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Abstract

Several authors have made the argument that because blind evolutionary processes pro-
duced human intelligence on Earth, it should be feasible for clever human engineers
to create human-level artificial intelligence in the not-too-distant future. This evolu-
tionary argument, however, has ignored the observation selection effect that guarantees
that observers will see intelligent life having arisen on their planet no matter how hard
it is for intelligent life to evolve on any given Earth-like planet. We explore how the
evolutionary argument might be salvaged from this objection, using a variety of consid-
erations from observation selection theory and analysis of specific timing features and
instances of convergent evolution in the terrestrial evolutionary record. We find that,
depending on the resolution of disputed questions in observation selection theory, the
objection can be either be wholly or moderately defused, although other challenges for
the evolutionary argument remain.
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1. Evolutionary Arguments for Easy Intelligence

1.1. Introduction

What can human evolution tell us about the prospects for human-level Artificial Intel-
ligence (AI)?1 A number of philosophers and technologists, including David Chalmers
(2010) and Hans Moravec (1976, 1988, 1998, 1999), argue that human evolution shows
that such AI is not just possible but feasible within this century. On these accounts, we
can estimate the relative capability of evolution and human engineering to produce intel-
ligence, and find that human engineering is already vastly superior to evolution in some
areas and is likely to become superior in the remaining areas before too long. The fact
that evolution produced intelligence therefore indicates that human engineering will be
able to do the same. Thus, Moravec (1976) writes:

The existence of several examples of intelligence designed under these con-
straints should give us great confidence that we can achieve the same in short
order. The situation is analogous to the history of heavier than air flight, where
birds, bats and insects clearly demonstrated the possibility before our culture
mastered it.

Similarly, Chalmers sketches the evolutionary argument as follows:

1. Evolution produced human intelligence [mechanically and non-miraculously].

2. If evolution can produce human intelligence [mechanically and non-miraculously],
then we can probably produce human-level artificial intelligence (before long).

3. We can probably produce human-level artificial intelligence (before long).

These arguments for the feasibility of machine intelligence do not say whether the path
to be taken by human engineers to produce AI will resemble the path taken by evolution.
The fact that human intelligence evolved implies that running genetic algorithms is one
way to produce intelligence; it does not imply that it is the only way or the easiest way
for human engineers to create machine intelligence. We can therefore consider two
versions of the evolutionary argument depending on whether or not the engineering of
intelligence is supposed to use methods that recapitulate those used by evolution.

1. Here, we mean systems which match or exceed the cognitive performance of humans in virtually all
domains of interest: uniformly “human-level” performance seems unlikely, except perhaps through close
emulation of human brains (Sandberg and Bostrom 2008), since software is already superhuman in many
fields.
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1.2. Argument from Problem Difficulty

The argument from problem difficulty tries to use evolutionary considerations indirectly
to demonstrate that the problem of creating intelligent systems is not too hard (since
blind evolution did it) and then use this as a general ground for thinking that human
engineers will probably soon crack the problem too. One can think of this argument
as making a claim about the space of possible algorithms to the effect that it is not
too difficult to search in this space and find an algorithm that produces human-level
intelligence when implemented on practically feasible hardware. (The difficulty depends
on unknown facts about the space of algorithms for intelligence, such as the extent to
which the shape of the fitness landscape favors hill-climbing.) We can formalize this
argument as follows:

1’. Evolution produced human intelligence.

2’. If evolution produced human intelligence, then it is “non-hard” for evolutionary
processes to produce human intelligence.

3’. If it is “non-hard” for evolutionary processes to produce human evolution, then
it is not extremely difficult for engineers to produce human-level machine intel-
ligence.

4’. If it is not extremely difficult for engineers to produce human-level machine in-
telligence, it will probably be done before too long.

5’. Engineers will (before long) produce human-level machine intelligence.

While (1’) is well established, and we may grant (4’), premises (2’) and (3’) require careful
scrutiny.

Let us first consider (3’). Why believe that it would not be extremely difficult for
human engineers to figure out how to build human-level machine intelligence, assum-
ing that it was “non-hard” (in a sense that will be explained shortly) for evolution to do
so? One reason might be optimism about the growth of human problem-solving skills
in general or about the ability of AI researchers in particular to come up with clever
new ways of solving problems. Such optimism, however, would need some eviden-
tial support, support that would have to come from outside the evolutionary argument.
Whether such optimism is warranted is a question outside the scope of this paper, but
it is important to recognize that this is an essential premise in the present version of
the evolutionary argument, a premise that should be explicitly stated. Note also that if
one were sufficiently optimistic about the ability of AI programmers to find clever new
tricks, then the evolutionary argument would be otiose: human engineers could then be

2



Carl Shulman, Nick Bostrom

expected to produce (before too long) solutions even to problems that were “extremely
difficult” (at least extremely difficult to solve by means of blind evolutionary processes).

Despite the need for care in developing premise (3’) in order to avoid a petitio prin-
cipii, the argument from problem difficulty is potentially interesting and possesses some
intuitive appeal. We will therefore return to this version of the argument in later sections
of the paper, in particular focusing our attention on premise (2’). We will then see that
the assessment of evolutionary difficulty turns out to involve some deep and intricate
issues in the application of observation selection theory to the historical record.

1.3. Argument from Evolutionary Algorithms

The second version of the evolutionary argument for the feasibility of machine intelli-
gence does not attempt to parlay evolutionary considerations into a general assessment
of how hard it would be to create machine intelligence using some unspecified method.
Instead of looking at general problem difficulty, the second version focuses on the more
specific idea that genetic algorithms run on sufficiently fast computers could achieve re-
sults comparable to those of biological evolution. We can formalize this “argument from
evolutionary algorithms” as follows:

1’. Evolution produced human intelligence.

2’. If evolution produced human intelligence, then it is “non-hard” for evolutionary
processes to produce human intelligence.

3”. We will (before long) be able to run genetic algorithms on computers that are
sufficiently fast to recreate on a human timescale the same amount of cumulative
optimization power that the relevant processes of natural selection instantiated
throughout our evolutionary past (for any evolutionary process that was non-
hard).

4”. We will (before long) be able to produce by running genetic algorithms results
comparable to some of the results that evolution produced, including systems
that have human-level intelligence.

This argument from evolutionary algorithms shares with the argument from problem
difficulty its first two premises. Our later investigations of premise (2’) will therefore
bear on both versions of the evolutionary argument. Let us take a closer look at this
premise.

1.4. Evolutionary Hardness and Observation Selection Effects

We have various methods available to begin to estimate the power of evolutionary search
on Earth: estimating the number of generations and population sizes available to human
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evolution,2 creating mathematical models of evolutionary “speed limits” under various
conditions,3 and using genomics to measure past rates of evolutionary change.4 How-
ever, reliable creation of human-level intelligence through evolution might require trials
on many planets in parallel, with Earth being one of the lucky few to succeed. Can the
fact of human evolution on Earth let us distinguish between the following scenarios?

Non-hard Intelligence: There is a smooth path of incremental improvement from the
simplest primitive nervous systems to brains capable of human-level intelligence,
reflecting the existence of many simple, easily-discoverable algorithms for intelli-
gence. On most planets with life, human-level intelligence also develops.

Hard Intelligence: Workable algorithms for intelligence are rare, without smooth paths
of incremental improvement to human-level performance. Evolution requires ex-
traordinary luck to hit upon a design for human-level intelligence; only 1 in 101000

planets with life does so.

In either scenario every newly evolved civilization will find that evolution managed to
produce its ancestors. The observation selection effect is that no matter how hard it is
for human-level intelligence to evolve, 100% of evolved civilizations will find themselves
originating from planets where it happened anyway.

How confident can we be that Hard Intelligence is false, and that premise (2’) in the
evolutionary arguments can be supported, in the face of such selection effects? After a
brief treatment of premise (3”), we discuss the theoretical approaches in the philosophi-
cal literature, particularly the Self-Sampling Assumption (SSA) and the Self-Indication
Assumption (SIA)—because, unfortunately, correctly analyzing the evidence on evolu-
tion depends on difficult, unsettled questions concerning observer-selection effects.5 We
note that one common set of philosophical assumptions (SIA) supports easy evolution
of intelligence, but that it does so on almost a priori grounds that some may find objec-
tionable. Common alternatives to SIA, on the other hand, require us to more carefully
weigh the evolutionary data. We attempt this assessment, discussing several types of evi-
dence which hold up in the face of observation selection effects. We find that while more

2. Baum (2004) very roughly estimates that between 1030 and 1040 creatures have existed on Earth,
in the course of arguing that evolutionary search could not have relied on brute force to search the space
of possible genomes. However, Baum does not consider the implications of an ensemble of planets in his
calculation.

