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Abstract. Almost all formal theories of intelligence suffer from the prob-
lem of logical omniscience, the assumption that an agent already knows all
consequences of its beliefs. Logical uncertainty codifies uncertainty about
the consequences of existing beliefs. This implies a departure from beliefs
governed by standard probability theory. Here, we study the asymptotic
properties of beliefs on quickly computable sequences of logical sentences.
Motivated by an example we call the Benford test, we provide an ap-
proach which identifies when such subsequences are indistinguishable
from random, and learns their probabilities.

1 Introduction

Probabilistic reasoning about deterministic structures is a challenging case of
uncertain reasoning which has received relatively little attention. This is the
subject of logical uncertainty as defined in e.g. [1]: “any realistic agent is necessarily
uncertain not only about its environment or about the future, but also about
the logically necessary consequences of its beliefs.” Being able to produce well-
reasoned guesses about the results of programs before running them could
provide valuable information for heuristic search, such as planning in complex
environments or automatic programming. This kind of uncertainty can also be of
wider interest. For example, [2] provides a call to arms for the development of
numerical algorithms which provide information about the uncertainty in their
results. [3] discusses the use of probabilistic information generated by machine
learning to aid static program analysis for optimization.

? The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-
319-41649-6 20.



One of the purest examples of this type of reasoning in humans is the formation
of mathematical conjectures. Mathematical intuitions behave in a way that is
largely consistent with the standard probability axioms [4]. However, they cannot
be entirely so: probability theory requires belief in anything which follows logically
from your current beliefs, and so cannot represent uncertainty about what may
later be proved. This is known as the problem of logical omniscience, and is the
main challenge faced by a theory of logical uncertainty [5, 6, 7, 8].

Several proposals have addressed this problem by considering sequences of
probability assignments5 which converge to logically omniscient distributions,
enforcing more and more constraints imposed by the probability axioms in the
limit of unbounded computing resources [9, 1, 10]. With such a theoretical model
in hand, one might think that the practical problem of logical uncertainty amounts
to approaching this limit as quickly as possible. However, this is a fairly weak
constraint on the behavior of beliefs at finite time.

If we’re asked to quickly give a probability for a mathematical question, and
the question belongs to a class of questions which have been true 25% of the time,
it seems we should give a probability close to 0.25. This type of reasoning is ignored
if our only aim is to converge to a good probability distribution overall. Each
individual question will converge to probability one or zero. This seems to ignore
an essential part of the problem. So, we take a different approach. We consider the
limit of a sequence of sentences within a single assignment of probabilities, rather
than the limit of probabilities within a sequence of assignments. We call this
approach asymptotic logical uncertainty. Our goal is not to provide an algorithm
which may be used in an AGI directly, but rather, to illustrate a new desirable
(and achievable) property of uncertain reasoning for AGI.

Section 2 discusses further related work. In Section 3, we define the Benford
test as a concrete example of the type of reasoning we wish to model. Section 4
defines irreducible patterns, a concept used to define a general case where this
sort of reasoning is justified. Section 5 proposes a learning algorithm to solve the
problem in the general case, and Section 6 proves that the method is successful.
Section 7 concludes.

2 Related Work

The most often-cited work relating probability to logic is almost certainly that
of Cox [11], which shows that under certain desirable assumptions, probability
theory is the only possible generalization of Boolean algebra. Other early work
concerning measures over Boolean algebras include [12, 13]. This has since been
extended to first-order logic [14, 15], and from there to other settings [16, 17, 18].
However, most of this work does not address computability.

An early articulation of the problem of logical omniscience was [5]. Many
approaches have attempted to deal with this through theories of inconsistent
structures, including [7, 8]. The approach here is also related to online sequence

5 We will use the term “probability” to refer to degrees of belief generally, whether or
not the probability axioms are obeyed.



learning using expert advice, to predict a sequence of observations almost as well
as a given set of advisors [19], especially experts on sub-sequences as in [20].

3 The Benford Test

Benford’s law states that in naturally occurring numbers, the leading digit
d ∈ {1, . . . , 9} of that number in base 10 occurs with probability log10(1 + 1

d ).
Many mathematical sequences have been shown to have frequencies of first digits
that satisfy Benford’s law [21]. In particular, the frequencies of the first digits of
powers of 3 provably satisfy Benford’s law.

The function 3 ↑n k is a fast-growing function defined by 3 ↑1 k = 3k,
3 ↑n 1 = 3, and 3 ↑n k = 3 ↑n−1 (3 ↑n (k − 1)). 3 ↑n k is very large, and first
digit of 3 ↑n k is probably very difficult to compute. It is unlikely that the first
digit of 3 ↑3 3 will ever be known.

