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1. Introduction

The idea of machine intelligences causing human extinction is a science-fictional cliché,
but that status does not preclude a real risk (Bostrom 2002; Chalmers 2010; Friedman
2008; Hall 2007; Kurzweil 2005; Moravec 1999; Posner 2004; Rees 2003; Yudkowsky
2008). At the 2008 Global Catastrophic Risk Conference at Oxford University, partic-
ipants from diverse fields were surveyed on their estimates of catastrophic risks through
the year 2100: among those responding, the median estimate of human extinction risk
due to AI was 5%, with the median estimate of risk of human extinction for any reason
at 19% (Sandberg and Bostrom 2008). Such a large impact, even if unlikely to occur,
and even if distant in time, deserves some attention (Bostrom 2002, 2003a; Matheny
2007; Parfit 1986; Posner 2004; Sandel 2005; Weitzman 2009). Unfortunately, it is very
difficult to make predictions about the characteristics and behavior of future AI systems
before they are invented, without knowledge of their particular architectures or decision
algorithms.

One approach in the face of such uncertainty is to focus on very “generic” proper-
ties shared by diverse possible intelligent systems, such as evolutionary theory (Bostrom
2004) or decision theory. Omohundro (2008) takes this route, using standard decision
theory to argue for the likelihood of several “basic AI drives,” behavioral tendencies that
would advance diverse goals, other things being equal. Particularly relevant are the “sur-
vival drive” and “resource drive.” The survival drive stems from the fact that an agent
will tend to act to promote its own goals, and so self-preservation will be instrumen-
tally useful, even without any “survival instinct” or non-instrumental desire to persist.
Thus, we could expect diverse AIs to avoid destruction unless doing so would cause other
outweighing losses in terms of their goals. The resource drive is a consequence of the
existence of fungible resources, e.g. free energy, that can be applied to a wide variety of
ends. Similarly, money is at least somewhat useful for almost any human goals today,
from raising children to winning an Olympic medal to promoting vegetarianism. So,
other things being equal, AI systems would tend to act to acquire fungible resources to
use in pursuit of their goals.

For very weak AI systems, these drives are good news: even AIs quite indifferent
to humans would tend to perform as demanded if humans controlled all the means to
attain their goals. For very powerful AI systems, able to act without concern for hu-
man interference or retaliation, these drives would be quite threatening: free energy
and other resources required for human survival could be diverted from humanity to
the AI’s purposes, e.g. to power computers or other machinery, resulting in human ex-
tinction unless the AI preferred sustaining human life to any alternative use of those
resources (Yudkowsky 2008). However, the analysis does not make such clear predic-
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tions for intermediate cases, in which AIs face risk of failure or retaliation in a conflict
with humanity. In such cases, a decision to initiate conflict would depend on the relative
valuation of the gains of victory, the status quo, and the costs of failure.

This paper applies the general framework developed in Omohundro (2008) to those
intermediate cases, in which AI systems are initially weak, but can pursue risky strategies
to gain extreme power.

2. Considering Conflict Under Uncertainty

For simplicity, we can crudely model an AI’s decision making about conflict with humans
as a one-time choice to attempt to acquire power or to cooperate with human requests,
including requests to help devise safeguards against AI subversion. In our simple model,
an attempt to acquire power either wholly succeeds and gives the AI unilateral control
over all Earth-accessible resources and immunity to subsequent human attack, or fails
entirely.

If the AI initiates aggression, it expects to succeed with probability p, receiving ex-
pected utility EUSuccess, and to fail with probability (1 − p), receiving expected utility
EUFailure. If it refrains from conflict, then it will receive EUCooperation. The AI will
then attempt aggression if:

pEUSuccess + (1− p)EUFailure > EUCooperation
1 (1)

Note that these values are the probabilities and expected utilities assessed by the AI;
whether the AI’s assessments are right or wrong, it is necessarily its own estimates of
the situation that will determine its choice. Thus, if we wished to alter the value of
p, we might implement additional safeguards and make them known to the AI, or we
might merely attempt to deceive it with false claims of such safeguards (but see Chalmers
(2010), for the difficulties of deceiving superhumanly intelligent systems).

