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Abstract

This paper motivates the study of counterpos-
sibles (logically impossible counterfactuals) as
necessary for developing a decision theory suit-
able for generally intelligent agents embedded
within their environments. We discuss two
attempts to formalize a decision theory using
counterpossibles, one based on graphical mod-
els and another based on proof search.

1 Introduction

What does it mean to “make good decisions”? To for-
malize the question, it is necessary to precisely define a
process that takes a problem description and identifies
the best available decision (with respect to some set
of preferences1). Such a process could not be run, of
course; but it would demonstrate a full understanding
of the question.

The difficulty of this question is easiest to illustrate
in a deterministic setting. Consider a deterministic de-
cision procedure embedded within a deterministic en-
vironment (e.g., an algorithm operating in a virtual
world). There is exactly one action that the decision
procedure is going to select. What, then, “would hap-
pen” if the decision procedure selected a different action
instead? At a glance, this question seems ill-defined,
and yet, this is the problem faced by a decision proce-
dure embedded within an environment.

Philosophers have studied candidate procedures for
quite some time, under the name of decision theory.
The investigation of what is now called decision theory
stretches back to Pascal and Bernoulli; more recently
decision theory has been studied by Lehmann [2], Lewis
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1For simplicity, assume von Neumann-Morgenstern ra-
tional preferences [1], that is, preferences describable by
some utility function. The problems discussed in this pa-
per arise regardless of how preferences are encoded.

[3], Jeffrey [4], Pearl [5] and many others. Unfortu-
nately, the standard answers from the literature do not
allow for the description of an idealized decision pro-
cedure, as discussed in Section 2. Section 3 introduces
the notion of “counterpossibles” (logically impossible
counterfactuals) and motivates the need for a decision
theory using them. It goes on to discuss two attempts
to formalize such a decision theory, one using graphi-
cal models and another using proof search. Section 4
concludes.

2 Counterfactual Reasoning

The modern academic standard decision theory is
known as “causal decision theory,” or CDT. It is used
under the guise of “potential outcomes” in statistics,
economics and game theory, and it is used implicitly
by many modern narrow AI systems under the guise of
“decision networks.”

Pearl’s calculus of interventions on causal graphs
[5] can be used to formalize CDT. This requires that
the environment be represented by a causal graph in
which the agent’s action is represented by a single node.
This formalization of CDT prescribes evaluating what
“would happen” if the agent took the action a by iden-
tifying the agent’s action node, cutting the connections
between it and its causal ancestors, and setting the out-
put value of that node to be a. This is known as a causal
intervention. The causal implications of setting the ac-
tion node to a may then be evaluated by propagating
this change through the causal graph in order to deter-
mine the amount of utility expected from the execution
of action a. The resulting modified graph is a “causal
counterfactual” constructed from the environment.

Unfortunately, causal counterfactual reasoning is
unsatisfactory, for two reasons. First, CDT is un-
derspecified: it is not obvious how to construct a
causal graph in which the agent’s action is an atomic
node. While the environment can be assumed to have
causal structure, a sufficiently accurate description of
the problem would represent the agent as arising from a
collection of transistors (or neurons, or sub-atomic par-
ticles, etc.). While it seems possible in many cases to
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draw a boundary around some part of the model which
demarcates “the agent’s action,” this process may be-
come quite difficult in situations where the line between
“agent” and “environment” begins to blur, such as sce-
narios where the agent distributes itself across multiple
machines.

Secondly, CDT prescribes low-scoring actions on a
broad class of decision problems where high scores are
possible, known as Newcomblike problems [6]. For a
simple example of this, consider a one-shot Prisoner’s
Dilemma played by two identical deterministic agents.
Each agent knows that the other is identical. Agents
must choose whether to cooperate (C) or defect (D)
without prior coordination or communication. If both
agents cooperate, they both achieve utility 2. If both
defect, they both achieve utility 1. If one cooperates
and the other defects, then the defector achieves 3 util-
ity while the cooperator achieves 0.2

The actions of the two agents will be identical by as-
sumption, but neither agent’s action causally impacts
the other’s: in a causal model of the situation, the ac-
tion nodes are causally separated, as in Figure 1. When
determining the best action available to the left agent,
a causal intervention changes the left node without af-
fecting the right one, assuming there is some fixed prob-
ability p that the right agent will cooperate independent
of the left agent. No matter what value p holds, CDT
reasons that the left agent gets utility 2p if it cooper-
ates and 2p + 1 if it defects, and therefore prescribes
defection [7].

