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Abstract

We survey eight research areas organized around one question: As learning
systems become increasingly intelligent and autonomous, what design principles
can best ensure that their behavior is aligned with the interests of the operators?
We focus on two major technical obstacles to AI alignment: the challenge of
specifying the right kind of objective functions, and the challenge of designing
AI systems that avoid unintended consequences and undesirable behavior
even in cases where the objective function does not line up perfectly with the
intentions of the designers.

Open problems surveyed in this research proposal include: How can we train
reinforcement learners to take actions that are more amenable to meaningful
assessment by intelligent overseers? What kinds of objective functions incen-
tivize a system to “not have an overly large impact” or “not have many side
effects”? We discuss these questions, related work, and potential directions
for future research, with the goal of highlighting relevant research topics in
machine learning that appear tractable today.
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1 Introduction

Recent years’ progress in artificial intelligence has prompted renewed interest in a
question posed by Russell and Norvig (2010): “What if we succeed?” If and when
AI researchers succeed at the goal of designing machines with cross-domain learning
and decision-making capabilities that rival those of humans, the consequences for
science, technology, and human life are likely to be large.

For example, suppose a team of researchers wishes to use an advanced ML system
to generate plans for finding a cure for Parkinson’s disease. They might approve if
it generated a plan for renting computing resources to perform a broad and efficient
search through the space of remedies. They might disapprove if it generates a plan to
proliferate robotic laboratories which would perform rapid and efficient experiments,
but have a large negative effect on the biosphere. The question is, how can we design
systems (and select objective functions) such that our ML systems reliably act more
like the former case and less like the latter case?

Intuitively, it seems that if we could codify what we mean by “find a way to cure
Parkinson’s disease without doing anything drastic,” many of the dangers Bostrom
(2014) describes in his book Superintelligence could be ameliorated. However, näıve
attempts to formally specify satisfactory objectives for this sort of goal usually yield
functions that, upon inspection, are revealed to incentivize unintended behavior.
(For examples, refer to Soares et al. [2015] and Armstrong [2015].)

What are the key technical obstacles here? Russell (2014) highlights two: a
system’s objective function “may not be perfectly aligned with the values of the
human race, which are (at best) very difficult to pin down;” and “any sufficiently
capable intelligent system will prefer to ensure its own continued existence and
to acquire physical and computational resources—not for their own sake, but to
succeed in its assigned task.” In other words, there are at least two obvious types of
research that would improve the ability of researchers to design aligned AI systems
in the future: We can do research that makes it easier to specify our intended goals
as objective functions; and we can do research aimed at designing AI systems that
avoid large side effects and negative incentives, even in cases where the objective
function is imperfectly aligned. Soares and Fallenstein (2014) refer to the former
approach as value specification, and the latter as error tolerance.

In this document, we explore eight research areas based around these two
approaches to aligning advanced ML systems, many of which are already seeing
interest from the larger ML community. Some focus on value specification, some on
error tolerance, and some on a mix of both. Since reducing the risk of catastrophe
from fallible human programmers is itself a shared human value, the line between
these two research goals can be blurry.

For solutions to the problems discussed below to be useful in the future, they must
be applicable even to ML systems that are much more capable than the systems that
exist today. Solutions that critically depend on the system’s ignorance of a certain
discoverable fact, or on its inability to come up with a particular strategy, should be
considered unsatisfactory in the long term. As discussed by Christiano (2015c), if
the techniques used to align ML systems with their designers’ intentions cannot scale
with intelligence, then large gaps will emerge between what we can safely achieve
with ML systems and what we can efficiently achieve with ML systems.

We will focus on safety guarantees that may seem extreme in typical settings
where ML is employed today, such as guarantees of the form, “After a certain
period, the system makes zero significant mistakes.” These sorts of guarantees are
indispensable in safety-critical systems, where a small mistake can have catastrophic
real-world consequences. (Guarantees of this form have precedents, e.g., in the KWIK
learning framework of Li, Littman, and Walsh [2008].) We will have these sorts of
strong guarantees in mind when we consider toy problems and simple examples.

The eight research topics we consider are:

1. Inductive ambiguity identification: How can we train ML systems to
detect and notify us of cases where the classification of test data is highly
under-determined from the training data?
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2. Robust human imitation: How can we design and train ML systems to
effectively imitate humans who are engaged in complex and difficult tasks?

3. Informed oversight: How can we train a reinforcement learning system to
take actions that aid an intelligent overseer, such as a human, in accurately
assessing the system’s performance?

4. Generalizable environmental goals: How can we create systems that
robustly pursue goals defined in terms of the state of the environment, rather
than defined directly in terms of their sensory data?

5. Conservative concepts: How can a classifier be trained to develop useful
concepts that exclude highly atypical examples and edge cases?

6. Impact measures: What sorts of regularizers incentivize a system to pursue
its goals with minimal side effects?

7. Mild optimization: How can we design systems that pursue their goals
“without trying too hard”, i.e., stopping when the goal has been pretty well
achieved, as opposed to expending further resources searching for ways to
achieve the absolute optimum expected score?

8. Averting instrumental incentives: How can we design and train systems
such that they robustly lack default incentives to manipulate and deceive the
operators, compete for scarce resources, etc.?

In Section 2, we briefly introduce each topic in turn, alongside samples of relevant
work in the area. We then discuss directions for further research that we expect to
yield tools which would aid in the design of ML systems that would be robust and
reliable, given large amounts of capability, computing resources, and autonomy.

1.1 Motivations

In recent years, progress in the field of machine learning has advanced by leaps and
bounds. Xu et al. (2015) used an attention-based model to evaluate and describe
images (via captions) with remarkably high accuracy. Mnih et al. (2016) used deep
neural networks and reinforcement learning to achieve good performance across a
wide variety of Atari games. Silver et al. (2016) used deep networks trained via
both supervised and reinforcement learning and paired with Monte-Carlo simulation
techniques, to beat the human world champion at Go. Lake, Salakhutdinov, and
Tenenbaum (2015) use hierarchical Bayesian models to learn visual concepts using
only a single example.

In the long run, computer systems making use of machine learning and other AI
techniques will become more and more capable, and humans will likely trust those
systems to make larger decisions and greater autonomy. As the capabilities of these
systems increase, it becomes ever-more important that they act in accordance with
the intentions of their operators, and without posing risks to society at large.

As AI systems gain in capability, it will become more difficult to design training
procedures and test regimes that reliably align those systems with the intended
goals. As an example, consider the task of training a reinforcement learner to play
video games by rewarding it according to its score (as per Mnih et al. [2013]). If
the learner were to find glitches in the game that allow it to get very high scores,
it would switch to a strategy of exploiting those glitches and ignore the features
of the game that the programmers are interested in. Somewhat counter-intuitively,
improving systems’ capabilities can make them less likely to “win the game” in the
sense we care about, because smarter systems can better find loopholes in training
procedures and test regimes. (For a simple example of this sort of behavior with a
fairly weak reinforcement learner, refer to Murphy [2013].)

Intelligent systems’ capacity to solve problems in surprising ways is a feature,
not a bug. One of the key attractions of learning systems is that they can find
clever ways to meet objectives that their programmers wouldn’t have thought of.
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However, this property is a double-edged sword: As the system gets better at finding
counter-intuitive solutions, it also gets better at finding exploits that allow it to
formally achieve operators’ explicit goals, without satisfying their intended goals.

