pattern completion, massive parallelism, etc. However, the bottom
layer of a computer system is well-suited to operations such as reflectivity, execution
traces, lossless serialization, lossless pattern transformations, very-high-precision

quantitative calculations, and algorithms which involve iteration, recursion, and
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extended complex branching. Also in this category, but important enough to de-

serve its own section, is:

Massive serialism: Different “limiting speed” for simple cognitive processes. No mat-
ter how simple or computationally inexpensive, the speed of a human cognitive
process is bounded by the 200 Hz limiting speed of spike trains in the underly-
ing neurons. Modern computer chips can execute billions of sequential steps per
second. Even if an Al must “burn” this serial speed to imitate parallelism, sim-
ple (routine, noncreative, nonparallel) deliberation might be carried out substan-
tially (orders of magnitude) faster than more computationally intensive thought
processes. If enough hardware is available to an Al, or if an Al is sufficiently opti-
mized, it is possible that even the AD’s full intelligence may run substantially faster

than human deliberation.

Freedom from evolutionary misoptimizations: The term “misoptimization” here in-
dicates an evolved feature that was adaptive for inclusive reproductive fitness in
the ancestral environment, but which today conflicts with the goals professed by
modern-day humans. If we could modify our own source code, we would eat Her-
shey’s lettuce bars, enjoy our stays on the treadmill, and use a volume control on

“boredom” at tax time.

Everything evolution just didn’t think of: This catchall category is the flip side of the
human advantage of “tested software’—humans arent necessarily good software,
just old software. Evolution cannot create design improvements which surmount
simultaneous dependencies unless there exists an incremental path, and even then
will not execute those design improvements unless that particular incremental path
happens to be adaptive for other reasons. Evolution exhibits no predictive foresight
and is strongly constrained by the need to preserve existing complexity. Human

programmers are free to be creative.

Recursive self-enhancement: If a seed Al can improve itself, each local improvement
to a design feature means that the Al is now partially the source of that feature,
in partnership with the original programmers. Improvements to the Al are now
improvements to the source of the feature, and may thus trigger further improve-
ment in that feature. Similarly, where the seed Al idiom means that a cognitive
talent co-opts a domain competency in internal manipulations, improvements to
intelligence may improve the domain competency and thereby improve the cogni-
tive talent. From a broad perspective, a mind-in-general’s self-improvements may
result in a higher level of intelligence and thus an increased ability to originate new

self-improvements.
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3.2. Recursive Self-enhancement

Fully recursive self-enhancement is a potential advantage of minds-in-general that has
no analogue in nature—not just no analogue in human intelligence, but no analogue
in any known process. Since the divergence of the hominid family within the primate
order, further developments have occurred at an accelerating pace—but this is not be-
cause the character of the evolutionary process changed or became “smarter”; successive
adaptations for intelligence and language opened up new design possibilities and also
tended to increase the selection pressures for intelligence and language. Similarly, the
exponentially accelerating increase of cultural knowledge in Homo sapiens sapiens was
triggered by an underlying change in the human brain, but has not itself had time to
create any significant changes in the human brain. Once Homo sapiens sapiens arose,
the subsequent runaway acceleration of cultural knowledge took place with essentially
constant brainware. The exponential increase of culture occurs because acquiring new
knowledge makes it easier to acquire more knowledge.

The accelerating development of the hominid family and the exponential increase in
human culture are both instances of weakly self-improving processes, characterized by an
externally constant process (evolution, modern human brains) acting on a complexity
pool (hominid genes, cultural knowledge) whose elements interact synergetically. If we
divide the process into an improver and a content base, then weakly self-improving pro-
cesses are characterized by an external improving process with roughly constant charac-
teristic intelligence, and a content base within which positive feedback takes place under
the dynamics imposed by the external process.

If a seed Al begins to improve itself, this will mark the beginning of the Al’s se/f~
encapsulation. Whatever component the Al improves will no longer be caused entirely
by humans; the cause of that component will become, at least in part, the Al. Any im-
provement to the Al will be an improvement to the cause of a component of the Al
If the Al is improved further—either by the external programmers, or by internal self-
enhancement—the Al may have a chance to re-improve that component. That is, any
improvement to the Al’s global intelligence may indirectly result in the Al improving
local components. This secondary enhancement does not necessarily enable the Al to
make a further, tertiary round of improvements. If only a few small components have
been self-encapsulated, then secondary self-enhancement effects are likely to be small,
not on the same order as improvements made by the human programmers.

