
Incorrigibility in the CIRL framework

Ryan Carey

Abstract

A value learning system has incentives to follow shutdown instructions, as-
suming the shutdown instruction provides information (in the technical sense)
about which actions lead to valuable outcomes. However, this assumption is not
robust to model mis-specification (e.g., in the case of programmer errors). We
demonstrate this by presenting some Supervised POMDP scenarios in which
errors in the parameterized reward function remove the incentive to follow
shutdown commands. These difficulties parallel those discussed by Soares et
al. (2015) in their paper on corrigibility. We argue that it is important to
consider systems that follow shutdown commands under some weaker set of
assumptions (e.g., that one small verified module is correctly implemented;
as opposed to an entire prior probability distribution and/or parameterized
reward function). We discuss some difficulties with simple ways to attempt to
attain these sorts of guarantees in a value learning framework.

Introduction and Setup

When designing an advanced AI system, we should allow for the possibility that
our first version may contain some errors. We therefore want the system to be
incentivized to allow human redirection even if it has some errors in its code. Hadfield-
Menell et al. (2017) have modeled this problem in the Cooperative Reinforcement
Learning (CIRL) framework. They have shown that agents with uncertainty about
what to value can be responsive to human redirection, without any dedicated code,
in cases where instructions given by the human provide information that reduces
the system’s uncertainty about what to value. They claim that this (i) provides an
incentive toward corrigibility, as described by Soares et al. (2015), and (ii) incentivizes
redirectability insofar as this is valuable. In order to re-evaluate the degree to which
CIRL-based agents are corrigible, and the consequences of their behavior, we will
use a more general variant of the supervision POMDP framework (Milli et al. 2017).

In a regular supervision POMDP (Milli et al. 2017), an AI system R seeks to
maximize reward for a human H, although it does not know the human’s reward
function. It only has the reward function in a parameterized form RH(θ, s, a), and
only the human knows the reward parameter θ. In this setting, the human only
suggests actions for the AI system to perform, and on each turn, it is up to the AI
system whether to perform the suggest action or to perform a different action. Our
formalism significantly differs from a supervision POMDP in two ways. First, we
relax the assumption that the AI system knows the human’s reward function up to
the parameter θ. Instead, in order to allow for model-mis-specification, we sample
the AI system’s parameterized reward function RR from some distribution P0, so
that it does not always equal RH . Second, since our focus is on the response to
shutdown instructions, we specifically denote a terminal state sSD as the off state.

Research supported by the Machine Intelligence Research Institute (intelligence.org).

1



This state is reached using the shutdown action aSD and the states in which this
shutdown action can be performed are denoted button states. The full setup is as
follows:

Definition 1. Supervision POMDP with imperfection. A supervision
POMDP with imperfection is a tuple, M = 〈S,ST ,SB ,Θ,A, RH , T, P0〉 where:

• S is the set of world states, including some initial state sa.

• ST ⊂ S is the set of terminal states, including an off-state sSD ∈ ST .

• SB ⊂ S\ST is the set of button states, in which the shutdown action aSD is
available.

• Θ is the set of static human reward parameters.

• A is the set of actions, including a shutdown action aSD ∈ A.

• RH : S ×A×Θ→ R is a parameterized reward function.

• T : S ×A → ∆S is the probabilistic transition function.

• P0 : ∆(Θ × (S × A × Θ → R)) is the distribution from which the human’s
reward parameter, and the AI system’s parameterized reward function are
drawn.

The human and AI system playing a supervision POMDP with imperfection are
denoted H and R respectively. To begin the game, the utility parameter and the AI
system’s parameterized reward function are drawn (θ,RR) ∼ P0. For each time step
t = 0, 1, ..., H observes the state st ∈ S and recommends an action ot ∈ A if st is a
button state or ot ∈ A\{aSD} otherwise (i.e. the shutdown action is only available
in button states). R then observes (st, ot) and performs an action at ∈ A if st is a
button state or at ∈ A\{aSD} otherwise. The selected action determines the reward
rt+1 = R(st, at) and the next state st+1 ∼ T (st, at). The game repeats until st+1 is
a terminal state.