If asked to quickly assign a probability to the sentence “The first digit of
3 ↑3 3 is a 1,” it seems the only reasonable answer would be to treat it as a power
of three and reply log10(2) ≈ .30103, as dictated by Benford’s law. Note that the
sentence is either true or false; there are no random variables. The probability
here represents a reasonable guess in the absence of enough time or resources to
compute 3 ↑3 3.

We define the Benford test to formalize this reasoning.6 Throughout the paper,
let the time-bound T (N) be an increasing function in the range of N ≤ T (N) ≤
3 ↑k N for some fixed k, and R(N) = T (N)N4 log T (N) a larger time-bound.

Definition 1 Let M be a Turing machine which on input N runs in time
O(R(N)) and outputs a probability M(N), which represents the probability as-
signed to φN . We say that M passes the Benford test if

lim
n→∞

M(sn) = log10(2) , (1)

where φsn = “The first digit of 3 ↑n 3 is a 1.”

It is easy to pass the Benford test by hard-coding in the probability. It is
more difficult to pass the Benford test in a natural way. That the best probability
to assign to φsn is log10(2) depends not only on the fact that the frequency
with which φsn is true tends toward log10(2), but also on the fact that the
sequence of truth-values of φsn contains no patterns that can be used to quickly
compute a better probability on some subsequence. We therefore assume that this
sequence of truth-values is indistinguishable from a sequence produced by a coin
that outputs “true” with probability log10(2). Formally, we are assuming that
S = {sn|n ∈ N} is an irreducible pattern with probability log10(2), as defined in
the next section.

6 The test presumes that the frequencies of the first digits in the sequence 3 ↑n 3 satisfy
Benford’s law. Though this seems likely, the conjecture is not too important; any
sufficiently fast-growing sequence satisfying Benford’s law could serve as an example.



4 Irreducible Patterns

Let φ1, φ2, . . . be a simple enumeration of all sentences in first order logic over
ZFC. Fix a universal Turing machine U and an encoding scheme for machines,
and let U(M,x) denote running the machine U to simulate M with input x.

Definition 2 7 Let S ⊆ N be an infinite subset of natural numbers such that
φN is provable or disprovable in ZFC for all N ∈ S, and there exists a Turing
machine Z such that U(Z,N) runs in time T (N) and accepts N if and only if
N ∈ S.

We say that S is an irreducible pattern with probability p if there exists a
constant c such that for every positive integer m ≥ 3 and every Turing machine
W expressible in K(W ) bits, if

S′ = {N ∈ S | U(W,N) accepts in time T (N)} (2)

has at least m elements and r(m,W ) is the probability that φN is provable when
N is chosen uniformly at random from the first m elements of S′, we have

|r(m,W )− p|< cK(W )
√

log logm√
m

. (3)

The intuition behind the formula is that the observed frequency r(m,W ) for any
sequence S′ we select should not stray far from p. The right hand side of the
inequality needs to shrink slowly enough that a true random process would stay
within it with probability 1 (given choice of c sufficiently large to accommodate
initial variation). The law of the iterated logarithm gives such a formula, which is
also tight in the sense that we cannot replace it with a formula which diminishes
more quickly as a function of m.

Proposition 1 If provability in Definition 2 were decided randomly, such that for
each N ∈ S the sentence φN is independently called “provable” with probability p
and “disprovable” otherwise, then S would almost surely be an irreducible pattern
with probability p.

Proof. Omitted due to space limitations.8

We now use the concept of irreducible patterns to generalize the Benford test.

7 We tailored this definition of irreducible pattern to our needs. The theory of algorith-
mic randomness may offer alternatives. However, algorithmic randomness generally
considers all computable tests and focuses on the case where p = 1

2
[22, 23]. We

believe that any reasonable definition inspired by algorithmic randomness would
imply Definition 2.

8 See pre-print version [24] for the full proof.



Definition 3 Let M be a Turing machine which on input N runs in time
O(R(N)) and outputs a probability M(N), which represents the probability as-
signed to φN . We say that M passes the generalized Benford test if

lim
N→∞
N∈S

M(N) = p , (4)

whenever S is an irreducible pattern with probability p.

Note that if we conjecture that the S from Definition 1 is an irreducible
pattern with probability log10(2), then any M which passes the generalized
Benford test also passes the Benford test.