3. For instance, MacKay (2003) computes information-theoretic upper bounds to the power of natural
selection with and without sex in a simple additive model of fitness.

4. See, e.g., Hawks et al. (2007) on recently accelerating adaptive selection in humans, including com-
parison of adaptive substitution rates in different primate lineages.

5. See Grace (2010) for a helpful review of these questions and prominent approaches.
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research is needed, the thesis that “intelligence is exceedingly hard to evolve” is consis-
tent with the available evolutionary data under these alternative assumptions. However,
the data do rule out many particular hypotheses under which intelligence might be ex-
ceedingly hard to evolve, and thus the evolutionary argument should still increase our
credence in the feasibility of human-level AI.

2. Computational Requirements for Recapitulating Evolution
through Genetic Algorithms

Let us assume (1’) and (2’), i.e. that it was non-hard in the sense described above for
evolution to produce human intelligence. The argument from evolutionary algorithms
then needs one additional premise to deliver the conclusion that engineers will soon be
able to create machine intelligence, namely that we will soon have computing power
sufficient to recapitulate the relevant evolutionary processes that produced human in-
telligence. Whether this is plausible depends both on what advances one might expect
in computing technology over the next decades and on how much computing power
would be required to run genetic algorithms with the same optimization power as the
evolutionary process of natural selection that lies in our past. One might for example
try to estimate how many doublings in computational performance, along the lines of
Moore’s law, one would need in order to duplicate the relevant evolutionary processes
on computers.

Now, to pursue this line of estimation, we need to realize that not every feat that
was accomplished by evolution in the course of the development of human intelligence
is relevant to a human engineer who is trying to artificially evolve machine intelligence.
Only a small portion of evolutionary optimization on Earth has been selection for in-
telligence. More specifically, the problems that human engineers cannot trivially bypass
may have been the target of a very small portion of total evolutionary optimization. For
example, since we can run our computers on electrical power, we do not have to reinvent
the molecules of the cellular energy economy in order to create intelligent machines—
yet molecular evolution might have used up a large part of the total amount of selection
power that was available to evolution over the course of Earth’s history.

One might argue that the key insights for AI are embodied in the structure of nervous
systems, which came into existence less than a billion years ago.6 If we take that view,
then the number of relevant “experiments” available to evolution is drastically curtailed.

6. Legg (2008) offers this reason in support of the claim that humans will be able to recapitulate
the progress of evolution over much shorter timescales and with reduced computational resources (while
noting that evolution’s unadjusted computational resources are far out of reach). Baum (2004) argues that
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There are are some 4–6×1030 prokaryotes in the world today (Whitman, Coleman, and
Wiebe 1998), but only 1019 insects (Sabrosky 1952), and fewer than 1010 human (pre-
agricultural populations were orders of magnitude smaller). However, evolutionary al-
gorithms require not only variations to select among but a fitness function to evaluate
variants, typically the most computationally expensive component. A fitness function
for the evolution of artificial intelligence plausibly requires simulation of “brain devel-
opment,” learning, and cognition to evaluate fitness. We might thus do better not to
look at the raw number of organisms with complex nervous systems, but instead to at-
tend to the number of neurons in biological organisms that we might simulate to mimic
evolution’s fitness function. We can make a crude estimate of that latter quantity by
considering insects, which dominate terrestrial biomass, with ants alone estimated to
contribute some 15–20% of terrestrial animal biomass (Schultz 2000). Insect brain size
varies substantially, with large and social insects enjoying larger brains; e.g., a honeybee
brain has just under 106 neurons (Menzel and Giurfa 2001), while a fruit fly brain has
105 neurons (Truman, Taylor, and Awad 1993), and ants lie in between with 250,000
neurons. The majority of smaller insects may have brains of only a few thousand neu-
rons. Erring on the side of conservatively high, if we assigned all 1019 insects fruit-fly
numbers of neurons the total would be 1024 insect neurons in the world. This could be
augmented with an additional order of magnitude, to reflect aquatic copepods, birds,
reptiles, mammals, etc., to reach 1025. (By contrast, in pre-agricultural times there were
fewer than 107 humans, with under 1011 neurons each, fewer than 1018 total, although
humans have a high number of synapses per neuron.)

The computational cost of simulating one neuron depends on the level of detail that
one wants to include in the simulation. Extremely simple neuron models use about
1,000 floating-point operations per second (FLOPS) to simulate one neuron (for one
second of simulated time); an electrophysiologically realistic Hodgkin-Huxley model
uses 1,200,000 FLOPS; a more detailed multicompartmental model would add another
3–4 orders of magnitude, while higher-level models that abstract systems of neurons
could subtract 2–3 orders of magnitude from the simple models (Sandberg and Bostrom
2008). If we were to simulate 1025 neurons over a billion years of evolution (longer than
the existence of nervous systems as we know them) in a year’s runtime these figures would
give us a range of 1031–1044 FLOPS. By contrast, the Japanese K computer, currently
the world’s most powerful supercomputer, provides only 1016 FLOPS. In recent years
it has taken approximately 6.7 years for commodity computers to increase in power by
one order of magnitude. Even a century of continued Moore’s law would not be enough

some developments relevant to AI occurred earlier, with the organization of the genome itself embodying
a valuable representation for evolutionary algorithms.
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to close this gap. Running more or specialized hardware, or longer runtimes, could
contribute only a few more orders of magnitude.

This figure is conservative in another respect. Evolution achieved human intelligence
yet it was not aiming at this outcome—put differently: the fitness functions for natural
organisms do not select only for intelligence and its precursors.7 Even environments in
which organisms with superior information-processing skills reap various rewards may
not select for intelligence, because improvements to intelligence can and often do im-
pose significant costs, such as higher energy consumption or slower maturation times,
and those costs that may outweigh whatever benefits are derived from smarter behaviour.
Excessively deadly environments reduce the value of intelligence: the shorter one’s ex-
pected lifespan, the less time there will be for increased learning ability to pay off. Re-
duced selective pressure for intelligence slows the spread of intelligence-enhancing inno-
vations, and thus the opportunity for selection to favor subsequent innovations that de-
pend on those. Furthermore, evolution may wind up stuck in local optima that humans
would notice and bypass by altering trade-offs between exploitation and exploration or
by providing a smooth progression of increasingly difficult intelligence tests.8 And as
mentioned above, evolution scatters much of its selection power on traits that are unre-
lated to intelligence, such as Red Queen’s races of co-evolution between immune systems
and parasites. Evolution will continue to waste resources producing mutations that have
been reliably lethal, and will fail to make use of statistical similarities in the effects of
different mutations. All these represent inefficiencies in natural selection (when viewed
as a means of evolving intelligence) that it would be relatively easy for a human engineer
to avoid while using evolutionary algorithms to develop intelligent software.

It seems plausible that avoiding inefficiencies like those just described would make it
possible to trim many orders of magnitude from the 1031–1044 FLOPS range calculated
above pertaining to the number of neural computations that have been performed in our
evolutionary past. Unfortunately, it is difficult to find a basis on which to estimate how
many orders of magnitude. It is difficult even to make a rough estimate—for aught we
know, the efficiency savings could be 5 or 10 or 25 orders of magnitude.

The above analysis addressed the nervous systems of living creatures, without refer-
ence to the cost of simulating bodies or the surrounding virtual environment as part of
a fitness function. It is plausible that an adequate fitness function could test the com-
petence of a particular organism in far fewer operations than it would take to simulate

7. See Legg (2008) for further discussion of this point, and of the promise of functions or environments
that determine fitness based on a smooth landscape of pure intelligence tests.

8. See Bostrom and Sandberg (2009) for a taxonomy and more detailed discussion of ways in which
engineers may outperform historical selection.
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all the neuronal computation of that organism’s brain throughout its natural lifespan.
AI programs today often develop and operate in very abstract environments (theorem-
provers in symbolic math worlds, agents in simple game tournament worlds, etc.)

A skeptic might insist that an abstract environment would be inadequate for the evo-
lution of general intelligence, believing instead that the virtual environment would need
to closely resemble the actual biological environment in which our ancestors evolved.
Creating a physically realistic virtual world would require a far greater investment of
computational resources than the simulation of a simple toy world or abstract problem
domain (whereas evolution had access to a physically realistic real world “for free”). In
the limiting case, if complete microphysical accuracy were insisted upon, the compu-
tational requirements would balloon to utterly infeasible proportions.9 However, such
extreme pessimism seems unlikely to be well founded; it seems unlikely that the best en-
vironment for evolving intelligence is one that mimics nature as closely as possible. It is,
on the contrary, plausible that it would be more efficient to use an artificial selection en-
vironment, one quite unlike that of our ancestors, an environment specifically designed
to promote adaptations that increase the type of intelligence we are seeking to evolve
(say, abstract reasoning and general problem-solving skills as opposed to maximally fast
instinctual reactions or a highly optimized visual system).