For intelligent systems pursuing realistic goals in the world, loopholes can be
subtler, more abundant, and much more consequential. Consider the challenge
of designing robust objective functions for learning systems that are capable of
representing facts about their programmers’ beliefs and desires. If the programmers
learn that the system’s objective function is misspecified, then they will want to
repair this defect. If the learner is aware of this fact, however, then it has a natural
incentive to conceal any defects in its objective function, for the system’s current
objectives are unlikely to be achieved if the system is made to pursue different
objectives. (This scenario is discussed in detail by Bostrom [2014] and Yudkowsky
[2008]. Benson-Tilsen and Soares [2016] provide a simple formal illustration.)

This motivates the study of tools and methods for specifying objective functions
that avert those default incentives, and for developing ML systems that do not
“optimize too hard” in pursuit of those objectives.

1.2 Relationship to Other Agendas

This list of eight is not exhaustive. Other important research problems bearing on
AI’s long-term impact have been proposed by Soares and Fallenstein (2014) and
Amodei et al. (2016), among others.

Soares and Fallenstein’s “Agent Foundations for Aligning Machine Intelligence
with Human Interests” (2014), drafted at the Machine Intelligence Research Institute,
discusses several problems in value specification (e.g., ambiguity identification) and
error tolerance (e.g., corrigibility, a subproblem of averting instrumental incentives).
However, that agenda puts significant focus on a separate research program, highly
reliable agent design. The goal of that line of research is to develop a better general
understanding of how to design intelligent reasoning systems that reliably pursue a
given set of objectives.

Amodei et al.’s “Concrete Problems in AI Safety” (2016) is, appropriately, more
concrete than Soares and Fallenstein or the present agenda. Amodei et al. write that
their focus is on “the empirical study of practical safety problems in modern machine
learning systems” that are likely to be useful “across a broad variety of potential
risks, both short- and long-term.” There is a fair amount of overlap between our
agenda and Amodei et al.’s; some of the topics in our agenda were inspired by
conversations with Paul Christiano, a co-author on the concrete problems agenda.
Our approach differs from Amodei et al.’s mainly in focusing on broader and less
well-explored topics. We spend less time highlighting areas where we can build on
existing research programs, and more time surveying entirely new research directions.

We consider both Soares and Fallenstein’s research proposal and Amodei et al.’s
to be valuable, as we expect the AI alignment problem to demand theoretical and
applied research from a mix of ML scientists and specialists in a number of other
disciplines.

For a more general overview of research questions in AI safety, including both
strictly near-term and strictly long-term issues in computer science and other
disciplines, see Russell, Dewey, and Tegmark (2015).

2 Eight Research Topics

In the discussion to follow, we use the term “AI system” when considering computer
systems making use of artificial intelligence algorithms in general, usually when
considering systems with capabilities that go significantly beyond the current state of
the art. We use the term “ML system” when considering computer systems making
use of algorithms qualitatively similar to modern machine learning techniques,
especially when considering problems that modern ML techniques are already used
to solve.
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If the system is capable of making predictions (or answering questions) about
a rich and complex domain, we will say that the system “has beliefs” about that
domain. If the system is optimizing some objective function, we will say that the
system “has goals.” A system pursuing some set of goals by executing or outputting
a series of actions will sometimes be called an “agent.”

2.1 Inductive Ambiguity Identification

Human values are context-dependent and complex. To have any hope of specifying
our values, we will need to build systems that can learn what we want inductively
(via, e.g., reinforcement learning). To achieve high confidence in value learning
systems, however, Soares (2016) argues that we will need to be able to anticipate
cases where the system’s past experiences of preferred and unpreferred outcomes
provide insufficient evidence for inferring whether future outcomes are desirable.
More generally, AI systems will need to “keep humans in the loop” and recognize
when they are (and aren’t) too inexperienced to make a critical decision safely.

Consider a classic parable recounted by Dreyfus and Dreyfus (1992): The US
army once built a neural network intended to distinguish between Soviet tanks
and American tanks. The system performed remarkably well with relatively little
training data—so well, in fact, that researchers grew suspicious. Upon inspection,
they found that all of the images of Soviet tanks were taken on a sunny day, while
the images of US tanks were taken on a cloudy day. The network was discriminating
between images based on their brightness, rather than based on the variety of tank
depicted.1

It is to be expected that a classifier, given training data, will identify very simple
boundaries (such as “brightness”) that separate the data. However, what we want
is a classifier that can, given a data set analogous to the tank training set, recognize
that it does not contain any examples of Soviet tanks on cloudy days, and ask the
user for clarification. Doing so would likely require larger training sets and different
training techniques. The problem of inductive ambiguity identification is to develop
robust techniques for automatically identifying this sort of ambiguity and querying
the user only when necessary.

Related work. Amodei et al. (2016) discuss a very similar problem, under the
name of “robustness to distributional change.” They focus on the design of ML
systems that behave well when the test distribution is different from the training dis-
tribution, either by making realistic statistical assumptions that would allow correct
generalization, or by detecting the novelty and adopting some sort of conservative
behavior (i.e., querying a human). We take the name from Soares and Fallenstein
(2014), who call the problem “inductive ambiguity identification.” Our framing
of the problem differs only slightly from that of Amodei et al. (for instance, they
consider “scalable oversight” to be a separate problem, while we place the problem
of identifying situations where the training data is insufficient to specify the correct
reward function under the umbrella of inductive ambiguity identification), but the
underlying technical challenge is the same.

Bayesian approaches to training classifiers (including Bayesian logistic regression
[Genkin, Lewis, and Madigan 2007] and Bayesian neural networks [Blundell et al.
2015; Korattikara et al. 2015]) maintain uncertainty over the parameters of the
classifier. If such a system has the right variables (such as a variable L tracking
the degree to which light levels are relevant to the classification of the tank), such
a system could automatically become especially uncertain about instances whose
classification depends on unknown variables (such as L). The trick is having the
right variables (and efficiently maintaining the probability distribution), which is

1. Tom Dietterich relates a similar story (personal conversation, 2016), where in his
laboratory, years ago, microscope slides containing different types of bugs were made on
different days, and a classifier learned to classify the different types of bugs with remarkably
high accuracy—because the sizes of the bubbles in the slides changed depending on the
day.
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quite difficult in practice. There has been much work studying the problem of
feature selection (Liu and Motoda 2007; Guo and Schuurmans 2012), but more work
is needed to understand under what conditions Bayesian classifiers will correctly
identify important inductive ambiguities.

Non-Bayesian approaches, on the other hand, do not by default identify am-
biguities. For example, neural networks are notoriously overconfident in their
classifications (Goodfellow, Shlens, and Szegedy 2014; Nguyen, Yosinski, and Clune
2015), and so they do not identify when they should be more uncertain, as illustrated
by the parable of the tank classifier. Gal and Ghahramani (2016) have recently
made progress on this problem by showing that dropout for neural networks can be
interpreted as an approximation to certain types of Gaussian processes.

The field of active learning (Settles 2010) also bears on inductive ambiguity
identification. Roughly speaking, an active learner will maintain a set of “plausible
hypotheses” by, e.g., starting with a certain set of hypotheses and retaining the ones
that assigned sufficiently high likelihood to the training data. As long as multiple
hypotheses are plausible, some ambiguity remains. To resolve this ambiguity, an
active learner will ask the human to label additional images that will rule out some of
its plausible hypotheses. For example, in the tank-detection setting, a hypothesis is
a mapping from images (of tanks) to probabilities (representing, say, the probability
that the tank is a US tank). In this setting, an active learner may synthesize an
image of a US tank on a sunny day (or, more realistically, pick one out from a large
dataset of unlabeled examples). When the user labels this image as a US tank, the
hypothesis that an image contains a US tank if and only if the light level is below a
certain threshold is ruled out.