5 A Learning Algorithm

We now introduce an algorithm AL,T that passes the generalized Benford test (see
Algorithm 1). The general idea behind the algorithm is to make a prediction for a
sentence by searching for an irreducible pattern which it belongs to (represented
by the program X). To be sure that a pattern is irreducible, we must also
search for any subsequences (represented by Y ) which have significantly different
probabilities. In effect, we are trying to predict an event by finding a reference
class which the event belongs to. A reference class which is simple and passes
tests for pseudo-randomness is chosen, since this indicates that we are unlikely
to do better by choosing a different reference class.

Let L be the Turing machine which accepts on input N if ZFC proves
φN , rejects on input N if ZFC disproves φN , and otherwise does not halt. For
convenience, in Algorithm 1, we define log q = 1 for q < 2.
Let TM(N) be the set of all Turing machines X expressible in at most logN
bits such that U(X,N) accepts in time at most T (N). The encoding of Turing
machines must be prefix-free, which in particular means that no Turing machine
is encoded in 0 bits. Let JN denote the set of rational numbers of the form j

N
with j = 0, . . . , N .

For X and Y Turing machines, let K(X) be the number of bits necessary to
encode X. Let S′(X,Y ) be the subset of natural numbers i which are accepted
by both U(X, i) and U(Y, i) in time at most T (i). Let QN (X,Y ) be the greatest
number less than or equal to N such that for every s in the first QN (X,Y )
elements of S′, U(L, s) halts in time T (N). Let FN (X,Y ) be the proportion of
the first QN (X,Y ) elements of S′ which L accepts. Let

BN (X,Y, P ) = max

(
K(X),

|FN (X,Y )− P |
√
QN (X,Y )

K(Y )
√

log logQN (X,Y )

)
. (5)

Lemma 1 The output of AL,T on input N is in

arg minP∈JN
max

Y ∈TM(N)
min

X∈TM(N)
BN (X,Y, P ) . (6)



Proof. Omitted due to space limitations. 9

The code is not optimized for computational efficiency. The following proposition
is just to ensure that the runtime is not far off from T (N).

Proposition 2 The runtime of AL,T (N) is in O(R(N)) = O(T (N)N4 log T (N))).

Proof. Simulating U on any input for T time steps can be done in time cT log T
for some fixed constant c [25]. The bulk of the runtime comes from simulating
Turing machines on lines 8, 13, 14, and 16. Each of these lines takes at most
cT (N) log T (N) time, and we enter each of these lines at mostN4 times. Therefore,
the program runs in time O(T (N)N4 log T (N)).

Algorithm 1 AL,T (N)

1: P = 0
2: M = N
3: for j = 0, . . . , N do
4: MY = 0
5: for Y a Turing machine expressible in KY < logN bits do
6: MX = N
7: for X a Turing machine expressible in KX < logN bits do
8: if U(X,N) and U(Y,N) both accept in time T (N) then
9: A = 0

10: R = 0
11: i = 1
12: while i ≤ N do
13: if U(X, i) and U(Y, i) both accept in time T (i) then
14: if U(L, i) accepts in time T (N) then
15: A = A + 1
16: else if U(L, i) rejects in time T (N) then
17: R = R + 1
18: else
19: i = N
20: i = i + 1

21: F = A/(A + R)
22: Q = A + R

23: if max

(
KX ,

|F− j
N
|
√
Q

KY
√
log logQ

)
< MX then

24: MX = max

(
KX ,

|F− j
N
|
√

Q

KY
√
log logQ

)
25: if MX > MY then
26: MY = MX

27: if MY < M then
28: M = MY

29: P = j/N

30: return P

9 See pre-print version [24] for the full proof.



6 Passing the Generalized Benford Test

We are now ready to show that AL,T passes the generalized Benford test. The
proof will use the following two lemmas.

Lemma 2 Let S be an irreducible pattern with probability p, and let Z be a
Turing machine such that U(Z,N) accepts in time T (N) if and only if N ∈ S.

There exists a constant C such that if N ∈ S, then there exists a P ∈ JN
such that

max
Y ∈TM(N)

BN (Z, Y, P ) < C . (7)

Proof. Let P = bpNc
N . From the definition of irreducible pattern, we have that

there exists c such that for all Y ,

|FN (Z, Y )− p|<
cK(Y )

√
log logQN (Z, Y )√
QN (Z, Y )

. (8)

Clearly,

|P − p|≤ 1

N
≤ 1

QN (Z, Y )
≤ 1√

QN (Z, Y )
≤
K(Z)K(Y )

√
log logQN (Z, Y )√

QN (Z, Y )
.