If computational subsystems give rise to cognitive talents, and cognitive talents plus
acquired expertise give rise to domain competencies, then self-improvement is a means
by which domain competencies can wrap around and improve computational subsys-
tems, just as the seed Al idiom of co-opting deliberative functions into cognition enables

improvements in domain competencies to wrap around and improve cognitive talents,
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and the ordinary idiom of intelligent learning enables domain competencies to wrap
around and improve acquired expertise.*® The degree to which domain competencies
improve underlying processes will depend on the Al’s degree of advancement; succes-
sively more advanced intelligence is required to improve expertise, cognitive talents, and
computational subsystems. The degree to which an improvement in intelligence cas-
cades into further improvements will be determined by how much self-encapsulation
has already taken place on difterent levels of the system.

A seed Al is a strongly self~improving process, characterized by improvements to the
content base that exert direct positive feedback on the intelligence of the underlying
improving process. The exponential surge of human cultural knowledge was driven by
the action of an already-powerful but constant force, human intelligence, upon a syn-
ergetic content base of cultural knowledge. Since strong self-improvement in seed Al
involves an initially very weak but improving intelligence, it is not possible to conclude
from analogies with human cultural progress that strongly recursive self-improvement
will obey an exponential lower bound during early stages, nor that it will obey an expo-
nential upper bound during later stages. Strong self-improvement is a mixed blessing
in development. During earlier epochs of seed Al, the dual process of programmer im-
provement and self-improvement probably sums to a process entirely dominated by the
human programmers. We cannot rely on exponential bootstrapping from an unintelli-
gent core. However, we may be able to achieve powerful results by bootstrapping from
an intelligent core, if and when such a core is achieved. Recursive self-improvement is a
consequence of seed Al, not a cheap way to achieve Al.

Itis possible that self-improvement will become cognitively significant relatively early
in development, but the wraparound of domain competencies to improve expertise, cog-
nition, and subsystems does not imply strong effects from recursive self-improvement.
Precision in discussing seed Al trajectories requires distinguishing between epochs for
holonic understanding, epochs for programmer-dominated and AI-dominated develop-
ment, epochs for recursive and nonrecursive self-improvement, and epochs for overall
intelligence. (Readers allergic to advance discussion of sophisticated Al may consider
these epochs as referring to minds-in-general that possess physical access to their own

code and some degree of general intelligence with which to manipulate it; the rationale

36. It is sometimes objected that an intelligence modifying itself is “circular” and therefore impossible.
This strikes me as a complete 7on sequitur, but even if it were not, the objection is still based on the idea
of intelligence as an opaque monolithic function. The character of the computational subsystems making
up intelligence is fundamentally different from the character of the high-level intelligence that exists atop
the subsystems. High-level intelligence can wrap around to make improvements to the subsystems in
their role as computational processes without ever directly confronting the allegedly sterile problem of

“improving itself ”—though as said, I see nothing sterile about this.

102



Eliezer Yudkowsky

for distinguishing between epochs may be considered separately from the audacity of
suggesting that Al can progress to any given epoch.)

Epochs for holonic understanding and holonic programming:

First epoch: The Al can transform code in ways that do not affect the algorithm im-
plemented. (“Understanding” on the order of an optimizing compiler; i.e., not

“understanding” in any real sense.)

Second epoch: The Al can transform algorithms in ways that fit simple abstract beliefs
about the design purposes of code. That is, the Al would understand what a stack
implemented as a linked list and a stack implemented as an array have in common.
(Note that this is already out of range of current Al, at least if you want the Al to

figure it out on its own.)

Third epoch: The Al can draw a holonic line from simple internal metrics of cognitive
usefulness (how fast a concept is cued, the usefulness of the concept returned) to
specific algorithms. Consequently the Al would have the theoretical capability to
invent and test new algorithms. This does not mean the Al would have the ability
to invent good algorithms or better algorithms, just that invention in this domain
would be theoretically possible. (An Als theoretical capacity for invention does
not imply capacity for improvement over and above the programmers’ efforts. This
is determined by relative domain competencies and by relative effort expended at

a given focal point.)