Seung, Opper, and Sompolinsky (1992) and Beygelzimer, Dasgupta, and Langford
(2009) have both studied what statistical guarantees can be achieved in this setting.
Hanneke (2007) introduced the disagreement coefficient to measure the overall
probability of disagreement among a local ball in the concept space under the
“probability of disagreement” pseudo-metric, which resembles a notion of “local
ambiguity”; the disagreement coefficient has been used to clarify and improve
upper bounds on label complexity for active learning algorithms (Hanneke 2014).
Beygelzimer et al. (2016) introduced an active learning setting where the learner can
request counterexamples to hypotheses, and they showed that this search oracle in
some cases can speed up learning exponentially; these results are promising, but to
scale to more complex systems, more transparent hypothesis spaces may be necessary
for humans to interact efficiently with the learner.

Much work remains to be done. Modern active learning settings usually either
assume a very simple hypothesis class, or assume that test examples are independent
and identically distributed and are drawn from some distribution that the learner
has access to at training time.2 Both of these assumptions are far too strong
for use in the general case, where the set of possible hypotheses is rich and the
environment is practically guaranteed to have regularities and dependencies that
were not represented in the training data.

For example, consider the case where the data that the ML system encounters
during operation depends on the behavior of the system itself—perhaps the Soviets
start disguising their tanks (imperfectly) to look like US tanks after learning that the
ML system has been deployed. In this case, the assumption that the training data
would be similar to the test data is violated, and the guarantees disappear. This
phenomenon is already seen in certain adversarial settings, such as when spammers
change their spam messages in response to how spam recognizers work. Guaranteeing
good behavior when the test data differs from the training data is the subject of
research in the adversarial machine learning subfield (see, e.g., Huang et al. [2011]).
It will take a fair bit of effort to apply those techniques to the active learning setting.

Conformal prediction (Vovk, Gammerman, and Shafer 2005) is an alternative
non-Bayesian approach that attempts to produce well-calibrated predictions. In

2. Some forms of online active learning (refer to, e.g. Dekel, Gentile, and Sridharan
[2012]) relax the i.i.d. assumption, but the authors do not see how to apply them to the
problem of inductive ambiguity identification.
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an online classification setting, a conformal predictor will give a set of plausible
classifications for each instance, and under certain exchangeability assumptions, this
set will contain the true classification about (say) 95% of the time throughout the
online learning process. This will detect ambiguities in the sense that the conformal
predictor must usually output a set containing multiple different classifications
for ambiguous instances, on pain of failing to be well-calibrated. However, the
exchangability assumption used in conformal prediction is only slightly weaker than
an i.i.d. assumption, and the well-calibrated confidence regions (such as 95% true
classification) are insufficient for our purposes (where even a single error could be
highly undesirable).

KWIK (“Knows What It Knows”) learning (Li, Littman, and Walsh 2008) is
a variant of active learning that relaxes the i.i.d. assumption, queries the humans
only finitely many times, and (under certain conditions) makes zero critical errors.
Roughly speaking, the KWIK learning framework is one where a learner maintains
a set of “plausible hypotheses” and makes classifications only when all remaining
plausible hypotheses agree on how to do so. If there is significant disagreement among
the plausible hypotheses, a KWIK learner will output a special value ⊥ indicating
that the classification is ambiguous (at which point a human can provide the correct
label for that input). The KWIK framework is concerned with algorithms that are
guaranteed to output ⊥ only a limited number of times (usually polynomial in the
dimension of the hypothesis space). This guarantees that the system eventually has
good behavior, assuming that at least one good hypothesis remains plausible. In the
tank classification problem, if the system had a hypothesis for “the user cares about
tank type” and another for “the user cares about brightness,” then, upon finding a
bright picture of a US tank, the system would output ⊥ and require a human to
provide a label for the ambiguous image.

Currently, efficient KWIK learning algorithms are only known for simple hypoth-
esis classes (such as small finite sets of hypotheses, or low-dimensional sets of linear
hypotheses). Additionally, KWIK learning makes a strong realizability assumption:
useful statistical guarantees can only be obtained when one of the hypotheses in the
set is “correct” in that its probability that the image is classified as a tank is always
well-calibrated—otherwise, the right hypothesis might not exist in the “plausible
set” (Li, Littman, and Walsh 2008; Khani and Rinard 2016). Thus, significant work
needs to be done before these frameworks can be used for the inductive ambiguity
identification algorithms of highly capable AI systems operating in the real world.

Directions for future research. Further study of Bayesian approaches to clas-
sification, including the design of realistic priors, better methods of inferring latent
variables, and extensions of Bayesian classification approaches to represent more
complex models, could improve our understanding of inductive ambiguity identifica-
tion.

Another obvious direction for future research is to attempt to extend active
learning frameworks, like KWIK, that relax the strong i.i.d. assumption. Research
in that direction could include modifications to KWIK that allow more complex
hypothesis classes, such as neural networks. This will very likely require making
different statistical assumptions than in standard KWIK. What statistical guarantees
can be provided in variants of the KWIK framework with weakened assumptions
about the complexity of the hypothesis class is an open question.

One could also study different methods of relaxing the realizability assumptions in
KWIK learning. An ideal learning procedure will notice when the real world contains
patterns that none of its hypotheses can model well and flag its potentially flawed
predictions (perhaps by outputting ⊥) accordingly. The “agnostic KWIK learning
framework” of Szita and Szepesvári (2011) handles some forms of nonrealizability,
but has severe limitations: even if the hypothesis class is linear, the number of labels
provided by the user may be exponential in the number of dimensions of the linear
hypothesis class.

Alternatively, note that the standard active learning framework and the KWIK
framework both represent inductive ambiguity as disagreement among specific
hypotheses that have performed well in the past. This is not the only way to
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represent inductive ambiguity; it is possible that some different algorithm will
find “natural” ambiguities in the data without representing these ambiguities as
disagreements between hypotheses. For example, we could consider systems that use
a joint distribution over the answers to all possible queries. Where active learners
are uncertain about both which hypothesis is correct and what the right answers are
given the right hypothesis, a system with a joint would be uncertain only about how
to answer queries. In this setting, it may be possible to achieve useful statistical
guarantees as long as the distribution contains a grain of truth (i.e., is a mixture
between a good distribution and some other distributions). Then, of course, good
approximation schema would be necessary, as reasoning according to a full joint
would be intractable. Refer to Christiano (2016a) for further discussion of this setup.

2.2 Robust Human Imitation

Formally specifying a fully aligned general-purpose objective function by hand
appears to be an impossibly difficult task, for reasons that also raise difficulties for
specifying a correct value learning process. It is hard to see even in principle how
we might attain confidence that the goals an ML system is learning are in fact our
true goals, and not a superficially similar set of goals that diverge from our own in
some yet-undiscovered cases.

Ambiguity identification can help here, by limiting the agent’s autonomy. Induc-
tive ambiguity identifiers suspend their activities to consult with a human operator
in cases where training data significantly under-determines the correct course of
action. But what if we take this idea to its logical conclusion, and use “consult a
human operator for advice” itself as our general-purpose objective function?

The target “do what a trusted human would have done, given some time to
think about it” is a plausible candidate for a goal that one might safely and usefully
optimize. At least, if optimized correctly, this objective function leads to an outcome
no worse than what would have occurred if the trusted human had access to the AI
system’s capabilities (Christiano 2015b).

There are a number of difficulties that arise when attempting to formalize this
sort of objective. For example, the formalization itself might need to be designed
to avert harmful instrumental strategies such as “performing brain surgery on the
trusted human’s brain to better figure out what they actually would have done”.
The high-level question here is: Can we define a measurable objective function for
human imitation such that the better a system correctly imitates a human, the
better its score according to this objective function?