A O

U

Figure 1: The causal graph for a one-shot Prisoner’s
Dilemma. A represents the agent’s action, O represents
the opponent’s action, and U represents the agent’s util-
ity.

Indeed, many decision theorists hold that it is in fact
rational for an agent to defect against a perfect copy of
itself in a one-shot Prisoner’s Dilemma, as after all, no
matter what the opponent does, the agent does better
by defecting [8, 3]. Others object to this view, claiming
that since the agents are identical, both actions must
match, and mutual cooperation is preferred to mutual
defection, so cooperation is the best available action [9].

2This scenario (and other Newcomblike scenarios) are
multi-agent scenarios. Why use decision theory rather than
game theory to evaluate them? The goal is to define a pro-
cedure which reliably identifies the best available action; the
label of “decision theory” is secondary. The desired proce-
dure must identify the best action in all settings, even when
there is no clear demarcation between “agent” and “envi-
ronment.” Game theory informs, but does not define, this
area of research.

Our view is that, in the moment, it is better to coop-
erate with yourself than defect against yourself, and so
CDT does not reliably identify the best action available
to an agent.

CDT assumes it can hold the action of one opponent
constant while freely changing the action of the other,
because the actions are causally separated. However,
the actions of the two agents are logically connected;
it is impossible for one agent to cooperate while the
other defects. Causal counterfactual reasoning neglects
non-causal logical constraints.

It is a common misconception that Newcomblike
scenarios only arise when some other actor is a perfect
predictor (perhaps by being an identical copy). This
is not the case: while Newcomblike scenarios are most
vividly exemplified by situations involving perfect pre-
dictors, they can also arise when other actors have only
partial ability to predict the agent [10]. For example,
consider a situation in which an artificial agent is inter-
acting with its programmers, who have intimate knowl-
edge of the agent’s inner workings. The agent could
well find itself embroiled in a Prisoner’s Dilemma with
its programmers. Let us assume that the agent knows
the programmers will be able to predict whether or not
it will cooperate with 90% accuracy. In this case, even
though the programmers are imperfect predictors, the
agent is in a Newcomblike scenario.

In any case, the goal is to formalize what is meant
when asking that agents take “the best available ac-
tion.” Causal decision theory often identifies the best
action available to an agent, but it sometimes fails in
counter-intuitive ways, and therefore, it does not con-
stitute a formalization of idealized decision-making.

3 Counterpossibles

Consider the sort of reasoning that a human might use,
faced with a Prisoner’s Dilemma in which the oppo-
nent’s action is guaranteed to match our own:

The opponent will certainly take the same
action that I take. Thus, there is no way
for me to exploit the opponent, and no way
for the opponent to exploit me. Either we
both cooperate and I get $2, or we both
defect and I get $1. I prefer the former,
so I cooperate.

Contrast this with the hypothetical reasoning of a rea-
soner who, instead, reasons according to causal coun-
terfactuals:

There is some probability p that the oppo-
nent defects. (Perhaps I can estimate p, per-
haps not.) Consider cooperating. In this
case, I get $2 if the opponent cooperates
and $0 otherwise, for a total of $2p. Now
consider defecting. In this case I get $3 if
the opponent cooperates and $1 otherwise,
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for a total of $2p + 1. Defection is better no
matter what value p takes on, so I defect.

Identifying the best action requires respecting the fact
that identical algorithms produce identical outputs. It
is not the physical output of the agent’s hardware which
must be modified to construct a counterfactual, it is the
logical output of the agent’s decision algorithm. This
insight, discovered independently by Dai [11] and Yud-
kowsky [12], is one of the main insights behind “update-
less decision theory” (UDT).