Fourth epoch: The Al has a concept of “intelligence” as the final product of a contin-
uous holonic supersystem. The Al can draw a continuous line from (a) its abstract
understanding of intelligence to (b) its introspective understanding of cognition
to (c) its understanding of source code and stored data. The Al would be able to
invent an algorithm or cognitive process that contributes to intelligence in a novel
way and integrate that process into the system. (Again, this does not automatically

imply that the ATs inventions are improvements relative to existing processes.)
Epochs for sparse, continuous, and recursive self-improvement:

First epoch: The Al has a limited set of rigid routines which it applies uniformly. Once
all visible opportunities are exhausted, the routines are used up. This is essentially
analogous to the externally driven improvement of an optimizing compiler. An
optimizing compiler may make a large number of improvements, but they are not
self-improvements, and they are not design improvements. An optimizing com-

piler tweaks assembly language but leaves the program constant.

Second epoch: The cognitive processes which create improvements have characteristic

complexity on the order of a classical search tree, rather than on the order of an
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optimizing compiler. Sufficient investments of computing power can sometimes
yield extra improvements, but it is essentially an exponential investment for a linear
improvement, and no matter how much computing power is invested, the total

kind of improvements conceivable are limited.

Third epoch: Cognitive complexity in the Al's domain competency for programming is
high enough that at any given point there is a large number of visible possibilities
for complex improvements, albeit perhaps minor improvements. The Al usually
does not exhaust all visible opportunities before the programmers improve the Al
enough to make new improvements visible. However, it is only programmer-driven
improvements in intelligence which are powerful enough to open up new volumes

of the design space.

Fourth epoch: Self-improvements sometimes result in genuine improvements to

» «

“smartness,” “creativity,” or “holonic understanding,” enough to open up a new

volume of the design space and make new possible improvements visible.
Epochs for relative human-driven and Al-driven improvement:

First epoch: The Al can make optimizations at most on the order of an optimizing
compiler, and cannot make design improvements or increase functional complexity.
The combination of Al and programmer is not noticeably more effective than a

programmer armed with an ordinary optimizing compiler.

Second epoch: The Al can understand a small handful of components and make im-
provements to them, but the total amount of Al-driven improvement is small by
comparison with programmer-driven development. Sufficiently major program-
mer improvements do very occasionally trigger secondary improvements. The total
amount of work done by the Al on its own subsystems serves only as a measurement

of progress and does not significantly accelerate work on Al programming.

Third epoch: Al-driven improvement is significant, but development is “strongly”
programmer-dominated in the sense that overall systemic progress is driven almost
entirely by the creativity of the programmers. The Al may have taken over some
significant portion of the work from the programmers. The Al’s domain compe-

tencies for programming may play a critical role in the AI’s continued functioning.

Fourth epoch: Al-driven improvement is significant, but development is “weakly”
programmer-dominated. Al-driven improvements and programmer-driven im-
provements are of roughly the same kind, but the programmers are better at it.
Alternatively, the programmers have more subjective time in which to make im-

provements, due to the number of programmers or the slowness of the Al
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Epochs for overall intelligence:

Tool-level Al: The Al’s behaviors are immediately and directly specified by the pro-
grammers, or the Al “learns” in a single domain using prespecified learning al-
gorithms. (In my opinion, tool-level Al as an alleged step on the path to more

complex Al is highly overrated.)

Prehuman Al: The AT’s intelligence is not a significant subset of human intelligence.
Nonetheless, the Al is a cognitive supersystem, with some subsystems we would
recognize, and at least some mind-like behaviors. A toaster oven does not qualify

as a “prehuman chef,” but a general kitchen robot might do so.

Infrahuman Al: The AT’s intelligence is, overall, of the same basic character as human
intelligence, but substantially inferior. The Al may excel in a few domains where
it possesses new sensory modalities or other brainware advantages not available
to humans. I believe that a worthwhile test of infrahumanity is whether humans
talking to the Al recognize a mind on the other end. (An Al that lacks even a
primitive ability to communicate with and model external minds, and cannot be

taught to do so, does not qualify as infrahuman.)

It should again be emphasized that this entire discussion assumes that the problem of
building a general intelligence is solvable. Without significant existing intelligence an
alleged “AI” will remain permanently stuck in the first epoch of holonic programming—
it will remain nothing more than an optimizing compiler. It is true that so far attempts
at computer-based intelligence have failed, and perhaps there is a barrier which states
that while 750 megabytes of DNA can specify physical systems which learn, reason, and
display general intelligence, no amount of human design can do the same.