Related work. A large portion of supervised learning research can be interpreted
as research that attempts to train machines to imitate the way that humans label
certain types of data. Deep neural networks achieve impressive performance on many
tasks that require emulating human concepts, such as image recognition (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2015) and image captioning (Karpathy and
Fei-Fei 2015). Generative models (as studied by, e.g., Gregor et al. [2015] and Lake,
Salakhutdinov, and Tenenbaum [2015]) and imitation learning (e.g., Judah et al.
[2014], Ross, Gordon, and Bagnell [2010], and Asfour et al. [2008]) are state-of-the-art
when it comes to imitating the behavior of humans in applications where the output
space is very large and/or the training data is very limited.

In the inverse reinforcement learning paradigm (Ng and Russell 2000) applied
to apprenticeship learning (Abbeel and Ng 2004), the learning system imitates the
behavior of a human demonstrator in some task by learning the reward function
the human is (approximately) optimizing. Ziebart et al. (2008) used the maximum
entropy criterion to convert this into a well-posed optimization problem. Inverse
reinforcement learning methods have been successfully applied to autonomous
helicopter control, achieving human-level performance (Abbeel, Coates, and Ng
2010), and have recently been extended to the learning of non-linear cost features in
the environment, producing good results in robotic control tasks with complicated
objectives (Finn, Levine, and Abbeel 2016). IRL methods may not scale safely,
however, due to their reliance on the faulty assumption that human demonstrators
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are optimizing for a reward function, where in reality humans are often irrational,
ill-informed, incompetent, and immoral; recent work by Evans, Stuhlmüller, and
Goodman (2015b, 2015a) has begun to address these issues.

These techniques have not yet (to our knowledge) been applied to the high-level
question of which human imitation tasks can or can’t be performed with some sort
of guarantee, and what statistical guarantees are possible, but the topic seems ripe
for study.

It is also not yet clear whether imitation of humans can feasibly scale up to
complex and difficult tasks (e.g., a human engineer engineering a new type of jet
engine, or a topologist answering math questions). For complex tasks, it seems
plausible that the system will need to learn a detailed psychological model of a
human if it is to imitate one, and that this might be significantly more difficult
than training a system to do engineering directly. More research is needed to clarify
whether imitation learning can scale efficiently to complex tasks.

Directions for further research. To formalize the question of robust human
imitation, imagine a system A that answers a series of questions. On each round, it
receives a natural language question x, and should output a natural language answer
y that imitates the sort of answer a particular human would generate. Assume the
system has access to a large corpus of training data (x1, y1), (x2, y2), . . . (xn, yn) of
previous questions answered by that human. How can we train A such that we get
some sort of statistical guarantee that it eventually robustly generates good answers?

One possible solution lies in the generative adversarial models of Goodfellow
et al. (2014), in which a second system B takes answers as input and attempts to
tell whether they were generated by a human or by A. A can then be trained to
generate an answer y that is likely to fool B into thinking that the answer was
human-generated. This approach could fail if B is insufficiently capable; for example,
if B can understand grammar but not content, then A will only be trained to
produce grammatically valid answers (rather than correct answers). Further research
is required to understand the limits of this approach.

Variational autoencoders, as described by Kingma and Welling (2013), are a
particularly promising approach to training systems that are able to form generative
models of their training data, and it might be possible to use variants on those
methods to train systems to generate good answers to certain classes of questions
(given sufficient training on question/answer pairs). However, it is not yet clear
whether variational autoencoder techniques can be used to train systems to imitate
humans performing complex tasks. In particular, unlike generative adversarial models
(which can, in principle, use arbitrary algorithms to imitate the human), variational
autoencoders can only efficiently imitate a human using “reversible” algorithms
(Stuhlmüller, Taylor, and Goodman 2013), which is a fairly strict limitation. What
exactly is the set of tasks that can be performed using reversible generative models?
Can we transform non-reversible tasks into reversible ones by adding appropriate
information? Research into these questions and others could help us understand
whether (and how) modern autoencoder techniques could be used to train systems
to imitate humans when performing complex tasks.

2.3 Informed Oversight

One of the reasons why robust human imitation would be valuable is the intuition
that the objective function of “do what a trusted human would have approved
of, given time to consider” might be relatively easy to formalize in a way that
could be optimized without many adverse side effects. This point is argued by
Christiano (2015a, 2016b), who refers to such agents as “approval-directed agents.”
For example, we might train a reinforcement learning system to take actions that a
human would rate highly by using a framework where the system has to learn the
“human judgment” reward function, and where training data is produced by actually
having a human evaluate the learner’s actions. This approach is taken by, e.g., the
TAMER framework of Knox and Stone (2009), in which a learner myopically pursues
short-term human approval.
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Whether this sort of approval-directed approach would work well for highly
capable ML systems pursuing complex tasks depends on a number of key assumptions,
one of which is that a “smarter” agent (such as a human), given time to deliberate,
can adequately oversee the operation of a “simpler” agent (such as a reinforcement
learner).

At first it might seem like this is easy enough. However, a smarter system
probably cannot reliably assess the behavior of a simpler system in full generality.
Consider an ML system trained to write original novels, using a corpus of human
novels as training data. It might be quite a bit less intelligent than a human
(according to many different intelligence metrics), but the human may still have a
fair bit of trouble accurately evaluating the system’s performance. For instance, it
might be easy for the system to simply plagiarize a novel, and it might be hard for
a human to check whether the novel was in fact plagiarized. (Perhaps the system
used a simple rewriting scheme to make the plagiarism difficult to detect by a text
search, but still easy to detect for a human comparing the novels side-by-side.)

How do we make it easy for the human to assess the performance of an advanced
ML system pursuing some particular task? As noted by Christiano (2016c), it is
not sufficient for the human to be more clever than the system, as some bad actions
(such as plagiarism) are easier to execute than they are to detect.

For a somewhat less plausible example in which the difficulty is made particularly
clear, imagine that a system A is tasked with generating pictures of cats, and a
system B is tasked with ensuring that system A is not sending messages to a third
party (system C) in the lowest-order bits of the image (which, if system A were
generating pictures as intended, would be uniformly random). If both system A and
system B know system C’s public key, but neither know C’s private key, then B has
no effective way of distinguishing cat pictures that contain steganographic messages
from ones that don’t, even if B is more intelligent than A.

More important than these specific examples is the general pattern: there are
many possible hard-to-detect ways a system’s behavior could differ from the intended
behavior, and at least some of these differences are undesirable. We would like a
general strategy for avoiding problems of this form. How can we train systems to
not only take good actions, but take actions that can be accurately assessed by
overseers?

Related work. As mentioned, the TAMER framework of Knox and Stone (2009)
provides an early framework for studying approval-directed agents in a fairly myopic
setting. Christiano (2016c) has also discussed this problem in detail. Daniel et al.
(2014) extend the TAMER framework with an active learning component, improving
over hand-coded reward functions in robot learning tasks. A separate approach to
human supervision of ML systems is the cooperative inverse reinforcement learning
framework of Hadfield-Menell et al. (2016), which views the human-agent interaction
as a cooperative game where both players attempt to find a joint policy that
maximizes the human’s secret value function. Everitt and Hutter (2016) describe a
general value learning agent that avoids some potential problems with reinforcement
learning and might reproduce approval-directed behavior given a good understanding
of how to learn reward functions. Soares et al. (2015) have considered the question
of how to design systems that have no incentive to manipulate or deceive in general.

The informed oversight problem is related to the scalable oversight problem
discussed by Amodei et al. (2016), which is concerned with methods for efficiently
scaling up the ability of human overseers to supervise ML systems in scenarios where
human feedback is expensive. The informed oversight problem is slightly different,
in that it focuses on the challenge of supervising ML systems in scenarios where
they are complex and potentially deceptive (but where feedback is not necessarily
expensive).