UDT identifies the best action by evaluating a
world-model which represents not only causal relation-
ships in the world, but also the logical effects of al-
gorithms upon the world. In a symmetric Prisoner’s
Dilemma, a reasoner following the prescriptions of UDT
might reason as follows:

The physical actions of both myself and my
opponent are determined by the same algo-
rithm. Therefore, whatever action this very
decision algorithm selects will be executed
by both of us. If this decision algorithm se-
lects “cooperate” then we’ll both cooperate
and get a payoff of 2. If instead this de-
cision algorithm selects “defect” then we’ll
both defect and get a payoff of 1. Therefore,
this decision algorithm selects “cooperate.”

Using reasoning of this form, a selfish agent acting ac-
cording to the prescriptions of UDT cooperates with
an identical agent on a symmetric one-shot Prisoner’s
Dilemma, and achieves the higher payoff.3

Evaluating a counterfactual outcome in which the
decision algorithm behaves differently requires evaluat-
ing a logically impossible possibility, known as a “coun-
terpossible.”4 As noted by Cohen [13], “the problem
of counterpossible conditionals remains very near the
center of philosophy.”

To our knowledge, there does not yet exist a for-
mal method of evaluating counterpossibles that is suit-
able for use in decision theory. This paper discusses
two early attempts to formalize a decision theory which
makes use of counterpossible reasoning.

3The agent does not care about the utility of its oppo-
nent. Each agent is maximizing its own personal utility.
Both players understand that the payoff must be symmet-
ric, and cooperate out of a selfish desire to achieve the higher
symmetric payoff.

4Some versions of counterpossibles are quite intuitive; for
instance, we could imagine how the cryptographic infras-
tructure of the Internet would fail if we found that P = NP,
and it seems as if that counterfactual would still be valid
even once we proved that P 6= NP. And yet by the Princi-
ple of Explosion, literally any consequence can be deduced
from a falsehood, and thus no counterfactual could be “more
valid” than any other in a purely formal sense.

3.1 Counterpossibles Using Graphical
Models

Following Pearl’s formalization of CDT (2000), one
might be tempted to formalize UDT using a graphical
approach. For example, one might attempt to construct
a “logical graph” of the one-shot prisoner’s dilemma,
where each algorithm has its own “logical node,” as in
Figure 2. To do so, the graphical representation of the
environment must encode not only causal relations, but
also logical relations.

A()

A O

U

Figure 2: The logical graph for a symmetric Prisoner’s
Dilemma where both the agent’s action A and the op-
ponent’s action O are determined by the algorithm A().

Given a probabilistic graphical model of the world rep-
resenting both logical and causal connections, and given
that one of the nodes in the graph corresponds to the
agent’s decision algorithm, and given some method of
propagating updates through the graph, UDT can be
specified in a manner very similar to CDT. To identify
the best action available to an agent, iterate over all
available actions a ∈ A, change the value of the agent’s
algorithm node in the graph to a, propagate the update,
record the resulting expected utility, and return the ac-
tion a leading to the highest expected utility. There are
two obstacles to formalizing UDT in this way.

The first obstacle is that UDT (like CDT) is un-
derspecified, pending a formal description of how to
construct such a graph from a description of the en-
vironment (or, eventually, from percepts). However,
constructing a graph suitable for UDT is significantly
more difficult than constructing a graph suitable for
CDT. While both require decreasing the resolution of
the world model until the agent’s action (in CDT’s case)
or algorithm (in UDT’s case) is represented by a sin-
gle node rather than a collection of parts, the graph
for UDT further requires some ability to identify and
separate “algorithms” from the physical processes that
implement them. How is UDT supposed to recognize
that the agent and its opponent implement the same
algorithm? Will this recognition still work if the op-
ponent’s algorithm is written in a foreign programming
language, or otherwise obfuscated in some way? (See
Figure 3.)

Even given some reliable means of identifying copies
of an agent’s decision algorithm in the environment, this
may not be enough to specify a satisfactory graph-based
version of UDT. To illustrate, consider UDT identify-
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Figure 3: The desired logical graph for the one-shot
Prisoner’s Dilemma where agent A acts according to
A(), and the opponent either mirrors A() or does the
opposite, according to the random variable X.

ing the best action available to an agent playing a Pris-
oner’s Dilemma against an opponent that does exactly
the same thing as the agent 80% of the time, and takes
the opposite action otherwise. It seems UDT should
reason according to a graph as in Figure 3, in which
the opponent’s action is modeled as dependent both
upon the agent’s algorithm and upon some source X of
randomness. However, generating logical graphs as in
Figure 3 is a more difficult task than simply detecting
all perfect copies of the an algorithm in an environment.