But if no such barrier exists—if it is possible for an artificial system to match DNA
and display human-equivalent general intelligence—then it seems very probable that
seed Al is achievable as well. It would be the height of biological chauvinism to assert
that, while it is possible for humans to build an Al and improve this Al to the point
of roughly human-equivalent general intelligence, this same human-equivalent Al can
never master the (humanly solved) programming problem of making improvements to
the AT’s source code.

Furthermore, the above statement misstates the likely interrelation of the epochs.
An Al does not need to wait for full human-equivalence to begin improving on the pro-
grammer’s work. An optimizing compiler can “improve” over human work by expending
greater relative effort on the assembly-language level. That is, an optimizing compiler
uses the programmatic advantages of greater serial speed and immunity to boredom to ap-

ply much greater design pressures to the assembly-language level than a human could
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exert in equal time. Even an optimizing compiler might fail to match a human at hand-
massaging a small chunk of time-critical assembly language. But, at least in today’s pro-
gramming environments, humans no longer hand-massage most code—in part because
the task is best left to optimizing compilers, and in part because it’s extremely boring
and wouldn't yield much benefit relative to making further high-level improvements.
A sufficiently advanced Al that takes advantage of massive serialism and freedom from
evolutionary misoptimizations may be able to apply massive design pressures to higher
holonic levels of the system.

Even at our best, humans are not very good programmers; programming is not a
task commonly encountered in the ancestral environment. A human programmer is
metaphorically a blind painter—not just a blind painter, but a painter entirely lacking a
visual cortex. We create our programs like an artist drawing one pixel at a time, and our
programs are fragile as a consequence. If the Al's human programmers can master the
essential design pattern of sensory modalities, they can gift the Al with a sensory modal-
ity for code-like structures. Such a modality might perceptually interpret: a simplified
interpreted language used to tutor basic concepts; any internal procedural languages used
by cognitive processes; the programming language in which the AT’s code level is written;
and finally the native machine code of the Al's hardware. An Al that takes advantage of
a codic modality may not need to wait for human-equivalent genera/ intelligence to beat
a human in the specific domain competency of programming. Informally, an Al is native
to the world of programming, and a human is not.

'This leads inevitably to the question of how much programming ability would be ex-
hibited by a seed Al with human-equivalent general intelligence p/us a codic modality.
Unfortunately, this leads into territory that is generally considered taboo within the field
of Al. Some readers may have noted a visible incompleteness in the above list of seed
Al epochs; for example, the last stage listed for human-driven and Al-driven improve-
ment is “weak domination” of the improvement process by human programmers (the
Al and the programmers make the same kind of improvements, but the programmers
make more improvements than the Al). The obvious succeeding epoch is one in which
Al-driven development roughly equals human development, and the epoch after that
one in which Al-driven development exceeds human-driven development. Similarly,
the discussion of epochs for recursive self-improvement stops at the point where Al-
driven improvement sometimes opens up new portions of the opportunity landscape,
but does not discuss the possibility of open-ended self-improvement: a point beyond
which progress can continue in the absence of human programmers, so that by the time
the Al uses up all the improvements visible at a given level, that improvement is enough

to “climb the next step of the intelligence ladder” and make a new set of improvements
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visible. The epochs for overall intelligence define tool-level, prehuman, and infrahuman

Al, but do not define human-equivalence or transhumanity.

3.3. Infrahumanity and Transhumanity: “Human-Equivalence” as Anthropocen-

trism

It is interesting to contrast the separate perspectives of modern-day Artificial Intelli-
gence researchers and modern-day evolutionary psychologists with respect to the partic-
ular level of intelligence exhibited by Homo sapiens sapiens. Modern-day Al researchers
are strongly reluctant to discuss human equivalence, let alone what might lie beyond it,
as a result of past claims for “human equivalence” that fell short. Even among those rare
Al researchers who are still willing to discuss general cognition, the attitude appears to
be: “First we’ll achieve general cognition, then we’ll talk human-equivalence. As for
transhumanity, forget it.”