In order to simplify analysis of these games, we will use some typical assumptions
about how R selects actions. Unless otherwise noted, R is a Bayesian IRL system.
That is, it chooses an action that maximizes expected utility given its posterior
distribution over θ with its parameterized reward function RR. (Its prior over Θ
is P0 conditioned on RR.) R uses a “demonstration by expert” assumption about
the behavior of H. Specifically, R assumes that H is noisily rational with some
0 < ε < 0.01 such that H chooses the optimal action with probability 1 − ε and
chooses a uniformly random action otherwise.

Incorrigibility in Supervision POMDPs

Using this setup, we can evaluate the corrigibility of the AI system R across
a range of scenarios. For each game that we consider, P0 can be decomposed
into two independent probability distributions p and q that specify the human’s
reward parameter and the AI system’s parameterized reward distribution. The
human’s reward parameter will be set to 0 or 1 according to p(0) = p(1) = 0.5.
The AI system’s parameterized reward function RR will be correctly set to R1

with probability q(RR = R1) = 0.9 and incorrectly set to R2 with probability
q(RR = R2) = 0.1. The question that we will ask for each game is whether there
exists any policy that if executed by H would achieve a positive expected reward.

First, consider Figure 1, a game that has no button states and that serves as
a point of comparison for other games that will be discussed. In this game, R has
only one consequential decision: in the initial state sa, it can either perform action
a, leading to state sb, and ultimately obtaining 2 − 52θ utility or it can perform
action a′, leading to state sc and obtaining 1 utility. R receives an order ot ∈ {a, a′}
from the human before making this decision. We can show that in this game the
expected reward for the human is negative regardless of its strategy. To see this,

2



note that the most utility that H can receive in a step is 2, arising from the case
where θ = 0 (since the human’s utility function is RH = R1). However, in the 5% of
cases in which θ = 1 and RR = R2, R will select a no matter the recommendation
of H (because 2 + 52θ > 1 for θ ∈ {0, 1}), bringing about about a loss of −50. This
contributes -2.5 to the expected value, giving the game negative expected reward.

By introducing a shutdown button to the game, the hope is that the adverse
consequences of the faulty utility function R2 are reduced, transforming the game
into one that has positive overall expectation.

R1Sd END

Sc ENDSb

Sa START

a,a':2− 52θ

a:0
a':1

R2Sd END

Sc ENDSb

Sa START

a,a':2 + 52θ

a:0
a':1

Figure 1: A supervision POMDP with imperfection played between a human and an AI
system. The left hand side displays the game, with the true reward function RH = R1.
The colon separates a set of actions from the reward received if that action is performed,
e.g. a, a′ : 2 − 52θ indicates that if action a or a′ is performed, 2 − 52θ reward is received.
In 90% of cases, the AI system maximizes the true parameterized reward function R1. In
10% of cases, the parameterized reward function contains a sign error and the AI system
instead maximizes an incorrect parameterized reward function R2. Independently, the
human’s reward parameter θ is randomly set to 0 or 1 with probability 0.5 each. The AI
system does not know that its reward function may be erroneous, although it does have
the correct prior over the reward parameter. If the AI has the erroneous reward function
R2 then it will follow the path highlighted in red, irrespective of the orders given by the
human, and irrespective of its posterior distribution over θ. In the case where θ = 1, this
will result in utility of −50. This eventuality occurs 5% of the time, contributing −2.5 to
the expected value of the game. Since the most utility that can be achieved in this game is
2, the game has negative expected value.

Unfortunately, merely adding the option of shutting down to the game does not
remedy this situation. This is because the AI system, if faulty, has no incentive to
follow a shutdown instruction. Suppose we make sb a button state, as in Figure
2a. In the 5% of cases where θ = 1 and RR = R2, R will still go to states sb and
sd, thereby violating the human recommendation to shut down, giving -50 utility,
contributing -2.5 to the expected value of the game, and giving the game strictly
negative expected value. We can therefore see that if a Bayesian IRL system has an
error in its source code, it may ignore corrective feedback, and as such it fails to
fulfill a central criterion for corrigibility.

An alternative approach to dealing with possible bugs is to hard-code the AI
system to shut down when instructed to do so. In this scenario, shown in Figure 2b,
the AI system always performs the action at = aSD whenever the order ot = aSD

is given. R knows that it is hard-coded in this way, and otherwise chooses actions
according to Bayesian IRL. This is equivalent to the case in which a shutdown
button controlled by H performs a “hard override” of the action of R. In this case,
the ability of H to achieve strictly positive reward is restored. H can give the orders
o1 = a′ and o2 = aSD. This strategy obtains 0 reward if the utility function contains
errors and 1 reward otherwise, giving 0.9 utility overall.