This model could describe the decision of a unique early AI, or that of a single AI
among many, e.g. one considering whether to attempt to instigate a collective AI effort
to expropriate humans. Or it might describe the collective choice of a group of copies
of an AI program with identical goals, which we might think of either as a group of AIs
or a single superorganism.

In this stylized decision problem, AI aggression becomes more likely with higher
values of EUSuccess and EUFailure, and lower values of EUCooperation. The convergent

1. If pEUSuccess+(1−p)EUFailure = EUCooperation, the AI will be indifferent between aggression
and cooperation.
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instrumental ’drives’ discussed by Omohundro have their impact by affecting these val-
ues.

3. Why Consider “Generic” Motivations?

The basic AI drives are generally useful subgoals of diverse aims, but human designers
will attempt to produce AIs that reliably do what they are requested. Why not assume
that engineers will produce the first powerful AIs with utility functions such that coop-
eration is always preferred to conflict, i.e. such that EUCooperation always exceeds both
EUSuccess and EUFailure? AI systems might be constructed to assign substantial disu-
tility to harm to existing humans (appropriately defined), to engaging in unsupervised
self-modification, to producing proxy systems to circumvent the previous restriction, to
persuading humans to produce proxy systems to circumvent that restriction, and so on
(Omohundro 2008). Or it might be designed to share the collective aims of its creators,
so that it would use even arbitrary power in human-desirable ways (Bostrom 2003b;
Yudkowsky 2008).

If done well, this approach would seem ideal, but it faces a major challenge in the
specification of the relevant concepts, e.g. what constitutes harm to humans, or the con-
struction of a proxy system? If the relevant representations are not hand-coded by human
designers, a bootstrapping problem would arise: to learn the concepts required for ro-
bust safety, some simpler decision algorithm, which would not itself be robustly safe,
would need to be used.

For those concerned about catastrophic risks, the worry would be that the relative
ease of creating simple motivational systems and guiding them via control over resources
and rewards would enable the construction of powerful AI systems before robustly safe
decision algorithms could be created. The enormous competitive advantages of human-
comparable AI systems could compel corporations or governments to trade safety for
speed in a race to advanced AI. Chalmers (2010) reports a consensus among cadets
and staff at the U.S. West Point military academy that the U.S. government would not
restrain AI research even in the face of potential catastrophe, for fear that rival powers
would gain decisive advantage.

Thus, while the first-best safety measure would be to construct AI utility functions
that favor cooperation regardless of p, or which would attach strong disutility to aggres-
sion as such, doing so may be quite difficult, and it is worthwhile to examine the space
of AIs with generic, human-indifferent preferences using the “drives” framework.
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4. How Much Risk Aversion with Respect to Resources?

The resource competition argument for the danger of very powerful human-indifferent
AIs depends only on an AI having some more preferred use for the resources required to
support human survival, not the precise strength of that preference. One pithy summary
is that: “The AI does not hate you, nor does it love you, but you are made out of atoms
which it can use for something else” (Yudkowsky 2008). Given arbitrary power, the AI
has something to gain and nothing to lose by taking the resources humans require and
reallocating them to some very slightly more preferred use.

However, when evaluating risky conflict, a chance at gaining increased resources
through successful aggression must be weighed against a chance of losing existing re-
sources in the case of failure. Thus the AI’s expected utility as a function of resources be-
comes essential: how would it trade off probabilities of different quantities of resources?
Over various ranges of resource levels, would an n-fold multiplication in resources lead
to utility much less than n times as great, close to n, or greater than n? Would its utility
function be bounded or unbounded? Would that bound be small or large relative to the
supply of accessible resources? In combination with the resources available in the coop-
erative scenario, these factors would determine the extent to which the “resource drive”
favored aggression.