Where does premise (3”) stand? The computing resources to match historical num-
bers of neurons in straightforward simulation of biological evolution on Earth are severely
out of reach, even if Moore’s law continues for a century. The argument from evolution-
ary algorithms depends crucially on the magnitude of efficiency gains from clever search,
with perhaps as many as thirty orders of magnitude required. Precise estimation of those
efficiency gains is beyond the scope of this paper.

In lieu of an estimate supporting (3”), one has to fall back on the more general argu-
ment from problem difficulty, in which (3”) is replaced by (3’) and (4’), premises which
might be easier to support on intuitive grounds. But the argument from problem diffi-
culty also requires premise (2’), that the evolution of intelligence on Earth was “non-
hard.” (This premise was also used in the argument from evolutionary algorithms: if
(2’) were false, so that one would have to simulate evolution on vast numbers of planets
to reliably produce intelligence through evolutionary methods, then computational re-

9. One might seek to circumvent this through the construction of robotic bodies that would let sim-
ulated creatures interact directly with the real physical world. But the cost and speed penalties of such
an implementation would be prohibitive (not to mention the technical difficulties of creating robots that
could survive and reproduce in the wild!) With macroscopic robotic bodies interacting with the physical
world in realtime, it might take millions of years to recapitulate important evolutionary developments.
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quirements could turn out to be many, many orders of magnitude higher still.) We now
turn to discuss (2’) more closely, and theoretical approaches to evaluating it.

3. Two Theories of Observational Selection Effects

Does the mere fact that we evolved on Earth let us distinguish between the Hard Intel-
ligence and Non- hard Intelligence scenarios? Related questions arise in philosophy,10

decision theory,11 and cosmology,12 and the two leading approaches to answering them
give conflicting answers. We can introduce these approaches using the following exam-
ple:

God’s Coin Toss: Suppose that God tosses a fair coin. If it comes up heads, he
creates ten people, each in their own room. If tails, he creates one thousand
people, each in their own room. The rooms are numbered 1–10 or 1–1000.
The people cannot see or communicate with the other rooms. Suppose that
you know all this, and you discover that you are in one of the first ten rooms.
How should you reason that the coin fell?

The first approach begins with the Self-Sampling Assumption:

(SSA) Observers should reason as if they were a random sample from the set
of all observers in their reference class.13

Here the reference class is some set of possible observers, e.g. “intelligent beings” or
“humans” or “creatures with my memories and observations.” If the reference class can
include both people who discover they are in rooms 1-10 and people who discover they
are in rooms 11-1000, then applying SSA will lead you to conclude, with probability

10. See, for instance, the philosophical debate over “Sleeping Beauty” cases, beginning with Elga (2000)
and Lewis (2001).

11. See Piccione and Rubinstein (1997) on the Absentminded Driver problem.

12. If we consider cosmological theories on which the world is infinite (or finite but exceedingly large)
with sufficient local variation, then all possible observations will be made somewhere. To make predictions
using such theories we must take into account the indexical information that we are making a particular
observation, rather than the mere fact that some observer somewhere has made it. To do so principles
such as SSA and SIA must be combined with some measure over observers, as discussed in Bostrom
(2007) and Grace (2010).

13. This approach was pioneered by Carter (1983), developed by Leslie (1993) and Bostrom (2002),
and is used implicitly or explicitly by a number of other authors, e.g. Lewis (2001). Bostrom (2002) offers
an extension to consider “observer-moments,” SSA.
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100/101, that the coin fell heads.14 For if the coin came up heads then 100% of the
reference class would find itself in your situation, but if it came up tails then only 1% of
the reference class would find itself in your situation. On the other hand, prior to the
discovery of your room number you should consider heads and tails equally likely, since
100% of your reference class would find itself in your situation either way.

The second approach adds an additional principle, the Self-Indication Assumption:

(SIA) Given the fact that you exist, you should (other things equal) favor
hypotheses according to which many observers exist over hypotheses on which
few observers exist.15

In the SSA+SIA combination, if we take SIA to apply to members of a reference class
that includes all observers indistinguishable from ourselves, the specific reference class
no longer matters: a more expansive reference class receives a probability boost from
having more observers in it, but this is exactly offset by the probability penalty for making
our observations a smaller portion of the reference class. The details of the reference
class no longer play a significant role. SIA then gives us the following algorithm: first
assign probabilities to possible worlds normally, then multiply the probability of each
possible world by the number of observers in situations subjectively indistinguishable
from one’s own, apply a renormalization constant so that probabilities add up to 1, and
divide the probability of each world evenly among the indexical hypotheses that you are
each particular observer (indistinguishable from yourself ) in that world.

In God’s Coin Toss, this algorithm means that before discovering your room number
you consider a result of tails 100 times more likely than heads, since conditional on tails
there will be one hundred times as many observers in your situation as there would be
given heads. After you discover that yours is among the first ten rooms, you will consider
heads and tails equally likely, as an equal number of observers will find themselves in your
evidential situation regardless of the flip’s outcome.

Equipped with these summaries, we can see that SSA offers a formalization of the
intuition that the mere fact that we evolved is not enough to distinguish Non-hard In-
telligence from Hard Intelligence: if we use a reference class like “humans” or “evolved
intelligent beings,” then, in both scenarios, 100% of the members of the reference class
will find themselves in a civilization that managed to develop anyway. SSA also lets

14. If the reference class includes only observers who have discovered that they are in one of the first
ten rooms, then SSA will not alter our credences in this example.

15. We will abbreviate the SSA+SIA combination as SIA for brevity. SIA has been developed repeatedly
as a response to the Doomsday Argument, as in Olum (2002) and Dieks (2007), and is closely connected
with the “thirder” position on Sleeping Beauty cases as in Elga (2000).
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us draw inferences about evolutionary developments that are not so clouded by observa-
tion selection effects. For instance, suppose that we are evenly divided (on non-indexical
considerations) between the hypotheses that echolocation is found on either 1% or 100%
of planets with relevantly similar populations of observers. Upon observing that echolo-
cation exists on Earth, we could again make a Bayesian update as in God’s Coin Toss
and conclude that common echolocation is 100 times as likely as rare echolocation.

On this account, evolutionary innovations required to produce intelligence will be
observed regardless of their difficulty, while other innovations will be present only if
they are relatively easy given background conditions (including any innovations or other
conditions required for intelligence). Observation selection might conceal the difficulty
or rarity in the development of humans, nervous systems, eukaryotes, abiogenesis, even
the layout of the Solar System or the laws of physics. We would need to look at other
features of the evolutionary record, such as the timing of particular developments, inno-
vations not in the line of human ancestry, and more direct biological data. We explore
these lines in sections 5 and 6.

However, this approach is not firmly established, and the SIA approach generates
very different conclusions, as discussed in the next section. These divergent implications
provide a practical reason to work towards an improved picture of observation selection
effects. However, in the meantime we have reason to attend to the results of both of the
most widely held current theories.

4. The SIA Favors the Evolutionary Argument

Initially, the application of SIA to the question of the difficulty of evolution may seem
trivial: SIA strongly favors more observers with our experiences, and if the evolution of
intelligence is very difficult, then it will be very rare for intelligence like ours to evolve
in the universe. If, prior to applying SIA, we were equally confident in Non-hard In-
telligence and Hard Intelligence, then when we apply SIA we will update our credences
to consider Non-hard Intelligence 101000 times as likely as Hard Intelligence, since we
would expect 101000 times as many planets to evolve observers indistinguishable from us
under Non-hard Intelligence. This probability shift could overwhelm even exceedingly
strong evidence to the contrary: if the non-indexical evidence indicated that Hard In-
telligence was a trillion trillion times as probable as Non-hard Intelligence, an SIA user
should still happily bet ten billion dollars against a cent that the evolution of intelligence
is not Hard.

However, when we consider hypotheses on which the evolution of intelligence is in-
creasingly easy the frequency of observations indistinguishable from ours may actually
decline past a certain point. We observe a planet where the evolution of humanity took
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4.5 billion years after the formation of the Earth. If intelligence arose sufficiently quickly
and reliably, then we would expect life and intelligence to evolve early in a planet’s life-
time: there would be more planets with intelligence, but fewer planets with late-evolved
civilizations like ours. This consideration, in combination with SIA, might seem to fa-
vor an intermediate level of difficulty, so that the evolution of intelligence typically takes
several billion years with the resources of the Earth and occurs fairly reliably but not
always on life-bearing planets.