Secondly, a graphical model capable of formalizing
UDT must provide some way of propagating “logical
updates” through the graph, and it is not at all clear
how these logical updates could be defined. Whenever
one algorithm’s “logical node” in the graph is changed,
how does this affect the logical nodes of other algo-
rithms? If the agent’s algorithm selects the action a,
then clearly the algorithm “do what the agent does 80%
of the time and nothing otherwise” is affected. But
what about other algorithms which correlate with the
agent’s algorithm, despite not referencing it directly?
What about the algorithms of other agents which base
their decisions on an imperfect model of how the agent
will behave? In order to understand how logical up-
dates propagate through a logical graph, we desire a
better notion of how “changing” one logical fact can
“affect” another logical fact.

3.2 Counterpossibles Using Proof Search

Given some method of reasoning about the effects of
A() = a on any other algorithm, a graphical formal-
ization of UDT is unnecessary: the environment itself
is an algorithm which contains the agent, and which
describes how to compute the agent’s expected utility!
Therefore, a formal understanding of “logical updating”
could be leveraged to analyze the effects of A() = a
upon the environment; to evaluate the action a, UDT
need only compute the expected utility available in the
environment as modified by the assumption A() = a.

This realization leads to the idea of “proof-based
UDT,” which evaluates actions by searching for formal
proofs, using some mathematical theory such as Peano
Arithmetic (PA), of how much utility is attained in the

world-model if A() selects the action a. As a bonus,
this generic search for formal proofs obviates the need
to identify the agent in the environment: given an en-
vironment which embeds the agent and a description of
the agent’s algorithm, no matter how the agent is em-
bedded in the environment, a formal proof of the out-
come will implicitly identify the agent and describe the
implications of that algorithm outputting a. While that
proof does the hard work of propagating counterpossi-
bles, the high-level UDT algorithm simply searches all
proofs, with no need to formally locate the agent. This
allows for an incredibly simple specification of update-
less decision theory, given below.

First, a note on syntax: Square quotes (p · q) denote
sentences encoded as objects that a proof searcher can
look for. This may be done via e.g., a Gödel encoding.
Overlines within quotes denote “dequotes,” allowing the
reference of meta-level variables. That is, if at some
point in the algorithm a := 3 and o := 10, then the
string pA() = a → E() = oq is an abbreviation of
pA() = 3 → E() = 10q. The arrow p→q denotes logical
implication.

The algorithm is defined in terms of a finite set A
of actions available to the agent and a finite sorted list
O of outcomes that could be achieved (ordered from
best to worst). The proof-based UDT algorithm takes
a description pE()q of the environment and pA()q of
the agent’s algorithm. E() computes an outcome, A()
computes an action. It is assumed (but not necessary)
that changing the output of A() would change the out-
put of E().

Algorithm 1: Proof-based UDT

Function UDT(pE()q, pA()q):
Sort the set of outcomes O in nonincreasing
preference order;
for outcome o ∈ O do

for action a ∈ A do
if PA proves pA() = a → E() = oq
then return a ;

return the lexicographically first action in A

To demonstrate how the algorithm works, consider
UDT evaluating the actions available to a UDT agent
in a symmetric prisoner’s dilemma. The list of out-
comes is O := [ 3, 2, 1, 0 ] according to the cases where
the agent exploits, mutually cooperates, mutually de-
fects, and is exploited, respectively. The set of actions
is A := {C,D } according to whether the agent coop-
erates or defects. To identify the best action, UDT
iterates over outcomes in order of preference, starting
with 3. For each outcome, it iterates over actions; say
it first considers C. In the case that A() = C, the agent
cannot achieve the outcome 3, so there is no proof of
pA() = C → E() = 3q5. Next, UDT considers D.

5One must be careful with this sort of reasoning, for if
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If the agent defects, then so does the opponent, so
it would get outcome 1, and so there is no proof of
pA() = D → E() = 3q. So UDT moves on to the next
outcome, 2, and considers C. In this case, if the agent
cooperates then so will the opponent, so there is a proof
of pA() = C → E() = 2q, and so UDT selects C.

