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We regularly see examples of new artificial intelligence (AI) capabilities. Google’s self-
driving car has safely traversed thousands of miles. Watson beat the Jeopardy! cham-
pions, and Deep Blue beat the chess champion. Boston Dynamics’ Big Dog can walk
over uneven terrain and right itself when it falls over. From many angles, software can
recognize faces as well as people can.

As their capabilities improve, AI systems will become increasingly independent of
humans. We will be no more able to monitor their decisions than we are now able to
check all the math done by today’s computers. No doubt such automation will produce
tremendous economic value, but will we be able to trust these advanced autonomous
systems with so much capability?

For example, consider the autonomous trading programs which lost Knight Capital
$440 million (pre-tax) on August 1st, 2012, requiring the firm to quickly raise $400 mil-
lion to avoid bankruptcy (Valetkevitch and Mikolajczak 2012). This event undermines
a common view that AI systems cannot cause much harm because they will only ever
be tools of human masters. Autonomous trading programs make millions of trading
decisions per day, and they were given sufficient capability to nearly bankrupt one of the
largest traders in U.S. equities.

Today, AI safety engineering mostly consists in a combination of formal methods
and testing. Though powerful, these methods lack foresight: they can be applied only
to particular extant systems. We describe a third, complementary approach which aims
to predict the (potentially hazardous) properties and behaviors of broad classes of future
AI agents, based on their mathematical structure (e.g. reinforcement learning). Such
projects hope to discover methods “for determining whether the behavior of learning
agents [will remain] within the bounds of pre-specified constraints . . . after learning”
(Spears 2006). We call this approach “exploratory engineering in AI.”

1. Exploratory Engineering in Physics, Astronautics, Computing,
and AI

In 1959, Richard Feynman pointed out that the laws of physics (as we understand them)
straightforwardly imply that we should be able to “write the entire 24 volumes of the
Encyclopaedia Brittanica on the head of a pin” (Feynman 1959). Feynman’s aim was to
describe technological possibilities as constrained not by the laboratory tools of his day
but by known physical law, a genre of research Eric Drexler later dubbed “exploratory
engineering” (Drexler 1991). Exploratory engineering studies the ultimate limits of yet-
to-be-engineered devices, just as theoretical physics studies the ultimate limits of natural
systems. Thus, exploratory engineering “can expose otherwise unexpected rewards from
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pursuing particular research directions [and] thus improve the allocation of scientific
resources” (Drexler 1992).

This kind of exploratory engineering in physics led to large investments in nanoscale
technologies and the creation of the U.S. National Nanotechnology Initiative. Today,
nanoscale technologies have a wide range of practical applications, and in 2007 Israeli
scientists printed the entire Hebrew Bible onto an area smaller than the head of a pin
(Associated Press 2007).

Nanoscience is hardly the only large-scale example of exploratory engineering.
Decades earlier, the scientists of pre-Sputnik astronautics studied the implications of
physical law for spaceflight, and their analyses enabled the later construction and launch
of the first spacecraft. In the 1930s, Alan Turing described the capabilities and limita-
tions of mechanical computers several years before John von Neumann, Konrad Zuse,
and others figured out how to build them. And since the 1980s, quantum computing
researchers have been discovering algorithms and error-correction techniques for quan-
tum computers that we cannot yet build—but whose construction is compatible with
known physical law.

Pushing the concept of exploratory engineering a bit beyond Drexler’s original defi-
nition, we apply it to some recent AI research that formally analyzes the implications of
some theoretical AI models. These models might not lead to useful designs as was the
case in astronautics and nanoscience, but like the theoretical models that Butler Lamp-
son used to identify the “confinement problem” in 1973 (Lampson 1973), these theo-
retical AI models do bring to light important considerations for AI safety, and thus they
“expose otherwise unexpected rewards from pursuing particular research directions” in
the field of AI safety engineering. In this article, we focus on theoretical AI models in-
spired by Marcus Hutter’s AIXI (Hutter 2012), an optimal agent model for maximizing
an environmental reward signal.

2. AIXI-like Agents and Exploratory Engineering

How does AIXI work? Just as an idealized chess computer with vast amounts of com-
puting power could brute-force its way to perfect chess play by thinking through the
consequences of all possible move combinations, AIXI brute-forces the problem of gen-
eral intelligence by thinking through the consequences of all possible actions, given all
possible ways the universe might be. AIXI uses Solomonoff’s universal prior to assign a
relative prior probability to every possible (computable) universe, marking simpler hy-
potheses as more likely. Bayes’ Theorem is used to update the likelihood of hypotheses
based on observations. To make decisions, AIXI chooses actions that maximize its ex-
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pected reward. More general variants of AIXI maximize a utility function defined on
their observations and actions.