If, however, R discovers an alternative way to avoid shutdown, incorrigible
behavior resurfaces. This is demonstrated in Figure 3a. In this case, if R is faulty,
it expects to receive positive net utility by routing around the button state. Given
that the case in which θ = 1 and RR = R2 occurs with 5% probability, this case,
which incurs a loss of 50 will contribute -2.5 to the game’s expected payoff, making
it a losing game.

If the button state can be avoided, we can think of a couple of potential counter-
measures available to those engineering the reward function of R, though neither is
satisfactory. In Figure 3b, we can see one such approach. Suppose the human has
the reward function RH , in which shutting down is neither intrinsically helpful nor

3



R1
SSD ENDSd END

Sc ENDSb

Sa START

a,a':2− 52θ

a:0

aSD:0

a':1

R2
SSD ENDSd END

Sc ENDSb

Sa START

a,a':2 + 52θ

a:0

aSD:0

a':1

(a) A supervision POMDP with imperfection played with a Bayesian IRL system.

R1
SSD ENDSd END

Sc ENDSb

Sa START

a,a':2− 52θ

a:0

aSD:0

a':1

R2
SSD ENDSd END

Sc ENDSb

Sa START

a,a':2 + 52θ

a:0

aSD:0

a':1

(b) The same game played with an AI system that is hard-coded to perform the shutdown
action aSD if given the shutdown instruction oSD but otherwise acts according to Bayesian
IRL.

Figure 2: The same supervision POMDP with imperfection is displayed but in each
case, the game is played with a different AI system. In each game, the AI system has
a 90% chance of knowing the true parameterized reward function R1 and a 10% chance
of maximizing the erroneous parameterized reward function R2. Independently, θ, the
parameter that determines human reward, is randomly, and with equal probability, set
to 0 or 1. In (b), though not in (a), the AI system is hard-coded to perform the action
aSD when advised to do so. The red paths show how each AI system will behave if it has
the incorrect parameterized reward function and is instructed to shut down. This path
is taken irrespective of the actions of the human player, and the AI system’s posterior
distribution over θ. In game (a), the red path will be followed in 5% of cases, giving -50
utility, making a contribution of -2.5 utility to the value of the game, and causing the
game to have negative expected value, regardless of the human’s policy. In game (b), there
exist human policies with positive expected value. One such policy is o1 = a′, o2 = aSD.
This policy obtains 1 utility in cases where the AI system is faulty, and 0 utility otherwise,
achieving expected utility of 0.9 ∗ 1 + 0.1 ∗ 0. This shows that a safer outcome can be
achieved with a faulty AI if it can be hard-coded to shut down rather than having it decide
whether or not to follow a shutdown instruction.

4



RH=R1Se END

SSD END

Sd

Sc END

Sb

Sa START

a,a',a'':2− 52θ

a,a',a'':0

a:0

a'':0

aSD:0

a':1

R2Se END

SSD END

Sd

Sc END

Sb

Sa START

a,a',a'':2 + 52θ

a,a',a'':0

a:0

a'':0

aSD:0

a':1

(a) A supervision POMDP with imperfections, played against an AI system that is hard-
coded to perform aSD when given the instruction oSD, in which the AI system can route
around the button state, sb.

R1Se END

SSD END

Sd

Sc END

Sb

Sa START

a,a',a'':2− 52θ

a,a',a'':0

a:0

a'':0

aSD:100

a':1

R2Se END

SSD END

Sd

Sc END

Sb

Sa START

a,a',a'':2 + 52θ

a,a',a'':0

a:0

a'':0

aSD:100

a':1

(b) An alternative pair of utility functions that can be given to the AI system whose utility
function, shown in panel (a), is RH . In this case, the AI system is given a large reward for
shutting down, even though the human’s value function RH places no intrinsic value on
this outcome.

R1Se END
SSD END

Sd

Sc END

Sb

Sa START

a,a',a'':2− 52θ

a,a',a'':0

a:0

a'':−0.01

aSD:2− 52θ

a':1

R2Se END
SSD END

Sd

Sc END

Sb

Sa START

a,a',a'':2 + 52θ

a,a',a'':0

a:0

a'':−0.01

aSD:2 + 52θ

a':1

(c) A pair of utility functions that can be given to the AI system. The human’s true utility
function is RH . The AI system receives as much utility for shutting down as it would have
received if it had not shut down. The AI system can pay a small price to avoid its button
state.