Similarly, we observe no signs of intelligent alien life. If intelligent life were com-
mon, it might have colonized the Earth before humans could develop, or made itself
visible, in which case no humans on Earth would make our exact observations. Some
combination of barriers, the so-called “Great Filter,” must have prevented such alien
life from developing near us and preempting our observations.16 However, other things
equal, SIA initially appears to favor explanations of the Great Filter which place the bar-
riers after the evolution of intelligence. Here the thought is that if interstellar travel and
communication are practically impossible, or if civilizations almost invariably destroy
themselves before space colonization, then observers like us can be more frequent; so if
we have even a small initial credence in such explanations of the Great Filter then after
applying SIA we will greatly prefer them to “intelligence is rare” explanations. Even if
one initially had only 0.1% credence that the explanation of the Great Filter allowed
for reliable evolution of observers like us (e.g., space travel is impossible, or advanced
civilizations enforce policies against easily detectable activities on newcomers), applica-
tion of the SIA would boost the probability of such explanations sufficiently to displace
hypotheses that imply that advanced life is extremely rare. This would seem to leave
the evolutionary argument for AI on sound footing, from the perspective of an SIA
proponent.17

However, the preceding analysis assumed that our observations of a fairly old but
empty galaxy were accurate descriptions of bedrock reality. One noted implication of
SIA is that it tends to undermine that assumption. Specifically, the Simulation Argu-
ment raises the possibility that given certain plausible assumptions, e.g. that computer
simulations of brains could be conscious, then computer simulations with our observa-
tions could be many orders of magnitude more numerous than “bedrock reality” beings

16. See Hanson (1996) on the Great Filter. Neal (2006) and Grace (2010) explore the interaction with
SIA-like principles.

17. Grace (2010) argues that AI might be expected to be able to better overcome barriers to interstellar
travel and communication the Great Filter in combination with SIA should reduce our credence in AI
powerful enough to engage in interstellar travel. The strength of this update would depend on our cre-
dence in other explanations of the Great Filter, and is arguably rendered moot by the analysis of the the
interaction of SIA with the Simulation Hypothesis in subsequent paragraphs.
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with our observations.18 Without SIA, the Simulation Argument need not bring us to
the Simulation Hypothesis, i.e. the claim that we are computer simulations being run
by some advanced civilization, since the assumptions might turn out to be false.19 How-
ever, if we endorse SIA, then even if our non-indexical evidence is strongly against the
Simulation Hypothesis, an initially small credence in the hypothesis can be amplified
by SIA (and the potential for very large simulated populations) to extreme confidence.20

This would favor hypotheses on which intelligence evolved frequently enough that ad-
vanced civilizations would be able to claim a large share of the resources suitable for
computation (to run simulations), but increased frequency beyond that would not sig-
nificantly increase the maximum population of observers indistinguishable from us. The
combination of the Simulation Hypothesis and SIA would also independently favor the
feasibility of AI, since advanced AI technology would increase the feasibility of produc-
ing very large simulated populations.

To sum up this section, known applications of the SIA consistently advise us to as-
sign negligible probability to Hard Intelligence, even in the face of very strong contrary
evidence, so long as we assign even miniscule prior probability to relatively easy evolu-
tion of intelligence. Since the number of planets with intelligence and the number of
observers indistinguishable from us can come apart, the SIA allows for the evolution of
intelligence to be some orders of magnitude more difficult than once per solar system,
but not so difficult that the great majority of potential resources for creating observers go
unclaimed. Drawing such strong empirical conclusions from seemingly almost a priori
grounds may seem objectionable. However, the Self-Indication Assumption has a num-
ber of such implications, e.g. that if we non-indexically assign any finite positive prior
probability to the world containing infinitely many observers like us then post-SIA we
must believe that this is true with probability 1 (Bostrom and Ćirković 2003). Defenders
of SIA willing to bite such bullets in other contexts may do the same here, and for them
the evolutionary argument for AI will seem on firm footing. However, if one thinks that
our views on these matters should be more sensitive to the observational evidence, then
one must turn from the SIA and look elsewhere for relevant considerations.

18. The argument is presented in Bostrom (2003), see also Bostrom and Kulczycki (2011).

19. Note, per Chalmers (2005) and Bostrom (2003, 2005) that the Simulation Hypothesis is not a
skeptical hypothesis, but a claim about what follows from our empirical evidence about the feasibility of
various technologies. Most of our ordinary beliefs would remain essentially accurate.

20. Note that SIA also amplifies our credence in hypotheses that simulator resources are large. If we
assign even a small probability to future technology enabling arbitrarily vast quantities of computation,
this hypothesis can dominate our calculations if we apply SIA.
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We now move on to more detailed descriptions of Earth’s evolutionary history, infor-
mation that can be combined with SSA to assess the evolvability of intelligence, without
the direct bias against Hard Intelligence implied by SIA.

5. SSA and Evidence from Convergent Evolution

Recall that within the SSA framework we reason as though we were randomly selected
from the set of all observers in our reference class. If the reference class includes only
human-level intelligences, then nearly 100% of the members of the reference class will
stem from an environment where evolution produced human-level intelligence at least
once. By the same token, if there are innovations that are required for the evolution of
human-level intelligence, these should be expected to evolve at least once among the an-
cestors of the human-level intelligences. However, nothing in the observation selection
effect requires that observers find that human-level intelligence or any precursor inno-
vations evolved more than once or outside the line of ancestry leading up to the human-level
intelligences. Thus, evidence of convergent evolution—the independent development
of an innovation in multiple taxa—can help us to understand the evolvability of human
intelligence and its precursors, and to evaluate the evolutionary arguments for AI.

The Last Common Ancestor (LCA) shared between humans and octopuses, esti-
mated to have lived at least 560 million years in the past, was a tiny wormlike creature
with an extremely primitive nervous system; it was also an ancestor to nematodes and
earthworms (Erwin and Davidson 2002). Nonetheless, octopuses went on to evolve
extensive central nervous systems, with more nervous system mass (adjusted for body
size) than fish or reptiles, and a sophisticated behavioral repertoire including memory,
visual communication, and tool use.21 Impressively intelligent animals with more re-
cent LCAs include, among others, corvids (crows and ravens, LCA about 300 million
years ago),22 elephants (LCA about 100 million years ago).23 In other words, from the
starting point of those wormlike common ancestors in the environment of Earth, the

21. See e.g. Mather (1994, 2008), Finn, Tregenza, and Norman (2009) and Hochner, Shomrat, and
Fiorito (2006) for a review of octopus intelligence.

22. For example, a crow named Betty was able to bend a straight wire into a hook in order to retrieve
a food bucket from a vertical tube, without prior training; crows in the wild make tools from sticks and
leaves to aid their hunting of insects, pass on patterns of tool use, and use social deception to maintain
theft-resistant caches of food; see Emery and Clayton (2004). For LCA dating, see Benton and Ayala
(2003).

23. See Archibald (2003) for LCA dating, and Byrne, Bates, and Moss (2009) for a review arguing
that elephants’ tool use, number sense, empathy, and ability to pass the mirror test suggest that they are
comparable to non-human great apes.
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resources of evolution independently produced complex learning, memory, and tool use
both within and without the line of human ancestry.

Some proponents of the evolutionary argument for AI, such as Moravec (1976), have
placed great weight on such cases of convergent evolution. Before learning about the
diversity of animal intelligence, we would assign some probability to scenarios in which
the development of these basic behavioral capabilities (given background conditions) was
a major barrier to creating human-level intelligence. To the extent convergent evolution
lets us rule out particular ways in which the evolution of intelligence could be hard, it
should reduce our total credence in the evolution of intelligence being hard (which is
just the sum of our credence in all the particular ways it could be hard).

There is, however, an important caveat to such arguments. A species that displays
convergent evolution of intelligence behaviorally may have a cognitive architecture that
differs in unobserved ways from that of human ancestors. Such differences could mean
that the animal brains embody algorithms that are hard to “scale” or build upon to pro-
duce human-level intelligence, so that their ease of evolution has little bearing on AI
feasibility. By way of analogy, chess-playing programs outperform humans within the
limited domain of chess, yet the underlying algorithms cannot be easily adapted to other
cognitive tasks, let alone human-level AI. Insofar as we doubt the “scalability” of octopus
or corvid intelligence, despite the appearance of substantial generality, we will discount
arguments from their convergent evolution accordingly.