While this proof-based formalism of UDT is ex-
tremely powerful, it is not without its drawbacks. It re-
quires a halting oracle in order to check whether proofs
of the statement pA() = a → E() = oq exist; but this
is forgivable, as it is meant to be a definition of what it
means to “choose the best action,” not a practical al-
gorithm. However, this formalization of UDT can only
identify the best action if there exists a proof that ex-
ecuting that action leads to a good outcome. This is
problematic in stochastic environments, and in any set-
ting where PA is not a strong enough theory to find
the appropriate proofs (which may well occur if agents
in the environment are themselves searching for proofs
about what UDT will prescribe, in order to guess the
behavior of agents which act according to UDT).

There is also larger problem facing this formalism
of UDT: even in simple examples, the algorithm is not
guaranteed to work. Consider a case where the out-
comes are O := [ 3, 2, 1 ] corresponding in E() to the
actions A := { High, Med, Low }. If we ask proof-based
UDT to identify the best available action to the agent
A() := const Low, and it considers the action Med be-
fore the action High, then it will misidentify Med as the
best available action! This happens because there is a
proof that A() 6= Med, and so A() = Med → E() = 3 by
the principle of explosion. (In fact, this sort of thing can
happen whenever there is any action that is provably
not taken.)

As discussed by Benson-Tilsen [14], this problem is
averted in the important case A() = UDT(pE()q,pA()q)
(this fixed point exists, by Kleene’s second recursion
theorem). In this case, UDT does in fact get the best
provably attainable outcome. This follows from the
consistency of PA: imagine that a is a action such that
PA proves A() 6= a. Then PA proves that A() = a
implies the first outcome in O (which has the highest
possible preference), and so UDT must either return a
or return another action which implies the first outcome
in O—but returning a would be a contradiction. There-
fore, either UDT will return an action which truly leads
to the highest outcome, or there is no action a such
that PA can prove A() 6= a, and thus the only proofs
found will be genuine implications. Even so, the appar-
ent deficits of UDT at analyzing other algorithms are
troubling, and it is not obvious that reasoning about
the logical implications of A() = a is the right way to
formalize counterpossible reasoning.

A better understanding of counterpossible reason-

PA could prove that A() = D then it could also prove A() =
C → E() = 3 by the principle of explosion. However, in this
case, that sort of “spurious proof” is avoided by technical
reasons discussed by Benson-Tilsen [14].

ing may well be necessary in order to formalize UDT in
a stochastic setting, where it maximizes expected util-
ity instead of searching for proofs of a certain outcome.
Such an algorithm would evaluate actions conditioned
on the logical fact A() = a, rather than searching for
logical implications. How does one deal with the case
where A() 6= a, so that A() = a is a zero-probability
event? In order to reason about expected utility con-
ditioned on A() = a, it seems necessary to develop a
more detailed understanding of counterpossible reason-
ing. If one deterministic algorithm violates the laws
of logic in order to output something other than what
it outputs, then how does this affect other algorithms?
Which laws of logic, precisely, are violated, and how
does this violation affect other logical statements?

It is not clear that these questions are meaningful,
nor even that a satisfactory general method of reasoning
about counterpossibles actually exists. It is plausible
that a better understanding of reasoning under logical
uncertainty would shed some light on these issues, but
a satisfactory theory of reasoning under logical uncer-
tainty does not yet exist.6 Regardless, it seems that
some deeper understanding of counterpossibles is nec-
essary in order to give a satisfactory formalization of
updateless decision theory.

4 Conclusion

The goal of answering all these questions is not to iden-
tify practical algorithms, directly. Rather, the goal is
to ensure that the problem of decision-making is well
understood: without a formal description of what is
meant by “good decision,” it is very difficult to justify
high confidence in a practical heuristic that is intended
to make good decisions.

It currently looks like specifying an idealized deci-
sion theory requires formalizing some method for eval-
uating counterpossibles, but this problem is a difficult
one, and counterpossible reasoning is an open philo-
sophical problem. While these problems have remained
open for some time, our examination in the light of
decision-theory, with a focus on concrete algorithms,
has led to some new ideas. We are optimistic that fur-
ther decision theory research could lead to significant
progress toward understanding the problem of idealized
decision-making.
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