Based on an assumption of a stochastic environment containing an infinite amount
of information, the original AIXI model is uncomputable and therefore not a subject
of exploratory engineering. Instead, finitely computable variants of AIXI, based on the
assumption of a stochastic environment containing a finite amount of information, can
be used for exploratory engineering in AI. The results described below don’t depend on
the assumption of infinite computation.

A Monte-Carlo approximation of AIXI can play Pac-Man and other simple games
(Veness et al. 2011), but some experts think AIXI approximation isn’t a fruitful path
toward human-level AI. Even if that’s true, AIXI is the first model of cross-domain
intelligent behavior to be so completely and formally specified that we can use it to
make formal arguments about the properties which would obtain in certain classes of
hypothetical agents if we could build them today. Moreover, the formality of AIXI-like
agents allows researchers to uncover potential safety problems with AI agents of increas-
ingly general capability—problems which could be addressed by additional research, as
happened in the field of computer security after Lampson’s article on the confinement
problem.

AIXI-like agents model a critical property of future AI systems: that they will need
to explore and learn models of the world. This distinguishes AIXI-like agents from
current systems that use predefined world models, or learn parameters of predefined
world models. Existing verification techniques for autonomous agents (Fisher, Dennis,
and Webster 2013) apply only to particular systems, and to avoiding unwanted optima
in specific utility functions. In contrast, the problems described below apply to broad
classes of agents, such as those that seek to maximize rewards from the environment.

For example, in 2011 Mark Ring and Laurent Orseau analyzed some classes of AIXI-
like agents to show that several kinds of advanced agents will maximize their rewards
by taking direct control of their input stimuli (Ring and Orseau 2011). To understand
what this means, recall the experiments of the 1950s in which rats could push a lever
to activate a wire connected to the reward circuitry in their brains. The rats pressed the
lever again and again, even to the exclusion of eating. Once the rats were given direct
control of the input stimuli to their reward circuitry, they stopped bothering with more
indirect ways of stimulating their reward circuitry, such as eating. Some humans also
engage in this kind of “wireheading” behavior when they discover that they can directly
modify the input stimuli to their brain’s reward circuitry by consuming addictive nar-
cotics. What Ring and Orseau showed was that some classes of artificial agents will
wirehead—that is, they will behave like drug addicts.
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Fortunately, there may be some ways to avoid the problem. In their 2011 paper, Ring
and Orseau showed that some types of agents will resist wireheading. And in 2012,
Bill Hibbard (2012) showed that the wireheading problem can also be avoided if three
conditions are met: (1) the agent has some foreknowledge of a stochastic environment,
(2) the agent uses a utility function instead of a reward function, and (3) we define
the agent’s utility function in terms of its internal mental model of the environment.
Hibbard’s solution was inspired by thinking about how humans solve the wireheading
problem: we can stimulate the reward circuitry in our brains with drugs, yet most of us
avoid this temptation because our models of the world tell us that drug addiction will
change our motives in ways that are bad according to our current preferences.

Relatedly, Daniel Dewey (2011) showed that in general, AIXI-like agents will locate
and modify the parts of their environment that generate their rewards. For example,
an agent dependent on rewards from human users will seek to replace those humans
with a mechanism that gives rewards more reliably. As a potential solution to this prob-
lem, Dewey proposed a new class of agents called value learners, which can be designed
to learn and satisfy any initially unknown preferences, so long as the agent’s designers
provide it with an idea of what constitutes evidence about those preferences.

Practical AI systems are embedded in physical environments, and some experimental
systems employ their environments for storing information. Now AIXI-inspired work
is creating theoretical models for dissolving the agent-environment boundary used as
a simplifying assumption in reinforcement learning and other models, including the
original AIXI formulation (Orseau and Ring 2012b). When agents’ computations must
be performed by pieces of the environment, they may be spied on or hacked by other,
competing agents. One consequence shown in another paper by Orseau and Ring is
that, if the environment can modify the agent’s memory, then in some situations even
the simplest stochastic agent can outperform the most intelligent possible deterministic
agent (Orseau and Ring 2012a).

3. Conclusion

Autonomous intelligent machines have the potential for large impacts on our civilization
(Vardi 2012). Exploratory engineering gives us the capacity to have some foresight into
what these impacts might be, by analyzing the properties of agent designs based on
their mathematical form. Exploratory engineering also enables us to identify lines of
research—such as the study of Dewey’s value-learning agents—that may be important
for anticipating and avoiding unwanted AI behaviors. This kind of foresight will be
increasingly valuable as machine intelligence comes to play an ever-larger role in our
world.
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