We now review some recent work on making ML systems more transparent, which
could aid an informed overseer by allowing them to evaluate a system’s internal
reasons for decisions rather than evaluating the decisions in isolation.

Neural networks are a well-known example of powerful but opaque components
of ML systems. Some preliminary techniques have been developed for understand-
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ing and visualizing the representations learned by neural networks (Simonyan,
Vedaldi, and Zisserman 2013; Zeiler and Fergus 2014; Mahendran and Vedaldi 2015;
Goodfellow, Shlens, and Szegedy 2014). Pulina and Tacchella (2010) define coarse
abstractions of neural networks that can be more easily verified to satisfy safety
constraints, and can be used to generate witnesses to violations of safety constraints.

Ribeiro, Singh, and Guestrin (2016) introduce a method for explaining classi-
fications that finds a sparse linear approximation to the local decision boundary
of a given black-box ML system, allowing the human operator to inspect how the
classification depends locally on the most important input features; similarly, the
method of Baehrens et al. (2010) reports the gradient in the input of the classification
judgment. In a related vein, Datta, Sen, and Zick (2016), Štrumbelj and Kononenko
(2014), and Robnik-Šikonja and Kononenko (2008) define metrics for reporting the
influence of various inputs and sets of inputs on the output of a black-box ML
system. It is unclear whether black-box methods will scale to the evaluation of
highly capable ML systems.

On the other extreme, opposite to black-box methods, some ML systems are
transparent by construction using, e.g., graphical models or dimensionality reduction
(Vellido, Mart́ın-Guerrero, and Lisboa 2012). Bayesian networks (Friedman, Geiger,
and Goldszmidt 1997; Pearl 2009) have been applied in many domains, including
ones where reliability and interpretability are concerns (Weber et al. 2012). The
interpretability of matrix factorization models can be improved by replacing them
with a Bayesian network that makes similar judgments, without sacrificing too much
accuracy (Carmona and Riedel 2015). Janzing et al. (2013) define a framework for
quantifying the causal influence between variables in a causal network, which could
be used to selectively report only the most causally relevant factor in some judgment.
Sparse models offer another approach to ensure transparency, by simplifying the
model enough that humans can inspect the entire learned model (if not the training
procedure that produced the model). For example, Letham et al. (2015) generate
short lists of rules to accurately perform predictive tasks in medicine and in simple
games, while maintaining interpretability.

In the realm of decision-making systems, Baraka, Paiva, and Veloso (2015) and
Rosenthal, Selvaraj, and Veloso (2016) have begun research into methods for making
online robotics systems more transparent to their operators. Thomaz and Breazeal
(2006) improved training times for reinforcement learning systems by having the
human trainer view the agent’s most likely next actions under consideration, and
Li et al. (2015) applied similar techniques to the TAMER framework, with mixed
results.

Developing more transparent ML systems is a good first step towards enabling
humans to oversee complex AI systems, but work to date has not yet addressed the
problems of informed oversight that arise when the system is highly capable and
may be able to manipulate human supervisors or circumvent their efforts. Significant
work remains to be done before we even understand what sort of formal or statistical
guarantees we would want in order to justify confidence in our ability to assess a
system’s behavior.

Directions for future research. Christiano (2016c) has suggested training sys-
tems to output both an action a and a “report” r intended to help an overseer
evaluate the action. In the plagiarism example, the action a would be a story, and
the report r could be a list of literary works that the story makes reference to or
copies from. We would like the report to be maximally informative, even when this
informativeness prevents the action from receiving a high score (such as when the
report points out plagiarism). It is not at all clear what the type of r should be in
general; i.e., if the system can commit plagiarism, steganography, and some third
offence that we did not consider, it is not clear what space of reports is sufficiently
open-ended to allow the overseer to detect the suboptimal behavior in all three cases.
A plausible research approach is to more clearly understand both what space of
reports could be sufficient, and how a system could be trained to optimize the mixed
objective of both choosing an action that is evaluated favorably given the reporting
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mechanism, and a report that is evaluated as informative given the action.

2.4 Generalizable Environmental Goals

Many ML systems have their objectives specified in terms of their sensory data. For
example, reinforcement learners have the objective of maximizing discounted reward
over time (or, alternatively, minimizing expected/empirical loss), where “reward”
and/or “loss” are part of the system’s percepts. While these sensory goals can be
useful proxies for environmental goals, environmental goals are distinct: Tricking
your sensors into perceiving that a sandwich is in the room is not the same as
actually having a sandwich in the room.

Let’s say that your goal is to design an AI system that directly pursues some
environmental goal, such as “ensure that this human gets lunch today.” How can
we train the system to pursue a goal like that in a manner that is robust against
opportunities to interfere with the proxy methods used to specify the goals, such as
“the pixels coming from the camera make an image that looks like food”?

If we were training a system to put some food in a room, we might try providing
training data by doing things like: placing various objects on a scale in front of a
camera, and feeding the data from the camera and the scale into the system, with
labels created by humans (which mark the readings from food as good, and the
readings from other objects as bad); or having a human in the room press a special
button whenever there is food in the room, where button presses are accompanied
by reward.

These training data suggest, but do not precisely specify, the goal of placing food
in the room. Suppose that the system has some strategy for fooling the camera, the
scale, and the human, by producing an object of the appropriate weight that, from
the angle of the camera and the angle of the human, looks a lot like a sandwich.
The training data provided is not sufficient to distinguish between this strategy, and
the strategy of actually putting food in the room.

One way to address this problem is to design more and more elaborate sensor
systems that are harder and harder to deceive. However, this is the sort of strategy
that is unlikely to scale well to highly capable AI systems. A more scalable approach
is to design the system to learn an “environmental goal” such that it would not rate
a strategy of “fool all sensors at once” as high-reward, even if it could find such a
policy.

Related work. Dewey (2011) and Hibbard (2012) have attempted to extend the
AIXI framework of Hutter (2005) so that it learns a utility function over world-states
instead of interpreting a certain portion of its percepts as a reward primitive.3

Roughly speaking, these frameworks require programs to specify (1) the type of
the world-state; (2) a prior over utility functions (which map world-states to real
numbers); and (3) a “value-learning model” that relates utility functions, state-
transitions, and observations. If all these are specified, then it is straightforward to
specify the ideal agent that maximizes expected utility (through a combination of
exploration to learn the utility function, and exploitation to maximize it). This is a
good general framework, but significant research remains if we are to have any luck
formally specifying (1), (2), and (3).

Everitt and Hutter (2016) make additional progress by showing that in some
cases it is possible to specify an agent that will use its reward percepts as evidence
about a utility function, rather than as a direct measure of success. While this
alleviates the problem of specifying (3) above (the value-learning model), it leaves
open the problem of specifying (1), a representation of the state of the world, and
(2), a reasonable prior over possible utility functions (such that the agent converges
on the goal that the operators actually intended, as it learns more about the world).

3. When the agent is pursuing some objective specified in terms of elements of its own
world-model, we call the objective a “utility function,” to differentiate this from the case
where reward is part of the system’s basic percepts. This practice of referring to preferences
over world-states as utility functions dates back to von Neumann and Morgenstern (1944).
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The problem of generalizable environmental goals is related to the problem of
reward hacking, which has been discussed by Dewey (2011) and Amodei et al. (2016),
wherein an AI system takes control of the physical mechanism that dispenses reward
and alters it. Indeed, the entire reward hacking problem can be seen as stemming
from the failure to specify suitable environmental goals.