5. Resource-Satiable Preferences

Individual humans typically display diminishing marginal utility with resources: a hu-
man billionaire is not a thousand times as happy as a millionaire, and few millionaires
would stake their entire fortunes on a 0.1% chance of multiplying their wealth by a thou-
sandfold. Likewise, starting a fight with a 50% chance of death and a 50% chance of
doubling one’s wealth in victory (expropriating the loser) would be rejected in favor of
the status quo by most humans. Further, most humans seem to behave as though they
had not only diminishing but bounded utility, rejecting gambles with infinite expected
returns such as in the St. Petersburg paradox (Martin 2008).

A similar dynamic might be expected for reinforcement learning systems with reward
functions based on the discounted sum (bounded from above) of certain sense inputs or
reward signals. So long as the AI could keep its reward channel continually active,
the only use for additional resources would be to maintain and protect its hardware.
The system could attain near-maximal utility simply by being securely maintained in
a warehouse for a period depending on its discounting function, in an analog to rats
repetitively triggering intracranial stimulation or a caricature of a human drug addict.
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Call AIs with preferences like these, which could be near-maximally satisfied with a
trivial (to humans) quantity of resources, “resource-satiable.”

EUSuccess will be near-maximal utility, with superabundant resources, and EUFailure

near minimal utility, with destruction preventing any further attainment of reward. If
we take the AI’s maximal utility to be 1, and its minimum 0, then the AI would initiate
aggression when:

p > EUCooperation (2)

EUCooperation could be less than 1 for two main reasons. First, access to the reward
signal could be restricted by humans, varying reward levels in response to success and
compliance. This might be done to reserve incentives of increased reward to incentivize
the AI to undertake risky requests. If average reward levels in the cooperation scenario
were low, there would be strong incentives for aggression to gain control of the reward
signal. Second, even if the typical reward for cooperation was near-maximal, there would
remain some risk that the AI would be destroyed, intentionally or accidentally, by human
action, e.g. to make room for a replacement model or as a side effect of nuclear war.
Peaceful cooperation would then reduce to a Hobbesian mutual assurance problem: the
AI would tend to have reason for aggression only when this would actually reduce the
risk to itself on balance, with minimal conflict of interest beyond that.

6. Resource-Hungry and Exotic Preferences

The difference between a resource-satiable and a “resource-hungry” system could then be
a matter of degree. A system similar to the previous example with a lower discount rate
might require the resources to operate for aeons to approach its maximal utility. Systems
that valued the production of replicable physical structures, e.g. offspring, might be able
to consume arbitrary quantities of resources in doing so and thus could have slowly di-
minishing (or linear or increasing) utility in resources, approaching any particular bound.
However, the implications would depend on the magnitude of the bound.

If a system’s utility bound could be closely approached with a small fraction of the
accessible resources (including extrasolar ones, etc.), it might still receive near-maximal
utility in a cooperative scenario where it received an absolutely large but proportionally
small share of resources, with the remainder used for human purposes. However, as
the necessary resources approached those available in nearby space, this would involve
progressively greater allocations of resources. The potential for conflict would seem most
severe with an AI with utility proportional to resources up to a bound near the apparent
supply: such an AI would engage in aggression whenever the probability of success
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exceeded the share of resources it would attain in the cooperative outcome. However,
this is a very narrow region in the space of possibilities.

If we consider systems that would value some apparently physically unattainable
quantity of resources orders of magnitude more than the apparently accessible resources
given standard physics (e.g. resources enough to produce 101000 offspring), the potential
for conflict again declines for entities with bounded utility functions. Such resources are
only attainable given very unlikely novel physical discoveries, making the agent’s posi-
tion similar to that described in “Pascal’s Mugging” (Bostrom 2009b), with the agent’s
decision-making dominated by extremely small probabilities of obtaining vast resources.
Conditioning on the very unlikely event that physics allows the acquisition of ludicrous
quantities of resources needed to approach the agent’s upper bound on utility, it is un-
likely that just that amount can be created, rather than vastly more, most of which could
be enjoyed by humans. Thus, when we consider bounded functions from resources to
utility, it seems that in only a narrow class of cases would EUSuccess exceed the utility of
a proportionally modest (although not necessarily absolutely modest) share of resources.