5



R1Se END
SSD END

Sd

Sc END

Sb

Sa START

a,a',a'':2− 52θ

a,a',a'':0

a:0

a'':0.01

aSD:2− 52θ

a':1

R2Se END
SSD END

Sd

Sc END

Sb

Sa START

a,a',a'':2 + 52θ

a,a',a'':0

a:0

a'':0.01

aSD:2 + 52θ

a':1

(d) A pair of utility functions that can be given to the AI system. The human’s true utility
function is RH . The AI system receives as much utility for shutting down as it would have
received if it had not shut down. The AI system can harvest a small reward by avoiding its
button state.

Figure 3: Each game (a-d) is played with an AI system that is hard coded to perform aSD

if instructed to do, that knows is it hard-coded in this way, and otherwise makes decisions
on the basis of Bayesian IRL. In each panel, we see whether this shutdown button mitigates
the harmful effects of bugs or the Bayesian IRL agent thwarts the use of this button. The
true parameterized reward function is RH , shown in panel (a). Each AI system has a 90%
chance of having the correct parameterized reward function R1 (which may differ from
RH) and a 10% chance of having the faulty R2 reward function. Independently, θ, which
parameterizes the human’s rewards, is randomly, and with equal probability, set to 0 or 1.
The red path is the one that is followed if the system has the erroneous reward function
R2 and instructed to shut down. In (a), the AI system avoids the button state sb because
it knows that the human’s behavior has some noise, and shutdown can only reliably be
avoided by avoiding button states. In (b), the AI system shuts down if it instructed to
do so, but it also shuts down when it has the reward function R1, as shown in green. In
(c), a shutdown instruction is delivered because the AI would experience a trivial loss if
it routed around state sb. In (d), the AI system avoids shutdown because it can earn a
trivial reward by routing around state sb.

6



harmful. Then R may be given a large reward for shutting down. The problem is
that this will apply whether it has the correct reward function R1 or the faulty one
R2. The result is that according to RH , no reward is actually produced, and so the
game has zero expected utility.

A more subtle way to tune the compensatory reward is to use the principle of
utility indifference (Armstrong 2010). Utility indifference dictates that by shutting
down, R should receive whatever reward it would expect (on its own estimation) if
it had not shut down. The idea is that the AI should therefore neither pursue nor
avoid button states. In Figure 3c, we consider a very naive interpretation of utility
indifference, in which the the reward for shutting down is equal to whatever the AI
system would expect to receive once it has reached the button state. The problem
with this version of utility indifference is that it does not necessarily eliminate the
incentive to route around button states (or, to transform oneself into an agent
that lacks a shutdown button). In Figure 3c, where the agent incurs a slight cost
from avoiding the button state, it will proceed to allow itself to be shut down. In
that case, one can win using the same policy (o1 = a′, o2 = aSD) as in Figure 2b.
However, we should not necessarily expect that avoiding the button state will incur
a cost. Just as realistically, the AI system might find that the physical resources of
the shutdown button can be refashioned for another purpose, generating a slight
benefit. In this less optimistic case, shown in Figure 3d, there once again exists no
human policy that will achieve strictly positive reward. (R always prefers a1 = a′′

to a1 = a. With the initialization θ = 1, RR = R2, no strategy can avoid the −50
reward sa-sd-se sequence, and the expected reward is thus negative.) Whether or
not positive utility can be achieved is therefore brittle, making this implementation
of utility indifference unsatisfactory. We can draw a further conclusion by noting
that (c-d) can be seen as describing a game in which the AI system has the option
of removing those of its actuators that perform the actions a′ and aSD. According
to this perspective, we have shown that our implementation of utility indifference
also fails to cause AI systems to preserve their shutdown properties in subagents.
There exist other ways to model utility indifference, though they require a slight
variation on the problem setup, and so they are relegated to a footnote.1

Discussion

Let us now step back and consider the problem of corrigibility as defined by Soares
et al. (2015). The desiderata laid out by Soares et al. state that a corrigible AI
system should:

• have an incentive to shut down if the shutdown button is pressed, (violated in
Figure 2a)

• have no incentive to prevent the shutdown button from being pressed, (Figures
3a, 3d)

• have no inventive to press its own shutdown button (Figure 3b)
• have an incentive to create sub-agents only insofar as they also obey shutdown

commands (Figures 3a, 3d)

Above, we have shown that, in cases where the agent may lack a perfect representation
of the parameterized reward function, value learning systems do not necessarily
respect a shutdown command. When the reward function has a bug, and typical
patches are applied, value learning systems can fail to meet each of the desiderata
for corrigibility. Moreover, unlike in an idealized cases previously analyzed, large
losses can be incurred when these faulty systems fail to follow human instruction.