Further, even if we condition on the relevant similarity of intelligence in these con-
vergent lineages and those ancestral to humans, observation selection effects could still
conceal extraordinary luck in factors shared by both. First, background environmental
effects, such as the laws of physics, the layout of the Solar System, and the geology of
the Earth could all be unusually favorable to the evolution of intelligence (relative to
simulated alternatives for AI), regardless of convergent evolution. Second, the LCA
of all these lineages was already equipped with various visible features—such as nervous
systems—that evolved only once in Earth’s history and which might therefore have been
arbitrarily difficult to evolve. While background conditions such as geology and the ab-
sence of meteor impacts seem relatively unlikely to correspond to significant problems
for AI designers, it is somewhat less implausible to suppose that early neurons conceal
extraordinary design difficulty: while computational models of individual neurons have
displayed impressive predictive success, they might still harbor subtly relevant imper-
fections.24 Finally, some subtle features of the LCA may have greatly enabled later de-
velopment of intelligence without immediate visible impact. Consider the case of eyes,

24. See Sandberg and Bostrom (2008), for a review.
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which have developed in many different animal lineages with widely varying anatom-
ical features and properties (compare the eyes of humans, octopuses, and fruit flies).
Eyes in all lineages make use of the proteins known as opsins, and some common reg-
ulatory genes such as PAX6, which were present in the LCA of all the creatures with
eyes.25 Likewise, some obscure genetic or physiological mechanism dating back to the
octopus-human LCA may both be essential to the later development of octopus-level
intelligence in various lineages and have required extraordinary luck.

In addition to background conditions shared by lineages, convergent evolution also
leaves open the possibility of difficult innovations lying between the abilities of elephants
or corvids or octopuses and human-level intelligence, since we have no examples of ro-
bustly human-level capabilities evolving convergently. If the evolution of human-level
intelligence were sufficiently easy, starting from the capabilities of these creatures on
Earth, then it might seem that observers should find that it appeared multiple times in
evolution on their planets. However, as human technology advanced, we have caused
mass extinctions (including all other hominids) and firmly occupied the ecological niche
of dominant tool-user. If the evolution of human-level intelligence typically preempts
the evolution of further such creatures, then evolved civilizations will mostly find them-
selves without comparably intelligent neighbours, even if such evolution is relatively
easy.26 Accurate estimation of the rate at which human-level intelligence evolves from
a given starting point would involve the same need for Bayesian correction found in
analysis of disasters that would have caused human extinction.27

In summary, by looking at instances of convergent evolution on Earth, we can re-
fute claims that certain evolutionary innovations—those for which we have examples of
convergence—are exceedingly difficult, given certain assumptions about their underly-
ing mechanisms. Although this method leaves open several ways in which the evolution
of intelligence could in principle have been exceedingly difficult, it narrows the range of
possibilities. In particular, it provides disconfirming evidence against hypotheses of high
evolutionary difficulty between the development of primitive nervous systems and those
fairly complex brains providing the advanced cognitive capabilities found in corvids,
elephants, dolphins, etc. Insofar as we think evolutionary innovations relevant to AI

25. See Schopf (1992) on the convergent evolution of eyes.

26. Preemption might not occur if, for instance, most evolved intelligences were unable to manipulate
the world well enough to produce technology. However, most of the examples of convergent evolution
discussed above do have manipulators capable of tool use, with the possible exception of cetaceans (whales
and dolphins).

27. See Ćirković, Sandberg, and Bostrom (2010) for an explanation of this correction.
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design will disproportionately have occurred after the development of nervous systems,
the evidence from convergent evolution remains quite significant.

To reach beyond the period covered by convergent evolution, and to strengthen con-
clusions about that period, requires other lines of evidence.

6. SSA and Clues from Evolutionary Timing

The Earth is approximately 4.54 billion years old. Current estimates hold that the expan-
sion of the Sun will render the Earth uninhabitable (evaporating the oceans) in some-
what more than a billion years (Dalrymple 2001; Adams and Laughlin 1998).

Assuming that no other mechanism reliably cuts short planetary windows of habit-
ability, human-level intelligence could have evolved on Earth hundreds of millions of
years later than it in fact did.28 Combined with a principle such as SSA, this evidence
can be brought to bear on the question of the evolvability of intelligence.

6.1. Uninformative Priors plus Late Evolution Suggest Intelligence is Rare

Brandon Carter 1983, 1993 has argued that the near-coincidence between the time it
took intelligence to evolve on Earth, and Earth’s total habitable period, suggests that
the chances of intelligent life evolving on any particular Earth-like planet are in fact far
below 1.29

28. The one-billion-year figure is best seen as an upper bound on the remaining habitability-window for
the Earth. It is quite conceivable (had humans not evolved) that some natural process or event would have
slammed this window shut much sooner than one billion years from now, especially for large mammalian-
like life forms. However, there are grounds for believing that whatever the fate would have been for our
own planet, there are many Earth-like planets in the universe whose habitability window exceeds 5 bil-
lion years or more. The lifetime and size of the habitable zone depends on the mass of the star. Stellar
lifetimes scale as M−2.5 and their luminosity as M3.5, where M is their mass in solar masses; see Hansen
and Kawaler (1994). Thus, a star 90% of the sun’s mass would last 30% longer and have a luminosity of
70%, allowing an Earth analogue to orbit 0.83 AU from the star with the same energy input as Earth. The
interaction between stellar mass and the habitabile zone is more complex, requiring assumptions about
climate, but models typically find that the timespan a terrestrial planet can remain habitable is greater for
less heavy stars, with increases of several billion years for stars only marginally less massive than the sun;
see Kasting, Whitmire, and Reynolds (1993) and Lammer et al. (2009). Lighter stars are considerably
more common than heavier stars. Sunlike G-class stars of 0.8-1.04 solar masses make up only 7.6% of
main-sequence stars, while the lighter 0.45-0.8 solar mass K-class stars make up 12.1%, and the even
lighter M-class red dwarfs 76.45%; see LeDrew (2001). A randomly selected planet will therefore be
more likely to orbit a lighter star than the sun, assuming the number of planets formed per system is not
vastly different G-class and K-class stars.

29. This section draws on a discussion in Bostrom (2002).
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Following Carter, let us define three time intervals: t̄, “the expected average time
. . . which would be intrinsically most likely for the evolution of a system of ‘intelligent
observers,’ in the form of a scientific civilization such as our own” (Carter 1983, 353);
te, the time taken by biological evolution on this planet ≈ 4 × 109 years; and t0, the
period during which Earth can support life ≈ 5.5 × 109 years using the above estimate.

Carter’s argument then runs roughly as follows: at our present stage of understanding
of evolutionary biology, we have no real way of directly estimating t̄. Also, there is no a
priori reason to expect t̄ to be on the same timescale as t0. Thus, we should use a very
broad starting probability distribution over t̄—a distribution in which only a small por-
tion of the probability mass is between 109 years and 1010 years, leaving a large majority
of the probability mass in scenarios where either: (a) t̄ � t0, or (b) t̄ � t0.

Carter suggests that we can next rule out scenarios in which t̄ � t0 with high prob-
ability, since if technological civilizations typically take far less than 4 × 109 years to
evolve, our observations of finding ourselves as the first technological civilization on
Earth, recently evolved at this late date, would be highly uncommon. This leaves only
scenarios in which either t ≈ t0 (a small region), or t̄ � t0 (a large region). Due
to observer-selection effects, intelligent observers under either of these scenarios would
observe that intelligent life evolved within their own world’s habitable period (even if, as
in Hard Intelligence, t̄ is many orders of magnitude larger than t0). Thus, at least until
updating on other information, we should deem it likely that the chance of intelligent
life evolving on our planet within the sun’s lifetime was very small.

6.2. Detailed Timing Suggests that There Are Fewer than Eight “Hard Steps”

However, knowledge of the Earth’s habitable lifetime can also be used to attempt to
place probabilistic upper bounds on the the number of improbable “critical” steps in the
evolution of humans. Hanson (1998) puts it well:

Imagine that someone had to pick five locks by trial and error (i.e., without
memory), locks with 1, 2, 3, 4, and 5 dials of ten numbers each, so that the
expected time to pick each lock was .01, .1, 1, 10, and 100 hours respectively.
If you had just a single (sorted) sample set of actual times taken to pick the
locks, say .00881, .0823, 1.096, 15.93, and 200.4 hours, you could probably
make reasonable guesses about which lock corresponded to which pick-time.
And even if you didn’t know the actual difficulties (expected pick times) of the
various locks, you could make reasonable guesses about them from the sample
pick-times.

Now imagine that each person who tries has only an hour to pick all five
locks, and that you will only hear about successes. Then if you heard that the
actual (sorted) pick-times for some success were .00491, .0865, .249, .281,
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and .321 hours, you would have a harder time guessing which lock corre-
sponds to which pick-time. You could guess that the first two times probably
correspond to the two easiest locks, but you couldn’t really distinguish be-
tween the other three locks since their times are about the same. And if you
didn’t know the set of lock difficulties, these durations would tell you very
little about the hard lock difficulties.

It turns out that a difficulty of distinguishing among hard steps is a general
consequence of conditioning on early success. . . . For easy steps, the con-
ditional expected times reflect step difficulty, and are near the unconditional
time for the easiest steps. The conditional expected times for the hard steps,
on the other hand, are all pretty much the same.