In contrast, modern-day evolutionary theorists are strongly trained against Panglos-
sian or anthropocentric views of evolution, i.e., those in which humanity occupies any
special or best place in evolution. Here it is socially unacceptable to suggest that Homo
sapiens sapiens represents cognition in an optimal or maximally developed form; in
the field of evolutionary psychology, the overhanging past is one of Panglossian opti-
mism. Rather than modeling the primate order and hominid family as evolving toward
modern-day humanity, evolutionary psychologists try to model the hominid family as
evolving somewhere, which then decided to call itself “humanity.” (This view is beauti-
fully explicated in Terrence Deacon’s “The Symbolic Species” [Deacon 1997].) Looking
back on the history of the hominid family and the human line, there is no reason to be-
lieve that evolution has hit a hard upper limit. Homo sapiens has existed for a short time
by comparison with the immediately preceding species, Homo erectus. We look back on
our evolutionary history from this vantage point, not because evolution stopped at this
point, but because the subspecies Homo sapiens sapiens is the very first elaboration of pri-
mate cognition to cross over the minimum line that supports rapid cultural growth and
the development of evolutionary psychologists. We observe human-level intelligence
in our vicinity, not because human intelligence is optimal or because it represents a de-
velopmental limit, but because of the Anthropic Principle; we are the first intelligence
smart enough to look around. Should basic design limits on intelligence exist, it would
be an astonishing coincidence if they centered on the human level.

Strictly speaking, the attitudes of Al and evolutionary psychology are not irrecon-
cilable. One could hold that achieving general cognition will be extremely hard and
that this constitutes the immediate research challenge, while simultaneously holding
that once Al is achieved, only ungrounded anthropocentrism would predict that Als

will develop to a human level and then stop. This hybrid position is the actual stance I
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have tried to maintain throughout this paper—for example, by decoupling discussion of
developmental epochs and advantages of minds-in-general from the audacious question
of whether Al can achieve a given epoch or advantage.

But it would be silly to pretend that the tremendous difficulty of achieving general
cognition licenses us to sweep its enormous consequences under the rug. Despite Al’s
glacial slowness by comparison with more tractable research areas, Artificial Intelligence
is still improving at an enormously faster rate than human intelligence. A human may
contain millions or hundreds of millions of times as much processing power as a personal
computer circa 2002, but computing power per dollar is (still) doubling every eighteen
months, and human brainpower is not.

Many have speculated whether the development of human-equivalent Al, however
and whenever it occurs, will be shortly followed by the development of transhuman Al
(Moravec 1988; Vinge 1993; Minsky 1994; Kurzweil 1999; Hofstadter 2000; McAulifte
2001). Once Al exists it can develop in a number of difterent ways; for an Al to develop
to the point of human-equivalence and then remain at the point of human-equivalence
for an extended period would require that all liberties be simultaneously blocked at ex-
actly the level which happens to be occupied by Homo sapiens sapiens.>” 'This is too much
coincidence. Again, we observe Homo sapiens sapiens intelligence in our vicinity, not be-
cause Homo sapiens sapiens represents a basic limit, but because Homo sapiens sapiens is the
very first hominid subspecies to cross the minimum line that permits the development
of evolutionary psychologists.

Even if this were not the case—if, for example, we were now looking back on an un-
usually long period of stagnation for Homo sapiens—it would still be an unlicensed con-
clusion that the fundamental design bounds which hold for evo/ution acting on neurons
would hold for programmers acting on transistors. Given the difterent design methods
and different hardware, it would again be too much of a coincidence.

This holds doubly true for seed Al The behavior of a strongly self-improving process
(a mind with access to its own source code) is not the same as the behavior of a weakly
self-improving process (evolution improving humans, humans improving knowledge).
'The ladder question for recursive self-improvement—whether climbing one rung yields
a vantage point from which enough opportunities are visible that they suffice to reach
the next rung—means that effects need not be proportional to causes. The question is
not how much of an effect any given improvement has, but rather how much of an effect
the improvement plus further triggered improvements and #heir triggered improvements

have. It is literally a domino effect—the universal metaphor for small causes with dis-

37. 'This is a metaphor from the game Go, where you capture an opponent’s group of stones by elimi-

nating all adjoining clear spaces, which are known as “liberties.”
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proportionate results. Our instincts for system behaviors may be enough to give us an
intuitive feel for the results of any single improvement, but in this case we are asking
not about the fall of a single domino, but rather about how the dominos are arranged.
We are asking whether the tipping of one domino is likely to result in an isolated fall,
two isolated falls, a small handful of toppled dominos, or whether it will knock over the
entire chain.