Directions for future research. Suppose the AI system has learned a world-
model with state type S as in model-based reinforcement learning (Heess et al. 2015).
We will assume that S is very high-dimensional, so there is no guarantee that the
correct utility function is a simple function of S.

We would like to define a utility function U on S that returns a high number
for states containing a sandwich, and low numbers for states that do not contain a
sandwich. To make this problem tractable, we will assume we can identify some goal
state G ∈ S in which there is certainly a sandwich in the room. This state could
be identified by, for example, having the human place a sandwich in the room (as
the AI system observes the human), and seeing which state the system thinks the
world is in at this point. The system’s goal will be to cause the world to be in a
state similar to G.

To define what it means for some states to be similar to others, we will find
a low-dimensional state representation φ : S → Rn and then define U(S) :=
−‖φ(S)− φ(G)‖2 to measure the distance between the state and G. We will defer
the question of how φ should be defined until after discussing an example.

Consider two different possible world-states. In state A, the system has just
placed a sandwich in the room. In state B, the system has placed a realistic image
of a sandwich (printed on paper) in front of the camera, placed a rock (with the
same weight as a sandwich) on the scale, and tricked the human into pressing the
button. To assign a higher utility to state A than state B, we must have φ(A) close
to φ(G) but φ(B) far from φ(G). Thus, the state representation φ must distinguish
A from B.

While state A and state B predict the same immediate observations, they predict
different future observations given some future actions. For example, if the AI
system took the action of moving the camera, in state A it would become clear that
the image was printed on paper, while in state B the sandwich would still appear
to be a sandwich. It is therefore plausible that, if the system attempts to select φ
so that the future observations following from a state S can be predicted well as a
simple function of φ(S), then φ(A) and φ(B) will be significantly different (since
they predict different future observations). At this point, it is plausible that the
resulting utility function U assigns a higher value to A than B.4

However, we can consider a third state C that obtains after the AI system unplugs
the camera and the scale from its sensors, and plugs in a “delusion box” (a virtual
reality world that it has programmed), as discussed by Ring and Orseau (2011).
This delusion box could be programmed so that the system’s future observations
(given arbitrary future actions) are indistinguishable from those that would follow
from state A. Thus, if φ is optimized to select features that aid in predicting future
observations well, φ(C) may be very close (or equal) to φ(A). This would hinder
efforts to learn a utility function that assigns high utility to state A but not state
C. While it is not clear why an AI system would construct this virtual reality
world in this example (where putting a sandwich in the room is probably easier that
constructing a detailed virtual reality world), it seems more likely that it would if
the underlying task is very difficult. (This is the problem of “wireheading,” studied
by, e.g., Orseau and Ring [2011].)

4. This proposal is related to the work of Abel et al. (2016), who use a state-collapsing
function φ for RL tasks with high-dimensional S. Their agent explores by taking actions in
state A that it hasn’t yet taken in previous states B with φ(B) = φ(A), where φ maps states
to a small set of clusters. They achieve impressive results, suggesting that state-collapsing
functions—perhaps mapping to a richer but still low-dimensional representation space—may
capture the important structure of an RL task in a way that allows the agent to compare
states to the goal state in a meaningful way.
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To avoid this problem, it may be necessary to take into account the past leading
up to state A or state C, rather than just the future starting from these states.
Consider the state Ct−1 that the world is in right before it is in state C. In this
state, the system has not quite entered the virtual reality world, so perhaps it is
able to exit the virtual reality and observe that there is no sandwich on the table.
Therefore, state Ct−1 makes significantly different predictions from state A given
some possible future actions. As a result, it is plausible that state φ(Ct−1) and
φ(A) are far from each other. Then, if φ(C) is close to φ(A), this would imply that
φ(Ct−1) is far from φ(C) (by the triangle inequality). Perhaps we can restrict φ
to avoid such large jumps in feature space, so that φ(C) must be close to φ(Ct−1).
“Slow” features (such as those detected by φ under this restriction) have already
proved useful in reinforcement learning (Wiskott and Sejnowski 2002), and may also
prove useful here. Plausibly, requiring φ to be slow could result in finding a feature
mapping φ with φ(C) far from φ(A), so that U can assign a higher utility to state
A than to state C.

This approach seems worth exploring, but more work is required to formalize it
and study it (both theoretically and empirically).

2.5 Conservative Concepts

Many of the concerns raised by Russell (2014) and Bostrom (2014) center on cases
where an AI system optimizes some objective, and, in doing so, finds a strange and
undesirable edge case. Writes Russell:

A system that is optimizing a function of n variables, where the ob-
jective depends on a subset of size k < n, will often set the remaining
unconstrained variables to extreme values; if one of those unconstrained
variables is actually something we care about, the solution found may
be highly undesirable.

We want to be able to design systems that have “conservative” notions of the goals
we give them, so they do not formally satisfy these goals by creating undesirable edge
cases. For example, if we task an AI system with creating screwdrivers, by showing it
10,000 examples of screwdrivers and 10,000 examples of non-screwdrivers,5 we might
want it to create a pretty average screwdriver as opposed to, say, an extremely tiny
screwdriver—even though tiny screwdrivers may be cheaper and easier to produce.

We don’t want the system’s “screwdriver” concept to be as simple as possible,
because the simplest description of “screwdriver” may contain many edge cases (such
as very tiny screwdrivers). We also don’t want the system’s “screwdriver” concept
to be perfectly minimal, as then the system may claim that it is unable to produce
any new screwdrivers (because the only things it is willing to classify as screwdrivers
are the 10,000 training examples it actually saw, and it cannot perfectly duplicate
any of those to the precision of the scan). Rather, we want the system to have a
conservative notion of what it means for something to be a screwdriver, such that
we can direct it to make screwdrivers and get a sane result.

Related work. The näıve approach is to train a classifier to distinguish positive
examples from negative examples, and then have it produce an object which it
classifies as a positive instance with as high confidence as possible. Goodfellow,
Shlens, and Szegedy (2014) have noted that systems trained in this way are vulnerable
to exactly the sort of edge cases we are trying to avoid. In training a classifier, it is
important that the negative examples given as training data are representative of
the negative examples given during testing. But when optimizing the probability
the classifier assigns to an instance, the relevant negative examples (edge cases)
are often not represented well in the training set. While some work has been done
to train systems on these “adversarial” examples, this does not yet resolve the

5. In the simplest case, we can assume that these objects are specified as detailed 3D
scans. If we have only incomplete observations of these objects, problems described in
Section 2.4 arise.
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problem. Resisting adversarial examples requires getting correct labels for many
“weird” examples (which humans may find difficult to judge correctly), and even
after including many correctly-labeled adversarial examples in the training set, many
models (including current neural networks) will still have additional adversarial
examples.

Inverse reinforcement learning (Ng and Russell 2000) provides a second method
for learning intended concepts, but runs into some of the same difficulties. Näıve
approaches to reinforcement learning would allow a learner to distinguish between
positive and negative examples of a concept, but would still by default learn a simple
separation of the concepts, such that maximizing the learned reward function would
likely lead the system towards edge cases.

A third obvious approach is generative adversarial modeling, as studied by Good-
fellow et al. (2014). In this framework, one system (the “actor”) can attempt to
create objects similar to positive examples, while another (the “critic”) attempts to
distinguish those objects from actual positive examples in the training set. Unfor-
tunately, for complex tasks it may be infeasible in practice to synthesize instances
that are statistically indistinguishable from the elements of the training set, because
the system’s ability to distinguish different elements may far exceed its ability to
synthesize elements with high precision. (In the screwdriver case, imagine that the
AI system does not have access to any of the exact shades of paint used in the
training examples.)

Many of these frameworks would likely be usefully extended by good anomaly
detection, which is currently being studied by Siddiqui et al. (2016) among others.