For example, even if the expected pick-time of one of the locks had been a million years,
you would still find that its average pick-time in successful runs is closer to 0.2 or 0.3
than to 1 hour, and you wouldn’t be able to tell it apart from the 1, 10, and 100 hours
locks. Perhaps most usefully, Carter and Hanson argue that the expected time between
the picking of the last lock and the end of the hour has approximately the same time
distribution as the expected time between one “hard step” and another.30 Therefore, if
we knew the “leftover” time L at the end of the final lock-picking, but did not know
how many locks there had been, we would be able to use that knowledge to rule out
scenarios in which the number of “hard steps” was much larger than n = 1 hour/L.

Thus, to start with the simplest model, if we assume that the evolution of intelligent
life requires a number of steps to occur sequentially (so that, e.g., nervous systems have
no chance of evolving until multicellularity has evolved), that only sequential steps are
needed, that some of these steps are “hard steps” in the sense that their expected average
time exceeds Earth’s total habitable period (assuming the steps’ prerequisites are already
in place, and in the absence of observer-selection effects), and that these “hard steps”
have a constant chance of occurring per time interval—then we can use the gap te and
t0 to obtain an upper bound on the number of hard steps. Carter estimates this bound
to be 3, given his assumption that t0 is about 1010 years (based on earlier longer esti-
mates of the habitable period). Hanson (1998), using a model with only hard sequential
steps (with constant unconditional chance of occurrence after any predecessor steps),
calculates that with 1.1 billion years of remaining habitability (in accordance with more
recent estimates) and n = 7, only 21% of planets like Earth with evolved intelligence
would have developed as early.

30. Carter (1983) proves this analytically for the special case in which all hardsteps are of the same
difficulty; Hanson (1998) verifies, via Monte Carlo simulations, that it approximately holds with hard
steps of varied difficulties. Aldous (2010) makes several additional generalizations of the result.
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The same bounds hold (more sharply, in fact) if some steps have a built-in time lag
before the next step can start (e.g., the evolution of oxygen-breathing life requiring an
atmosphere with a certain amount of oxygen, produced by anaerobic organisms over
hundreds of millions of years). These bounds are also sharpened if some of the steps
are allowed to occur in any order (Carter 1983). Thus, the “hard steps” model rules
out a number of possible “hard intelligence” scenarios: evolution typically may take pro-
hibitively long to get through certain “hard steps,” but, between those steps, the ordinary
process of evolution suffices, even without observation selection effects, to create some-
thing like the progression we see on Earth. If Earth’s remaining habitable period is close
to that given by estimates of the sun’s expansion, observation selection effects could not
have given us hundreds or thousands of steps of acceleration, and so could not, for ex-
ample, have uniformly accelerated the evolution of human intelligence across the last
few billion years in the model.31 32

31. As with the evidence from convergent evolution, there are caveats about the types of scenario this
evidence can disconfirm. While the Hanson and Carter models have been extended to cover many branch-
ing possible routes to intelligence, the extended models still do not allow us to detect a certain kind of
rapid “dead-end” that preempts subsequent progress. For example, suppose that some early nervous sys-
tem designs are more favorable to the eventual evolution of human-level intelligence, but that whichever
nervous system arises first will predominate, occupying the ecological niches that might otherwise have
allowed a new type of nervous system to emerge. If the chance of developing any nervous system is small,
making it a hard step, then the dead-end possibility does not affect the conclusions about planets with
intelligent life. However, if the development of nervous systems occurs quickly with high probability, but
producing nervous systems with the right scalability is improbable, then this will reduce the proportion
of planets that develop human-level intelligence without affecting the typical timelines of evolutionary
development on such planets. Conceivably, similar dead-ends could afflict human engineers—although
humans are better able to adopt new approaches to escape local optima.

32. One objection to the use of the Carter model is that it assumes hard steps are permanent. But in
fact, contra the model, the organisms carrying some hard step innovation could become extinct, e.g. in an
asteroid bombardment. If such events were to frequently “reset” certain hard steps, then scenarios with
long delays between the first resettable step and the evolution of intelligent life would be less likely. Success
would require both that hard steps be achieved and that disasters not disrupt hard steps in the interim
(either via lack of disasters, or through relevant organisms surviving). With a near-constant probability
(1−p) of relevant catastrophe per period, the probability of avoiding catastrophe for a duration of time t
would be pt. Thus, all else equal, allowing for the possibility that hard steps are not permanent reduces
the expected time to complete the resettable steps, conditioning on successful evolution of intelligent life.
Carter’s model would then underestimate the number of hard steps. However, this underestimation is
less severe when we account for the fact that longer time periods allow more chances for the hard steps
to occur. The chance of completing n hard steps in time t is proportional to tn. So when we examine
planets where intelligence evolved we would tend to find intelligence evolving after a longer-than-usual
gap between disasters, or a series of disasters which spared some lineages embodying past hard steps.
Over long time scales, the exponential increase of the catastrophe effect will dominate the polynomial
increase from more opportunities for hard steps. However, with plausible rates of catastrophes, the effect
of increased opportunity greatly blunts the objection.
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Moreover, in addition to providing information about the total number of hard steps,
the model can also give probabilistic bounds on how many hard steps could have occurred
in any given time interval. For example, it would allow us to infer with high confidence
that at most one hard step has occurred in the 6 million years since the human/chimp
common ancestors. This may help narrow the bounds on where AI engineering difficulty
can be found.

7. Conclusions

Proponents of the evolutionary argument for AI have pointed to the evolution of intel-
ligent life on Earth as a ground for anticipating the creation of artificial intelligence this
century. We explicated this argument in terms of claims about the difficulty of search for
suitable intelligent cognitive architectures (the argument from problem difficulty) and,
alternatively, in terms of claims about the availability of evolutionary algorithms capa-
ble of producing human-level general intelligence when implemented on realistically
achievable hardware (the argument from evolutionary algorithms).

The argument from evolutionary algorithms requires an estimate of how much com-
puting power it would take to match the amount of optimization power provided by
natural selection over geological timescales. We explored one way of placing an up-
per bound on the relevant computational demands and found it to correspond to more
than a century’s worth of continuing progress along Moore’s Law—an impractically vast
amount of computing power. Large efficiency gains are almost certainly possible, but
they are difficult to quantify in advance. It is doubtful that the upper bound down calcu-
lated in our paper could be reduced sufficiently to enable the argument from evolutionary
algorithms to succeed.

The argument from problem difficulty avoids making specific assumptions about
amounts of computing power required or the specific way that human-level machine
intelligence would be achieved. This version of the argument replaces the quantitative
premise about computational resource requirements and evolutionary algorithms with
a more intuitive appeal to the way that evolutionary considerations might tell us some-
thing about the problem difficulty of designing generally intelligent systems. But in
either of its two versions, the evolutionary argument relies on another assumption: that
the evolution of human intelligence was not exceedingly hard (2’).

We pointed out that this assumption (2’) cannot be directly inferred from the fact
that human intelligence evolved on Earth. This is because an observation selection effect
guarantees that all evolved human-level intelligences will find that evolution managed
to produce them—independently of how difficult or improbable it was for evolution to
produce this result on any given planet.
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We showed how to evaluate the possible empirical support for (2’) from the alterna-
tive standpoints of two leading approaches to anthropic reasoning: the Self-Sampling
Assumption and the Self-Indication Assumption. The SIA strongly supports the evo-
lutionary argument and the feasibility of AI (among other strong and often counter-
intuitive empirical implications). The implications of the SSA depend more sensitively
on the details of the empirical evidence. By considering additional information about
the details of evolutionary history—notably convergent evolution and the timing of key
innovations—the SSA can be used to make probabilistic inferences about the evolvabil-
ity of intelligence and hence about the soundness of the evolutionary argument.

This further SSA analysis disconfirms many particular ways in which the evolution
of intelligence might be hard, especially scenarios of extreme hardness (with many diffi-
cult steps), thus supporting premise (2’) (although Carter’s model also has implications
counting against very easy evolution of intelligence). Of particular interest, two lines of
evidence count against extreme evolutionary hardness in developing human-level intel-
ligence given the development of nervous systems as we know them: fairly sophisticated
cognitive skills convergently evolved multiple times from the starting point of the ear-
liest nervous systems; and “hard step” models predict few sequential hard steps in our
very recent evolutionary history. Combined with the view that evolutionary innovations
in brain design especially are diagnostic of AI design difficulty, these observations can
avert some of the force of the objection from observation selection effects.

Thus, with one major approach to anthropic reasoning (SIA) providing strong sup-
port for (2’), and the other (SSA) offering a mixed picture and perhaps moderate support,
observation selection effects do not cripple the evolutionary argument via its premise (in
either of its versions) of non-hard evolution of intelligence.