It I may be permitted to adopt the antipolarity of “conservatism”™—i.e., asking how
soon things could conceivably happen, rather than how late—then I must observe that
we have 7o idea where the point of open-ended self-improvement is located, and fur-
thermore, 70 idea how fast progress will occur after this point is reached. Lest we over-
estimate the total amount of intelligence required, it should be noted that nondeliberate
evolution did eventually stumble across general intelligence; it just took a very long time.
We do not know how much improvement over evolution’s incremental steps is required
for a strongly self-improving system to knock over dominos of sufficient size that each
one triggers the next domino. Currently, I believe the best strategy for Al development
is to try for general cognition as a necessary prerequisite of achieving the domino effect.
But in theory, general cognition might not be required. Evolution managed without
it. (In a sense this is disturbing, since, while I can see how it would be theoretically
possible to bootstrap from a nondeliberative core, I cannot think of a way to place such
a nondeliberative system within the human moral frame of reference.)

It is conceptually possible that a basic bound rules out all improvement of effective
intelligence past our current level, but we have no evidence supporting such a bound.
I find it difficult to credit that a bound holding for minds in general on all physical
substrates coincidentally limits intelligence to the exact level of the very first hominid
subspecies to evolve to the point of developing computer scientists. I find it equally hard
to credit bounds that limit strongly self-improving processes to the characteristic speed
and behavior of weakly self-improving processes. “Human equivalence,” commonly held
up as the great unattainable challenge of Al, is a chimera—in the sense of being both
a “mythical creature” and an “awkward hybrid.” Infrahuman Al and transhuman Al are
both plausible as self-consistent durable entities. Human-equivalent Al is not.

Given the tremendous architectural and substrate differences between humans and
Als, and the different expected cognitive advantages, there are no current grounds for de-
picting an Al that strikes an anthropomorphic balance of domain competencies. Given
the difference between weakly recursive self-improvement and strongly recursive self-
improvement; given the ladder effect and domino effect in self-enhancement; given
the different limiting subjective rates of neurons and transistors; given the potential of
minds-in-general to expand hardware; and given that evolutionary history provides no

grounds for theorizing that the Homo sapiens sapiens intelligence range represents a spe-
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cial slow zone or limiting point with respect to the development of cognitive systems;
therefore, there are no current grounds for expecting Al to spend an extended period in
the Homo sapiens sapiens range of general intelligence. Homo sapiens sapiens is not the
center of the cognitive universe; we are a noncentral special case.

Under standard folk psychology, whether a task is easy or hard or extremely hard does
not change the default assumption that people undertaking a task do so because they
expect positive consequences for success. Al researchers continue to try and move hu-
manity closer to achieving Al. However near or distant that goal, AT’s critics are licensed
under folk psychology to conclude that these researchers believe Al to be desirable. Al’s
critics may legitimately ask for an immediate defense of this belief, whether Al is held
to be five years away or fifty. Although the topic is not covered in this paper, I personally
pursue general cognition as a means to seed Al, and seed Al as a means to transhuman
Al, because I believe human civilization will benefit greatly from breaching the upper
bounds on intelligence that have held for the last fifty thousand years, and furthermore,
that we are rapidly heading toward the point where we must breach the current upper
bounds on intelligence for human civilization to survive. I would not have written a
paper on recursively self-improving minds if I believed that recursively self-improving
minds were inherently a bad thing, whether I expected construction to take fifty years

or fifty thousand.

4. Conclusions

People are curious about how things began, and especially about the origins
of things they deem important. Besides satisfying such curiosity, accounts
of origin may acquire broader theoretical or practical interest when they go
beyond narrating historical accident, to impart insight into more enduring
forces, tendencies, or sources from which the phenomena of interest more
generally proceed. Accounts of evolutionary adaptation do this when they
explain how and why a complex adaptation first arose over time, or how and
why it has been conserved since then, in terms of selection on heritable vari-
ation. . .. In such cases, evolutionary accounts of origin may provide much
of what early Greek thinkers sought in an arche, or origin—a unified under-
standing of something’s original formation, source of continuing existence,

and underlying principle. (Katz 2000b)