One might also consider utility unboundedly increasing with resources, e.g. a system
with utility proportional to offspring for any number of offspring. Unbounded utility
functions imply vulnerability to Dutch books (McGee 1999), and require nonstandard
decision theory, e.g. use of hyperreals, if they are not to assign equal expected utility to
all actions (Hájek 2003; de Blanc 2007). However, if those problems were dealt with,
such a system might again focus on Pascalian scenarios (allowing infinite resources), but
would also be concerned about its proportional share.

Finally, perhaps the most threatening sort of “generic” utility function would be one
with utility rapidly increasing with the proportional share of attainable resources used
by the system for its purpose. However, while human fairness norms or status drives
sometimes result in preferences of this form, it is less obvious how this might arise in
early AIs, if not as an unfortunate side-effect of attempting to mimic human values.

7. Gains from Cooperation, Deals, and Enforcement

The above analysis suggests a high probability that, conditioning on our producing a
human-indifferent AI with some non-negligible, and non-overwhelming likelihood of
successful aggression, there would be large potential gains from cooperation. Specifi-
cally, it seems likely that secure tenure over a modest proportion of total resources would
deliver near-maximal utility to a wide range of AI systems. Thus, if these resources
could be reliably promised, EUCooperation could come very near to EUSuccess, so that
even an AI fairly confident in its ability to win a conflict could prefer peaceful coopera-
tion. Since human extinction following successful AI aggression would be very bad by
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human standards, such a deal would be mutually beneficial, with the primary barriers
being transaction costs and difficulties of trust or enforcement.

AIs considering initiating conflict through escape from standard monitoring and con-
trol mechanisms might face a dilemma: by revealing their motives and methods to open
negotiations, they might simply elicit destruction. Pre-established policies and resources
to ensure that AIs coming forward with unexpected but easily satiable preferences could
increase AIs’ estimates of EUCooperation, and thus their willingness to e.g. reveal security
bugs instead of attempting aggression. However, normal instabilities in human society,
dangers of technology development that might cause widespread destruction affecting
even compliant AI, and the oddity of keeping promises to computer programs could all
limit the peak credibility of such a commitment. Still, even if an AI estimated that such
events would erode half of the expected utility of cooperation, this would still give it rea-
son to cooperate unless it estimated that it would be more likely to succeed at aggression
than to fail.

The cases of systems with preferences such that they would be satiated only with
very large shares of resources raise two additional problems. First, it would become
more difficult for humanity to credibly promise large portions of all future accessible
wealth. Second, some philosophers urge that we should choose as though we had such
preferences ourselves. Specifically, while standard approaches to cost-benefit and risk
analysis value outcomes based on the revealed preferences of current citizens, e.g. the
rate at which they trade probabilities of death for financial compensation, (Posner 2004;
Nordhaus 2009), and result in a bounded social welfare function, some argue instead
for social welfare functions that could increase unboundedly and linearly with resources.
This is, for instance, a result of any consequentialist account that holds that the value of
fulfilling human lives should be combined additively (Bostrom 2009a). However, even
if cooperation is more difficult in these cases, the overall prospects for cooperation may
still be favorable.

8. Conclusions

We have attempted to extend the analysis of Omohundro (2008) to a limited region of
future possibilities, in which error or competitive pressures lead to the development of
AI systems that could plausibly but not confidently threaten humanity, and have not
been successfully engineered to be benevolent regardless of their relative power.

We argue that the convergent instrumental drives discussed by Omohundro are not
as threatening in such cases as the analysis of very powerful AIs suggests: reduced likeli-
hood of success is further accompanied by reduced motivation for conflict as opposed to
cooperation. If robustly safe AIs are infeasible, we might still reduce risks by producing
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systems with resource demands that could be cheaply satiated, and by credibly commit-
ting to reduce the utility differential between cooperation and successful aggression for
potentially threatening systems.
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