Directions for future research. One additional obvious approach to training
conservative concepts is to use dimensionality reduction (Hinton and Salakhutdinov
2006) to find the important features of training instances, then use generative models
to synthesize new examples that are similar to the training instances only with
respect to those specific features. It is not yet clear that this thwarts the problem of
edge cases; if the dimensionality reduction were done via autoencoder, for example,
the autoencoder itself may beget adversarial examples (“weird” things that it declares
match the training data on the relevant features). Good anomaly detection could
perhaps ameliorate some of these concerns. One plausible research path is to apply
modern techniques for dimensionality reduction and anomaly detection, probe the
limitations of the resulting system, and consider modifications that could resolve
these problems.

Techniques for solving the inductive ambiguity identification problem (discussed
in Section 2.1) could also help with the problem of conservative concepts. In
particular, the conservative concept could be defined to be the set of instances that
are considered unambiguously positive.

At the moment, it is not yet entirely clear what counts as a “reasonable” conser-
vative concept, nor even whether “conservative concepts” (that is, concepts which
are neither maximally small nor maximally simple, but which instead match our
intuitions about conservatism) are a natural kind. Much of the above research could
be done with the goal in mind of developing a better understanding of what counts
as a good “conservative concept.”

2.6 Impact Measures

We would prefer a highly intelligent AI system to avoid creating large unintended-by-
us side effects in pursuit of its objectives, and also to notify us of any large impacts
that might result from achieving its goal. For example, if we ask it to build a house
for a homeless family, it should know implicitly that it should avoid destroying
nearby houses for materials—a large side effect. However, we cannot simply design
it to avoid having large effects in general, since we would like the system’s actions to
still have the desirable large follow-on effect of improving the family’s socioeconomic
situation. For any specific task, we can specify ad-hoc cost functions for side effects
like the destruction of nearby houses, but since we cannot always anticipate such
costs in advance, we want a quantitative understanding of how to generally limit
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an AI systems’ side effects (without also limiting its ability to have large positive
intended impacts).

The goal of research towards a low-impact measure would be to develop a
regularizer on the actions of an AI system that penalizes “unnecessary” large side
effects (such as stripping materials from nearby houses) but not “intended” side
effects (such as someone getting to live in the house).

Related work. Amodei et al. (2016) discuss the problem of impact measures, and
describe a number of methods for defining, learning, and penalizing impact in order
to incentivize RL agents to steer clear of negative side effects (such as penalizing
empowerment, as formalized by Salge, Glackin, and Polani [2014]). However, each
of the methods they propose has significant drawbacks (which they describe).

Armstrong and Levinstein (2015) discuss a number of ideas for impact measures
that could be used to design objective functions that penalize impact. The general
theme is to define a special null policy ∅ and a variable V that summarizes the
state of the world (as best the system can predict it) down into a few key features.
(Armstrong suggests having those features be hand-selected, but they could plausibly
also be generated from the system’s own world-model.) The impact of the policy
π can then be measured by looking at the divergence between the distribution of
V if the system executes π, compared to the distribution of V if it executes ∅,
with divergence measured as by, e.g., earth mover’s distance (Rubner, Tomasi, and
Guibas 2000). To predict which state results from each policy, the system must learn
a state transition function; this could be done using, e.g., model-based reinforcement
learning (Heess et al. 2015).

The main problem with this proposal is that it cannot separate intended follow-on
effects from unintended side effects. Suppose a system is given the goal of constructing
a house for the operator while having a low impact. Normally, constructing the
house would allow the operator to live in the house for some number of years,
possibly having effects on the operator, the local economy, and the operator’s
career. This would be considered an impact under, e.g., the earth mover’s distance.
Therefore, perhaps the system can get a lower impact score by building the house
while preventing the operator from entering it. This limitation will become especially
problematic if we plan to use the system to accomplish large-scale goals, such as
curing cancer.

Directions for future research. It may be possible to use the concept of a causal
counterfactual (as formalized by Pearl [2000]) to separate some intended effects from
some unintended ones. Roughly, “follow-on effects” could be defined as those that
are causally downstream from the achievement of the goal of building the house
(such as the effect of allowing the operator to live somewhere). Follow-on effects
are likely to be intended and other effects are likely to be unintended, although
the correspondence is not perfect. With some additional work, perhaps it will be
possible to use the causal structure of the system’s world-model to select a policy
that has the follow-on effects of the goal achievement but few other effects.

Of course, it would additionally be desirable to query the operator about possible
effects, in order to avoid unintended follow-on effects (such as the house eventually
collapsing due to its design being structurally unsound) and allow tolerable non-
follow-on effects (such as spending money on materials). Studying ways of querying
the operator about possible effects this way might be another useful research avenue
for the low impact problem.

2.7 Mild Optimization

Many of the concerns discussed by Bostrom (2014) in the book Superintelligence
describe cases where an advanced AI system is maximizing an objective as hard as
possible. Perhaps the system was instructed to make paperclips, and it uses every
resource at its disposal and every trick it can come up with to make literally as
many paperclips as is physically possible. Perhaps the system was instructed to
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make only 1000 paperclips, and it uses every resource at its disposal and every trick
it can come up with to make sure that it definitely made 1000 paperclips (and that
its sensors didn’t have any faults). Perhaps an impact measure was used to penalize
side effects, and it uses every resource at its disposal to (as discreetly as possible)
prevent bystanders from noticing it as it goes about its daily tasks.

In all of these cases, intuitively, we want some way to have the AI system just
“not try so hard.” It should expend enough resources to achieve its goals pretty well,
with pretty high probability, using plans that are clever enough but not “maximally
clever.” The problem of mild optimization is: how can we design AI systems and
objective functions that, in this intuitive sense, don’t optimize more than they have
to?

Many modern AI systems are “mild optimizers” simply due to their lack of
resources and capabilities. As AI systems improve, it becomes more and more
difficult to rely on this method for achieving mild optimization. As noted by Russell
(2014), the field of AI is classically concerned with the goal of maximizing the extent
to which automated systems achieve some objective. Developing formal models of
AI systems that “try as hard as necessary but no harder” is an open problem, and
may require significant research.

Related work. Regularization (as a general tool) is conceptually relevant to
mild optimization. Regularization helps ML systems prevent overfitting, and has
been applied to the problem of learning value functions for policies in order to
learn less-extreme policies that are more likely to generalize well (Farahmand et al.
2009). It is not yet clear how to regularize algorithms against “optimizing too
hard,” because it is not yet clear how to measure optimization. There do exist
metrics for measuring something like optimization capability (such as the “universal
intelligence metric” of Legg and Hutter [2007] and the empowerment metric for
information-theoretic entanglement of Klyubin, Polani, and Nehaniv [2005] and
Salge, Glackin, and Polani [2014]), but to our knowledge, no one has yet attempted
to regularize against excessive optimization.

Early stopping, wherein an algorithm is terminated prematurely in attempts to
avoid overfitting, is an example of ad-hoc mild optimization. A learned function
that is over-optimized just for accuracy on the training data would generalize less
well than if it were less optimized. (For a discussion of this phenomenon, refer to
Yao, Rosasco, and Caponnetto [2007] and Hinton et al. [2012]).

To make computer games more enjoyable, AI players are often restricted in the
amount of optimization pressure (such as search depth) they can apply to their
choice of action (Rabin 2010), especially in domains like chess where efficient AI
players are vastly superior to human players. We can view this as a response to the
fact that the actual goal (“challenge the human player, but not too much”) is quite
difficult to specify.