On the cover of Douglas Hofstadter’s Godel, Escher, Bach: An Eternal Golden Braid are
two trip-lets—wooden blocks carved so that three orthogonal spotlights shining through
the 3D block cast three different 2D shadows—the letters “G”, “E”, “B”. 'The trip-letis a

metaphor for the way in which a deep underlying phenomenon can give rise to a number
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of different surface phenomena. It is a metaphor about intersecting constraints that give
rise to a whole that is deeper than the sum of the requirements, the multiplicative and
not additive sum. It is a metaphor for arriving at a solid core by asking what casts the
shadows, and how the core can be stronger than the shadows by reason of its solidity.
(In fact, the trip-let itself could stand as a metaphor for the different metaphors cast by
the trip-let concept.)

In seeking the arche of intelligence, I have striven to neither overstate nor understate
its elegance. The central shape of cognition is a messy 4D object that casts the thousand
subfields of cognitive science as 3D shadows. Using the relative handful of fields with
which I have some small acquaintance, I have tried to arrive at a central shape which is
no more and no less coherent than we would expect of evolution as a designer.

I have used the levels of organization as structural support for the theory, but
have tried to avoid turning the levels of organization into Aristotelian straitjackets—
permitting discussion of “beliefs,” cognitive content that combines the nature of con-
cept structures and learned complexity; or discussion of “sequiturs,” brainware adapta-
tions whose function is best understood on the thought level. The levels of organiza-
tion are visibly pregnant with evolvability and plead to be fit into specific accounts of
human evolution—but this does not mean that our evolutionary history enacted a for-
mal progress through Modalities, Concepts, and Thoughts, with each level finished and
complete before moving on to the next. The levels of organization structure the func-
tional decomposition of intelligence; they are not in themselves such a decomposition.
Similarly, the levels of organization structure accounts of human evolution without being
in themselves an account of evolution. We should not say that Thoughts evolved from
Concepts; rather, we should consider a specific thought-level function and ask which
specific concept-level functions are necessary and preadaptive for its evolution.

In building this theory, I have tried to avoid those psychological sources of error that
I believe have given rise to past failures in Al; physics envy, Aristotelian straitjackets,
magical analogies with human intelligence, and others too numerous to list. I have tried
to give some explanation of past failures of Al, not just in terms of “7his is the magic key
we were missing all along (take two),” but in terms of “This is what the past researchers
were looking at when they made the oversimplification, these are the psychological forces
underlying the initial oversimplification and its subsequent social propagation, and this
explains the functional consequences of the oversimplification in terms of the specific
subsequent results as they appeared to a human observer.” Or so I would Zi4e to say,
but alas, I had no room in this chapter for such a complete account. Nonetheless I
have tried, not only to give an account of some of Al’s past failures, but also to give an
account of how successive failures tried and failed to account for past failures. I have

only discussed a few of the best-known and most-studied Al pathologies, such as the
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“symbol grounding problem” and “common-sense problem,” but in doing so, I have tried
to give accounts of their specific effects and specific origins.

Despite Als repeated failures, and despite even Al’s repeated failed attempts to dig
itself out from under past failures, Al still has not dug itself in so deep that no possible
new theory could dig itself out. If you show that a new theory does not contain a set of
causes of failure in past theories—where the causes of failure include both surface scien-
tific errors and underlying psychological errors, and these causes are together sufficient
to account for observed pathologies—then this does not prove you have identified a//
the old causes of failure, or prove that the new theory will succeed, but it is sufficient to
set the new approach aside from aversive reinforcement on past attempts. I can’t promise
that DGI will succeed—but I believe that even if DGI is slain, it won’t be the Al dragon
that slays it, but a new and different dragon. At the least I hope I have shown that, as a
new approach, DGI-based seed Al is different enough to be worth trying.

As presented here, the theory of DGI has a great deal of potential for expansion.
To put it less kindly, the present chapter is far too short. The chapter gives a descrip-
tive rather than a constructive account of a functional decomposition of intelligence; the
chapter tries to show evolvability, but does not give a specific account of hominid evolu-
tion; the chapter analyzes a few examples of past failures but does not fully reframe the
history of AL I particularly regret that the chapter fails to give the amount of background
explanation that is usually considered standard for interdisciplinary explanations. In as-
sembling the pieces of the puzzle, I have not been able to explain each of the pieces for
those unfamiliar with it. I have been forced to the opposite extreme. On more than
one occasion I have compressed someone else’s entire lifework into one sentence and
a bibliographic reference, treating it as a jigsaw piece to be snapped in without further
explanation.