Extensive empirical and conceptual uncertainty remains. Further progress could
result from several fields. Computer scientists can explore optimal environments for
the evolution of intelligence, and their computational demands—or how easily non-
evolutionary programming techniques can replicate the functionality of evolved designs
in various domains. Evolutionary biologists and neuroscientists can untangle questions
about evolutionary convergence and timing. And physicists, philosophers, and math-
ematicians can work to resolve the numerous open questions in observational selection
theory. Considering how recent many of the relevant ideas and methodologies are, and
the character of results thus far obtained, it seems likely that further epistemic truffles
are to be found in these grounds.

22



Carl Shulman, Nick Bostrom

Acknowledgments

We are grateful to David Chalmers, Paul Christiano, Zack M. Davis, Owain Evans,
Louie Helm, Lionel Levine, Jesse Liptrap, James Miller, Luke Muehlhauser, Anna
Salamon, Anders Sandberg, Elizabeth Synclair, Tim Tyler, and audiences at Australian
National University and the 2010 Australasian Association of Philosophy conference
for helpful comments and discussion.

References

Adams, F. C., and G. Laughlin. 1998. “The Future of the Universe.” Sky and Telescope 96 (2): 32–39.

Aldous, David J. 2010. “The Great Filter, Branching Histories and Unlikely Events.” Unpublished manuscript,
Berkeley, CA, July 9. Accessed August 12, 2012. http://www.stat.berkeley.edu/~aldous/
Papers/GF.pdf.

Archibald, J David. 2003. “Timing and Biogeography of the Eutherian Radiation: Fossils and Molecules
Compared.” Molecular Phylogenetics and Evolution 28 (2): 350–359. doi:10.1016/S1055-7903(03)
00034-4.

Baum, Eric B. 2004. What Is Thought? Bradford Books. Cambridge, MA: MIT Press.

Benton, Michael J., and Francisco J. Ayala. 2003. “Dating the Tree of Life.” Science 300 (5626): 1698–
1700. doi:10.1126/science.1077795.

Bostrom, Nick. 2002. Anthropic Bias: Observation Selection Effects in Science and Philosophy. New York:
Routledge. http://www.anthropic-principle.com/sites/anthropic-principle.com/
files/pdfs/anthropicbias.pdf.

. 2003. “Are We Living in a Computer Simulation?” Philosophical Quarterly 53 (211): 243–255.
doi:10.1111/1467-9213.00309.

. 2005. “The Simulation Argument: Reply to Weatherson.” Philosophical Quarterly 55 (218): 90–
97. doi:10.1111/j.0031-8094.2005.00387.x.

. 2007. “Observation Selection Theory and Cosmological Fine-Tuning.” In Universe or Multi-
verse?, edited by Bernard Carr, 431–444. New York: Cambridge University Press.

Bostrom, Nick, and Milan M. Ćirković. 2003. “The Doomsday Argument and the Self-Indication As-
sumption: Reply to Olum.” Philosophical Quarterly 53 (210): 83–91. doi:10.1111/1467- 9213.
00298.

Bostrom, Nick, and M. Kulczycki. 2011. “A Patch for the Simulation Argument.” Analysis 71 (1): 54–61.
doi:10.1093/analys/anq107.

Bostrom, Nick, and Anders Sandberg. 2009. “The Wisdom of Nature: An Evolutionary Heuristic for
Human Enhancement.” In, 375–416.

Byrne, Richard W., Lucy A. Bates, and Cynthia J. Moss. 2009. “Elephant Cognition in Primate Perspec-
tive.” Comparative Cognition and Behavior Reviews 4:65–79. doi:10.3819/ccbr.2009.40009.

Carter, Brandon. 1983. “The Anthropic Principle and its Implications for Biological Evolution.” Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 310 (1512):
347–363. doi:10.1098/rsta.1983.0096.

23

http://www.stat.berkeley.edu/~aldous/Papers/GF.pdf
http://www.stat.berkeley.edu/~aldous/Papers/GF.pdf
http://dx.doi.org/10.1016/S1055-7903(03)00034-4
http://dx.doi.org/10.1016/S1055-7903(03)00034-4
http://dx.doi.org/10.1126/science.1077795
http://www.anthropic-principle.com/sites/anthropic-principle.com/files/pdfs/anthropicbias.pdf
http://www.anthropic-principle.com/sites/anthropic-principle.com/files/pdfs/anthropicbias.pdf
http://dx.doi.org/10.1111/1467-9213.00309
http://dx.doi.org/10.1111/j.0031-8094.2005.00387.x
http://dx.doi.org/10.1111/1467-9213.00298
http://dx.doi.org/10.1111/1467-9213.00298
http://dx.doi.org/10.1093/analys/anq107
http://dx.doi.org/10.3819/ccbr.2009.40009
http://dx.doi.org/10.1098/rsta.1983.0096


How Hard Is Artificial Intelligence?

Carter, Brandon. 1993. “The Anthropic Selection Principle and the Ultra-Darwinian Synthesis.” In The
Anthropic Principle: Proceedings of the Second Venice Conference on Cosmology and Philosophy, edited by
F. Bertola and U. Curi, 33–66. Cambridge: Cambridge University Press.

Chalmers, David John. 2005. “The Matrix as Metaphysics.” In Philosophers Explore the Matrix, edited by
Christopher Grau, 132–176. New York: Oxford University Press. http://consc.net/papers/
matrix.pdf.

. 2010. “The Singularity: A Philosophical Analysis.” Journal of Consciousness Studies 17 (9–10): 7–
65. http://www.ingentaconnect.com/content/imp/jcs/2010/00000017/f0020009/
art00001.

Ćirković, Milan M., Anders Sandberg, and Nick Bostrom. 2010. “Anthropic Shadow: Observation Se-
lection Effects and Human Extinction Risks.” Risk Analysis 30 (10): 1495–1506. doi:10.1111/j.
1539-6924.2010.01460.x.

Dalrymple, G. B. 2001. “The Age of the Earth in the Twentieth Century: A Problem (Mostly) Solved.”
Geological Society, London, Special Publications 190 (1): 205–221. doi:10.1144/GSL.SP.2001.190.
01.14.

Dieks, Dennis. 2007. “Reasoning About the Future: Doom and Beauty.” In “Bayesian Epistemology,”
edited by Stephan Hartmann and Luc Bovens. Special issue, Synthese 156 (3): 427–439. doi:10.
1007/s11229-006-9132-y.

Elga, Adam. 2000. “Self-Locating Belief and the Sleeping Beauty Problem.” Analysis 60 (2): 143–147.
doi:10.1093/analys/60.2.143.

Emery, Nathan J., and Nicola S. Clayton. 2004. “The Mentality of Crows: Convergent Evolution of In-
telligence in Corvids and Apes.” Science 306 (5703): 1903–1907. doi:10.1126/science.1098410.

Erwin, Douglas H., and Eric H. Davidson. 2002. “The Last Common Bilaterian Ancestor.” Development
129 (13): 3021–3032. http://dev.biologists.org/content/129/13/3021.full.

Finn, Julian K., Tom Tregenza, and Mark D. Norman. 2009. “Defensive Tool Use in a Coconut-Carrying
Octopus.” Current Biology 19 (23): R1069–R1070. doi:10.1016/j.cub.2009.10.052.

Grace, Caitlin. 2010. “Anthropic Reasoning in the Great Filter.” B.Sc thesis, Australian National Uni-
versity. http://dl.dropbox.com/u/6355797/Anthropic%20Reasoning%20in%20the%
20Great%20Filter.pdf.

Hansen, Carl J., and S. D. Kawaler. 1994. Stellar Interiors: Physical Principles, Structure, and Evolution.
1st ed. New York: Springer.

Hanson, Robin. 1996. “The Great Filter: Are We Almost Past It?” Unpublished manuscript, Septem-
ber 15. Accessed August 12, 2012. http://hanson.gmu.edu/greatfilter.html.

. 1998. “Must Early Life Be Easy? The Rhythm of Major Evolutionary Transitions.” Unpublished
manuscript, September 23. Accessed August 12, 2012. http://hanson.gmu.edu/hardstep.pdf.

Hawks, John, Eric T. Wang, Gregory M. Cochran, Henry C. Harpending, and Robert K. Moyzis. 2007.
“Recent Acceleration of Human Adaptive Evolution.” Proceedings of the National Academy of Sciences
of the United States of America 104 (52): 20753–20758. doi:10.1073/pnas.0707650104.

Hochner, Binyamin, Tal Shomrat, and Graziano Fiorito. 2006. “The Octopus: A Model for a Compar-
ative Analysis of the Evolution of Learning and Memory Mechanisms.” Biological Bulletin 210 (3):
308–317. http://www.biolbull.org/content/210/3/308.abstract.

