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Yudkowsky & Herreshoff (2013) introduce a sequence Tn of consistent the-
ories extending PA such that each Tn proves the soundness of Tn+1, i.e. Tn `
�Tn+1∀x. pϕ(x)q→ ϕ(x) for all formulas ϕ(x), where �T pϕq is the provability
predicate for T in the language of arithmetic. Unfortunately, while consistent,
these theories are unsound.

Here, we construct a different sequence Tn such that each Tn proves the
consistency of Tn+1, i.e., Tn ` Con(Tn+1), or more explicitly, Tn ` ¬�Tn+1p⊥q.
These systems are defined as follows:

Tn := PA + ψ(n)→ Con(Tn+1), where ψ(n) :↔ ¬ProvesZFC(n, p⊥q),
(1)

where ProvesZFC(n,pϕq) is the proposition stating that n is the Gödel number
of a proof of ϕ in ZFC. Note that as long as ZFC is consistent, we have Tn `
Con(Tn+1), since for any particular numeral n, PA can show ψ(n) by mechanical
checking. But on the other hand, we cannot use this reasoning inside PA to
show that ∀n. �TnpCon(Tn+1)q, since PA cannot prove the consistency of ZFC.1

A variation of a proof of the consistency of Yudkowsky & Herreshoff’s system
(relative to Con(ZFC)), which we present below, shows that these new systems
are consistent as well. It follows directly from this that they are also sound:
Since Tn+1 is consistent, ψ(n)→ Con(Tn+1) is true in the standard model, and
this is the only axiom of Tn that is not already in PA.

Moreover, it is easy to see that each Tn proves the Π1-soundness of Tn+1; that
is, we have Tn ` ∀x. �Tn+1

pϕ(x)q → ϕ(x) for every Π1 formula ϕ(x). This is
because ¬ϕ(x) is Σ1, so PA can show that if there is an x such that ¬ϕ(x), then
�PAp¬ϕ(x)q, by constructing a proof that specifies a counterexample to ϕ(x)
and mechanically checks that this is indeed a counterexample. This means that
the systems Tn can be used to construct tiling agents in the sense of Yudkowsky
& Herreshoff, as long as the goal G is a Π1 formula, since then the instance of

1In fact, PA 0 ∀n. �TnpCon(Tn+1)q, since it’s possible to show by a Löbian argument that
otherwise T0 ` ⊥, and we show later that T0 is in fact consistent.
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the soundness schema required for tiling is Tn ` ∀b. �Tn+1
pb→ Gq→ (b→ G);

if b can be written as a ∆0 formula, then b → G is a Π1 formula as long as G
is, and the soundness schema holds. This is the case, for example, for a goal
like “do not destroy the world”, as long as “the world is not destroyed before
time t” can be written as a ∆0 formula (because the world is computable, say,
and only a bounded amount of computation can happen before time t).

Finally, while there are theorems of Tn that Tn+1 does not prove (since
Tn ` Con(Tn+1), and Tn+1 cannot prove this since we know it is consistent),
there is an n0 such that all Tm and Tn with m,n ≥ n0 have the same proof-
theoretic ordinal (according to any sensible definition of proof-theoretic ordinal):
First, note that Tn proves anything that Tn+1 does, since Tn+1’s additional
axiom ψ(n+ 1)→ Con(Tn+2) is a Π1 formula. Thus, for any reasonable notion
of proof-theoretic ordinal, we will have αn ≥ αn+1, where αk is the ordinal
of Tk. Since there is no infinitely decreasing sequence of ordinals, we can choose
n0 large enough that αm = αn for all m,n ≥ n0. Thus, an agent using Tn0

will be able to tile to an arbitrarily long sequence of successor agents all using
systems of similar mathematical strength, in the sense of having the same proof-
theoretic ordinal. (It is an obvious conjecture that αn = ε0 for all n, the same
proof-theoretic ordinal as that of PA and PA + Con(PA), but we haven’t had
time to check this, yet.)

We now prove that Tn is in fact consistent for all n. Work in ZFC and
assume that ZFC is inconsistent. Then there is a least n such that ¬ψ(n),
and hence �PAp¬ψ(n)q. Thus, �PApψ(n) → Con(Tn+1)q; i.e., Tn proves the
same theorems as PA. By induction, it follows that Tn−1 is equivalent to PA +
Con(PA), Tn−2 is equivalent to PA + Con(PA + Con(PA)), and so on up to
T0; since ZFC knows all theses systems to be consistent, it follows that T0 is
consistent. Hence, we have shown in ZFC that ¬Con(ZFC) → Con(T0), or
equivalently, ¬Con(T0)→ Con(ZFC).

Now step outside ZFC and assume that T0 were inconsistent. Then ZFC
would show this, and hence show Con(ZFC), meaning that it would be incon-
sistent. This establishes the consistency of T0 relative to the consistency of
ZFC. Finally, if any Tn+1 were inconsistent, then Tn would be inconsistent as
well, since it would show both Con(Tn+1) and ¬Con(Tn+1); this establishes the
consistency of all Tn.

Remark. Essentially the same trick can be used to establish the consistency
of the alternative definition of Tn using ψ(n) := ProvesT0(n, p⊥q); we can then
show in PA that if T0 were inconsistent, then it would be equivalent to one of
the systems Pn defined by P0 := PA and Pn+1 := Pn + Con(Pn), which would
then have to be inconsistent as well; thus, if we believe in the consistency of all
Pn, then all Tn are consistent as well.
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