The only defense I can offer is that the central shape of intelligence is enormous. 1
was asked to write a chapter in a book, not a book in itself. Had I tried to describe in-
terdisciplinary references in what is usually considered the minimum acceptable level of
detail, this chapter would have turned into an encyclopedia. It is better to be accused of
having failed to fully integrate a piece into the larger puzzle, than to leave that piece out
entirely. If the chapter is unfinished then let it at least be visiby unfinished. This defies
literary convention, but omitting facets of cognition is one of the chief sins of Al. In Al,
it really is better to mention and not explain than to not mention and not explain—and
at that, I have s#i// been forced to leave things out. So to all those whose theories I
have slighted by treating them in far less length than they deserve, my apologies. If it
is any consolation, I have treated my own past work no differently than I have treated
yours. The entire topic of Friendly Al has been omitted—except for one or two passing

references to a “human moral frame of reference”—despite my feeling that discussion of
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the human moral frame of reference should not be severed from discussion of recursively
self-improving generally intelligent minds.

I cannot promise that a book is on the way. At this point in the ritual progress of a
general theory of cognition, there are two possible paths forward. One can embrace the
test of fire in evolutionary psychology, cognitive psychology, and neuroscience, and try to
show that the proposed new explanation is the most probable explanation for previously
known evidence, and that it makes useful new predictions. Or, one can embrace the
test of fire in Artificial Intelligence and try to build a mind. I intend to take the latter
path as soon as my host organization finds funding, but this may not leave much time
tor writing future papers. Hopefully my efforts in this chapter will serve to argue that
DGI is promising enough to be worth the significant funding needed for the acid test
of building Al, although I acknowledge that my efforts in this chapter are not enough
to put forth DGI as a strong hypothesis with respect to academia at large.

This chapter would not have been written without the support and assistance of a
large number of people whose names I unfortunately failed to accumulate in a single
location. At the least I would like to thank Peter Voss, Ben Goertzel, and Carl Feynman
for discussing some of the ideas found in this chapter. Any minor blemishes remaining in
this document are, of course, my fault. (Any major hideous errors or gaping logical flaws
were probably smuggled in while I wasn’t looking.) Without the Singularity Institute
for Artificial Intelligence, this chapter would not exist. To all the donors, supporters,
and volunteers of the Singularity Institute, my deepest thanks, but we’re not finished
with you yet. We still need to build an Al, and for that to happen, we need a lot more
of you.

I apologize to the horde of authors whom I have inevitably slighted by failing to
credit them for originating an idea or argument inadvertently duplicated in this chapter;
the body of literature in cognitive science is too large for any one person to be personally
familiar with more than an infinitesimal fraction. As I was editing a draft of this chapter,
I discovered the paper “Perceptual Symbol Systems” by Lawrence Barsalou (1999); as
I submit this chapter I still have not read Barsalou’s paper fully, but at minimum it
describes a model in which concepts reify perceptual imagery and bind to perceptual
imagery, and in which combinatorial concept structures create complex depictive mental
imagery. Barsalou should receive full credit for first publication of this idea, which is one
of the major theoretical foundations of DGI.

In today’s world it is commonly acknowledged that we have a responsibility to discuss
the moral and ethical questions raised by our work. I would take this a step farther and
say that we not only have a responsibility to discuss those questions, but also to arrive
at interim answers and guide our actions based on those answers—still expecting future

improvements to the ethical model, but also willing to take action based on the best
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current answers. Artificial Intelligence is too profound a matter for us to have no better
reply to such pointed questions as “Why?” than “Because we can!” or “I've got to make
a living somehow.” If Homo sapiens sapiens is a noncentral and nonoptimal special case
of intelligence, then a world full of nothing but Homo sapiens sapiens is not necessarily
the happiest world we could live in. For the last fifty thousand years, we’ve been trying
to solve the problems of the world with Homo sapiens sapiens intelligence. We've made a
lot of progress, but there are also problems that we’ve hit and bounced. Maybe it’s time

to use a bigger hammer.
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