24

http://consc.net/papers/matrix.pdf
http://consc.net/papers/matrix.pdf
http://www.ingentaconnect.com/content/imp/jcs/2010/00000017/f0020009/art00001
http://www.ingentaconnect.com/content/imp/jcs/2010/00000017/f0020009/art00001
http://dx.doi.org/10.1111/j.1539-6924.2010.01460.x
http://dx.doi.org/10.1111/j.1539-6924.2010.01460.x
http://dx.doi.org/10.1144/GSL.SP.2001.190.01.14
http://dx.doi.org/10.1144/GSL.SP.2001.190.01.14
http://dx.doi.org/10.1007/s11229-006-9132-y
http://dx.doi.org/10.1007/s11229-006-9132-y
http://dx.doi.org/10.1093/analys/60.2.143
http://dx.doi.org/10.1126/science.1098410
http://dev.biologists.org/content/129/13/3021.full
http://dx.doi.org/10.1016/j.cub.2009.10.052
http://dl.dropbox.com/u/6355797/Anthropic%20Reasoning%20in%20the%20Great%20Filter.pdf
http://dl.dropbox.com/u/6355797/Anthropic%20Reasoning%20in%20the%20Great%20Filter.pdf
http://hanson.gmu.edu/greatfilter.html
http://hanson.gmu.edu/hardstep.pdf
http://dx.doi.org/10.1073/pnas.0707650104
http://www.biolbull.org/content/210/3/308.abstract


Carl Shulman, Nick Bostrom

Kasting, James F., Daniel P. Whitmire, and Ray T. Reynolds. 1993. “Habitable Zones Around Main
Sequence Stars.” Icarus 101 (1): 108–128. doi:10.1006/icar.1993.1010.

Lammer, H., J. H. Bredehöft, A. Coustenis, M. L. Khodachenko, L. Kaltenegger, O. Grasset, D. Prieur,
et al. 2009. “What Makes a Planet Habitable?” Astronomy and Astrophysics Review 17 (2): 181–249.
doi:10.1007/s00159-009-0019-z.

LeDrew, Glenn. 2001. “The Real Starry Sky.” Journal of the Royal Astronomical Society of Canada 95:32–33.
http://articles.adsabs.harvard.edu/full/2001JRASC..95...32L.

Legg, Shane. 2008. “Machine Super Intelligence.” PhD diss., University of Lugano. http : / / www .
vetta.org/documents/Machine_Super_Intelligence.pdf.

Leslie, John. 1993. “Doom and Probabilities.” Mind 102 (407): 489–491. doi:10.1093/mind/102.
407.489.

Lewis, David. 2001. “Sleeping Beauty: Reply to Elga.” Analysis 61 (3): 171–176. doi:10.1093/analys/
61.3.171.

MacKay, David J. C. 2003. Information Theory, Inference, and Learning Algorithms. New York: Cambridge
University Press.

Mather, Jennifer A. 1994. “‘Home’ Choice and Modification by Juvenile Octopus Vulgaris (Mollusca:
Cephalopoda): Specialized Intelligence and Tool Use?” Journal of Zoology 233 (3): 359–368. doi:10.
1111/j.1469-7998.1994.tb05270.x.

. 2008. “Cephalopod Consciousness: Behavioural Evidence.” Consciousness and cognition 17 (1):
37–48. doi:10.1016/j.concog.2006.11.006.

Menzel, Randolf, and Martin Giurfa. 2001. “Cognitive Architecture of a Mini-Brain: the Honeybee.”
Trends in Cognitive Sciences 5 (2): 62–71. doi:10.1016/S1364-6613(00)01601-6.

Moravec, Hans P. 1976. “The Role of Raw Rower in Intelligence.” Unpublished manuscript, May 12.
Accessed August 12, 2012. http://www.frc.ri.cmu.edu/users/hpm/project.archive/
general.articles/1975/Raw.Power.html.

. 1988. Mind Children: The Future of Robot and Human Intelligence. Cambridge, MA: Harvard
University Press.

. 1998. “When Will Computer Hardware Match the Human Brain?” Journal of Evolution and
Technology 1. http://www.transhumanist.com/volume1/moravec.htm.

. 1999. Robot: Mere Machine to Transcendent Mind. New York: Oxford University Press.

Neal, Radford M. 2006. Puzzles of Anthropic Reasoning Resolved Using Full Non-indexical Conditioning.
Technical Report 0607. August 23. http://arxiv.org/abs/math/0608592.

Olum, Ken D. 2002. “The Doomsday Argument and the Number of Possible Observers.” Philosophical
Quarterly 52 (207): 164–184. doi:10.1111/1467-9213.00260.

Piccione, Michele, and Ariel Rubinstein. 1997. “The Absent-Minded Driver’s Paradox: Synthesis and
Responses.” Games and Economic Behavior 20 (1): 121–130. doi:10.1006/game.1997.0579.

Sabrosky, Curtis W. 1952. “How Many Insects Are There?” In Insects,edited by United States Department
of Agriculture, 1–7. Yearbook of agriculture. Washington, DC: United States Government Printing
Office. http://archive.org/details/insectsyearbooko00unit.

25

http://dx.doi.org/10.1006/icar.1993.1010
http://dx.doi.org/10.1007/s00159-009-0019-z
http://articles.adsabs.harvard.edu/full/2001JRASC..95...32L
http://www.vetta.org/documents/Machine_Super_Intelligence.pdf
http://www.vetta.org/documents/Machine_Super_Intelligence.pdf
http://dx.doi.org/10.1093/mind/102.407.489
http://dx.doi.org/10.1093/mind/102.407.489
http://dx.doi.org/10.1093/analys/61.3.171
http://dx.doi.org/10.1093/analys/61.3.171
http://dx.doi.org/10.1111/j.1469-7998.1994.tb05270.x
http://dx.doi.org/10.1111/j.1469-7998.1994.tb05270.x
http://dx.doi.org/10.1016/j.concog.2006.11.006
http://dx.doi.org/10.1016/S1364-6613(00)01601-6
http://www.frc.ri.cmu.edu/users/hpm/project.archive/general.articles/1975/Raw.Power.html
http://www.frc.ri.cmu.edu/users/hpm/project.archive/general.articles/1975/Raw.Power.html
http://www.transhumanist.com/volume1/moravec.htm
http://arxiv.org/abs/math/0608592
http://dx.doi.org/10.1111/1467-9213.00260
http://dx.doi.org/10.1006/game.1997.0579
http://archive.org/details/insectsyearbooko00unit


How Hard Is Artificial Intelligence?

Sandberg, Anders, and Nick Bostrom. 2008. Whole Brain Emulation: A Roadmap. Technical Report,
2008-3. Future of Humanity Institute, University of Oxford. http://www.fhi.ox.ac.uk/
Reports/2008-3.pdf.

Schopf, William J., ed. 1992. Major Events in the History of Life. Boston: Jones & Bartlett.

Schultz, T. R. 2000. “In search of Ant Ancestors.” Proceedings of the National Academy of Sciences of the
United States of America 97 (26): 14028–14029. doi:10.1073/pnas.011513798.

Truman, James W., Barbara J. Taylor, and Timothy A. Awad. 1993. “Formation of the Adult Nervous
System.” In The Development of Drosophila Melanogaster, edited by Michael Bate and Alfonso Mar-
tinez Arias. Vol. 2. Plainview, NY: Cold Spring Harbor Laboratory.

Whitman, William B., David C. Coleman, and William J. Wiebe. 1998. “Prokaryotes: The Unseen Ma-
jority.” Proceedings of the National Academy of Sciences of the United States of America 95 (12): 6578–
6583. http://www.pnas.org/content/95/12/6578.long.

26

http://www.fhi.ox.ac.uk/Reports/2008-3.pdf
http://www.fhi.ox.ac.uk/Reports/2008-3.pdf
http://dx.doi.org/10.1073/pnas.011513798
http://www.pnas.org/content/95/12/6578.long

	Abstract
	1 Evolutionary Arguments for Easy Intelligence
	1.1 Introduction
	1.2 Argument from Problem Difficulty
	1.3 Argument from Evolutionary Algorithms
	1.4 Evolutionary Hardness and Observation Selection Effects

	2 Computational Requirements for Recapitulating Evolution through Genetic Algorithms 
	3 Two Theories of Observational Selection Effects 
	4 The SIA Favors the Evolutionary Argument 
	5 SSA and Evidence from Convergent Evolution
	6 SSA and Clues from Evolutionary Timing
	6.1 Uninformative Priors plus Late Evolution Suggest Intelligence is Rare 
	6.2 Detailed Timing Suggests that There Are Fewer than Eight ``Hard Steps"

	7 Conclusions
	References