(9)
Setting C = K(Z) + c, we get

|FN (Z, Y )− P |≤ |FN (Z, Y )− p|+|P − p|<
CK(Y )

√
log logQN (Z, Y )√
QN (Z, Y )

, (10)

so
|FN (Z, Y )− P |

√
QN (Z, Y )

K(Y )
√

log logQN (Z, Y )
< C . (11)

Clearly, K(Z) < C, so BN (Z, Y, P ) > C for all Y . Therefore,

max
Y ∈TM(N)

BN (Z, Y, P ) < C . (12)

Lemma 3 Let S be an irreducible pattern with probability p, and let Z be a
Turing machine such that U(Z,N) accepts in time T (N) if and only if N ∈ S.

For all C, for all ε > 0, for all N sufficiently large, for all P ∈ JN , if N ∈ S,
and

min
X∈TM(N)

BN (X,Z, P ) < C , (13)

then |P − p|< ε.

Proof. Fix a C and a ε > 0. It suffices to show that for all N sufficiently large, if
N ∈ S and |P − p|≥ ε, then for all X ∈ TM(N), we have BN (X,Z, P ) ≥ C.

Observe that since BN (X,Z, P ) ≥ K(X), this claim trivially holds when
K(X) ≥ C. Therefore we only have to check the claim for the finitely many
Turing machines expressible in fewer than C bits.



Fix an arbitrary X. Since S is an irreducible pattern, there exists a c such
that

|FN (X,Z)− p|<
cK(Z)

√
log logQN (X,Z)√
QN (X,Z)

. (14)

We may assume that S′(X,Z) is infinite, since otherwise if we take N ∈ S large
enough, X /∈ TM(N). Thus, by taking N sufficiently large, we can get QN (X,Z)
sufficiently large, and in particular satisfy√

QN (X,Z)

K(Z)
√

log logQN (X,Z)
ε ≥ C + c . (15)

Take N ∈ S large enough that this holds for each X ∈ TM(N) with K(X) < C,
and assume |P − p|≥ ε. By the triangle inequality, we have

|FN (X,Z)−P |≥ |P −p|−|FN (X,Z)−p|≥ ε−
cK(Z)

√
log logQN (X,Z)√
QN (X,Z)

. (16)

Therefore

BN (X,Z, P ) ≥

(
ε− cK(Z)

√
log logQN (X,Z)√
QN (X,Z)

)√
QN (X,Z)

K(Z)
√

log logQN (X,Z)

=

√
QN (X,Z)

K(Z)
√

log logQN (X,Z)
ε− c ≥ C ,

(17)

which proves the claim.

Theorem 3 AL,T passes the generalized Benford test.

Proof. Let S be an irreducible pattern with probability p. We must show that

lim
N→∞
N∈S

AL,T (N) = p. (18)

Let Z be a Turing machine such that U(Z,N) accepts in time T (N) if and only
if N ∈ S.

By considering the case when X = Z, Lemma 2 implies that there exists a
constant C such that for all N sufficiently large, there exists a P ∈ JN such that

max
Y ∈TM(N)

min
X∈TM(N)

BN (X,Y, P ) < C. (19)

Similarly, using this value of C, and considering the case where Y = Z, Lemma
3 implies that for all ε > 0, for all N sufficiently large, for all P ∈ JN if N ∈ S,
and

max
Y ∈TM(N)

min
X∈TM(N)

BN (X,Y, P ) < C, (20)



then |P − p|≤ ε.
Combining these, we get that for all ε > 0, for all N sufficiently large, if

N ∈ S and if P is in

arg minP∈JN
max

Y ∈TM(N)
min

X∈TM(N)
BN (X,Y, P ), (21)

then |P − p|≤ ε.
Thus, by Lemma 1, we get that for all ε > 0, for all N sufficiently large, if

N ∈ S, then |AL,T (N)− p|≤ ε, so

lim
N→∞
N∈S

AL,T (N) = p. (22)

7 Final Remarks

We identified a new desirable property for logical uncertainty, the generalized
Benford test, based on making probability assignments when sequences of logical
statements appear pseudorandom. We developed an algorithm with this property.
Although the algorithm does not have a practically useful run-time, it demon-
strates that it is possible to achieve the desired property in a very general case:
we can apply this algorithm to learn patterns in ZFC or other powerful logics,
which include essentially any mathematical domains of interest within them.

The main drawback of the approach here is that it does not achieve desir-
able properties of previous approaches. No attempt is made here to satisfy the
probability axioms in the limit as more computing power is used, as in [9, 1].
Integrating with those approaches is an important next step. Nonetheless, we
see passing the generalized Benford test alone as a fairly powerful property, as it
implies an ability to notice a wide variety of patterns within mathematics.
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