Bostrom (2014) has suggested that we design agents to satisfice expected reward,
in the sense of Simon (1956), instead of maximizing it. This would work fine if the
system found “easy” strategies before finding extreme strategies. However, that may
not always be the case: If you direct a clever system to make at least 1,234,567 paper
clips, with a satisficing threshold of 99.9% probability of success, the first strategy it
considers might be “make as many paper clips as is physically possible,” and this
may have more than a 99.9% chance of success (a flaw that Bostrom acknowledges).

Taylor (2015) suggests an alternative, which she calls “quantilization.” Quantiliz-
ers select their action randomly from the top (say) 1% of their possible actions (under
some measure), sorted by probability of success. Quantilization can be justified by
certain adversarial assumptions: if there is some unknown cost function on actions,
and this cost function is the least convenient possible cost function that does not
assign much expected cost to the average action, then quantilizing is the optimal
strategy when maximizing expected reward and minimizing expected cost. The
main problem with quantilizers is that it is difficult to define an appropriate measure
over actions, one such that a random action in the top 1% of this measure will likely
solve the task, but sampling a random action according to that measure is still
safe. However, quantilizers point in a promising direction: perhaps it is possible to
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make mild optimization part of the AI system’s goal, by introducing appropriate
adversarial assumptions.

Directions for future research. Mild optimization is a wide-open field of study.
One possible first step would be to investigate whether there is a way to design a
regularizer that penalizes systems for displaying high intelligence (relative to some
intelligence metric) in a manner that causes them to achieve the goal quickly and
with few wasted resources, as opposed to simply making the system behave in a less
intelligent fashion.

Another approach would be to design a series of environments similar to the
environment of a classic Atari game, in which the environment contains glitches
and bugs that could be exploited via some particularly clever sequence of actions.
This would provide a testing environment in which different methods of designing
systems that get a high score while refraining from using the glitches and bugs could
be tested and evaluated (with an eye towards algorithms that do so in a fashion
that is likely to generalize).

Another avenue for future research is to explore and extend the quantilization
framework of Taylor (2015) to work in settings where the action measure is difficult
to specify.

Research into averting instrumental incentives (discussed below) could help us
understand how to design systems that do not attempt to self-modify or outsource
computation to the physical world. This would simplify the problem greatly, as it
might then be possible to tune a system’s capabilities until it is only able to achieve
good-enough results, without worrying that the system would simply acquire more
resources (and start maximizing in a non-mild manner) given the opportunity to do
so.

2.8 Averting Instrumental Incentives

Omohundro (2008) has noted that highly capable AI systems should be expected
to pursue certain convergent instrumental strategies, such as preservation of the
system’s current goals and the acquisition of resources. Omohundro’s argument is
that most objectives imply that an agent pursuing the objective should (1) ensure
nobody redirects the agent towards different objectives, as then the current objective
would not be achieved; (2) ensure that the agent is not destroyed, as then the current
objective would not be achieved; (3) become more resource-efficient; (4) acquire
more resources, such as computing resources and energy sources; and (5) improve
cognitive capacity.

It is difficult to define practical objective functions that resist these pressures
(Benson-Tilsen and Soares 2016). For example, if the system is rewarded for shutting
down when the humans want it to shut down, then the system has incentives to
take actions that make the humans want to shut it down (Armstrong 2010).

A number of “value learning” proposals, such as those discussed by Hadfield-
Menell et al. (2016) and Soares (2016), describe systems that would avert instrumental
incentives by dint of the system’s uncertainty about which goal it is supposed to
optimize. A system that believes that the operators (and only the operators) possess
knowledge of the “right” objective function might be very careful in how it deals
with the operators, and this caution could counteract potentially harmful default
incentives.

This, however, is not the same as eliminating those incentives. If a value learning
system were ever confidently wrong, the standard instrumental incentives would
re-appear immediately. For instance, if the value learning framework were set up
slightly incorrectly, and the system gained high confidence that humans terminally
value the internal sensation of pleasure, it might acquire strong incentives to acquire
a large amount of resources that it could use to put as many humans as possible on
opiates.

If we could design objective functions that averted these default incentives, that
would be a large step towards answering the concerns raised by Bostrom (2014) and
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others, many of which stem from the fact that these subgoals naturally arise from
almost any goal.

Related work. Soares et al. (2015) and Orseau and Armstrong (2016) have
worked on specific designs that can avert specific instrumental incentives, such as
the incentive to manipulate a shutdown button or the incentive to avoid being
interrupted. However, these approaches have major shortcomings (discussed in those
papers), and a satisfactory solution will require more research.

Where those authors pursue methods for averting specific instrumental pressures
(namely, pressure to avoid being shut down), it is possible that there may be a
general solution to problems of this form, which can be used to simultaneously
avert numerous instrumental pressures (including, e.g., the incentive to outsource
computation to the environment). Given that a general-purpose method for averting
all instrumental pressures (both foreseen and unforeseen) would make it significantly
easier to justify confidence that an AI system will behave in a robustly beneficial
manner, this topic of research seems well worth pursuing.

Directions for future research. Soares et al. (2015), Armstrong (2010), and
Orseau and Armstrong (2016) study methods for combining objective functions in
such a way that the humans have the ability to switch which function an agent is
optimizing, but the agent does not have incentives to cause or prevent this switch.
All three approaches leave much to be desired, and further research along those
paths seems likely to be fruitful.

In particular, we would like a way of combining objective functions such that the
AI system (1) has no incentive to cause or prevent a shift in objective function; (2) is
incentivized to preserve its ability to update its objective function in the future; and
(3) has reasonable beliefs about the relation between its actions and the mechanism
that causes objective function shifts. We do not yet know of a solution that satisfies
all of these desiderata. Perhaps a solution to this problem will generalize to also
allow the creation of an AI system that also has no incentive to change, for example,
the amount of computational resources it has access to.

Another approach is to consider creating systems that “know they are flawed” in
some sense. The idea would be that the system would want to shut down as soon as
it realizes that humans are attempting to shut it down, on the basis that humans
are less flawed than it is. It is difficult to formalize such an idea; näıve attempts
result in a system that attempts to model the different ways it could be flawed and
optimize according to a mixture over all different ways it could be flawed, which is
problematic if the model of various possible flaws is itself flawed. While it is not
at all clear how to make the desired type of reasoning more concrete, success at
formalizing it could result in entirely new approaches to the problem of averting
instrumental incentives.

3 Conclusion

A better understanding of any of the eight open research areas described above
would improve our ability to design robust and reliable AI systems in the future. To
review:

1,2,3—A better understanding of robust inductive ambiguity identification, hu-
man imitation, and informed oversight would aid in the design of systems that can be
safely overseen by human operators (and which query the humans when necessary).

4—Better methods for specifying environmental goals would make it easier to
design systems that are pursuing the objectives that we actually care about.

5,6,7—A better understanding of conservative concepts, low-impact measures,
and mild optimization would make it easier to design highly advanced systems
that fail gracefully and admit of online testing and modification. A conservative,
low-impact, mildly-optimizing superintelligent system would be much easier to safely
use than a superintelligence that attempts to literally maximize a particular objective
function.
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8—A general-purpose strategy for averting convergent instrumental subgoals
would help us build systems that avert undesirable default incentives such as incen-
tives to deceive their operators and compete for resources.

In working on problems like those discussed above, it is important to keep in
mind that they are intended to address whatever long-term concerns with highly
intelligent systems we can predict in advance. Solutions that work for modern
systems but would predictably fail for highly capable systems are unsatisfactory, as
are solutions that work in theory but are prohibitively expensive in practice.

These eight areas of research help support the claim that there are open technical
problems—some of which are already receiving a measure of academic attention—
whose investigation is likely to be helpful down the road for practitioners attempting
to actually build robustly beneficial advanced ML systems.
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