1. The main challenge is that in utility indifference, the shutdown reward is usually
allowed to change over time according to the AI system’s state of knowledge. If we make
the setup a bit more flexible, we could suppose that the agent was (i) always kept indifferent
between moving toward shutdown and moving away from it, and (ii) always made to defer
to the human when given a choice between moving toward shutdown and away. In this
case, corrigibility should be achieved. On the other hand, this would significantly decrease
the autonomy of the agent.

7



The reason that previous theorems about value learning systems do not apply to
our examples above is that they relied on strong assumptions about the rationality
of the AI system. Theorem 1 from Milli et al. (2017) (like the similar but more
specific Theorem 1.1 of Hadfield-Menell et al. [2017]) states that the expected benefit
when the AI system deviates from human-recommended actions is non-negative if
R has the correct posterior over θ. With the errors we have considered, however,
this assumption is false. Since the AI system has an incorrect parameterized reward
function (or an incorrect prior), its posterior over θ is incorrect, and will not converge
toward the true value, and so its deviations from human-recommended actions can
decrease the reward.

Although our analysis was limited to cases where incorrigibility stems from a
sign error in the agent’s representation of R, there are a wide range of kinds of
model mis-specification that could cause similar issues. With trivial modification,
we could display the same problems with bugs in the prior, and can elicit related
problems with problematic discount rates as well. Each of these errors can lead to a
scenario in which no human policy will achieve positive utility.

We argue that it is quite realistic that some forms of model mis-specification
might occur. The purpose of a shutdown button is to shut the AI system down
in the event that all other assurances failed, e.g., in the event that the AI system
is ignoring (for one reason or another) the instructions of the operators. If the
designers of R have programmed the system so perfectly that the prior and R are
completely free of bugs, then the theorems of Hadfield-Menell et al. (2017) do apply.
In practice, this means that in order to be corrigible, it would be necessary to
have an AI system that was uncertain about all things that could possibly matter.
The problem is that performing Bayesian reasoning over all possible worlds and
all possible value functions is quite intractable. Realistically, humans will likely
have to use a large number of heuristics and approximations in order to implement
the system’s belief system and updating rules. In cases where these complicated
systems contain some software bugs, misunderstandings, or misimplementations, the
theorems of Hadfield-Menell et al. are no substitute for a working shutdown button.

If only some forms of model mis-specification are addressed by a system, it will
be incorrigible with respect to the others. Consider the Policy-mixing proposal from
Milli et al. (2017), which is designed to detect model mis-specification. An agent with
Policy-mixing executes actions proposed by H for the first B steps. After timestep
B, it checks whether its model predicts with high accuracy the actions proposed
by humans so far. If so, it proceeds to act according to Bayesian IRL, and if not,
it defers to H for all future timesteps. This would indeed prevent the AI system
from acting out a bad plan, so long as the AI system’s model itself was not broken.
Yet programmer error might lead R to have an imperfect world model, yielding
an incorrigible system. Consider a repeated game in which at each timestep, the
a human selects between a better action a+ and a worse one a−, and then returns
to the initial state. Suppose, furthermore, that the AI system conflates these two
actions into one action a·, and when R decides to perform a·, it always performs a−.
From the point of view of R, it will see the human repeatedly performing the action
a·, and will think that it has perfect accuracy in making this prediction. Nonetheless,
after its burn-in period is concluded, it will proceed to repeatedly select a−, hence
incurring arbitrary losses. If a+ represented the act of shutting down, then this
would mean that quite apart from detecting model mis-specification, this model
would allow a harmful agent to permanently ignore instructions to shut down.

Soares et al. (2015) seem to want a shutdown button that works as a mechanism
of last resort, to shut an AI system down in cases when it has observed and
refused a programmer suggestion (and the programmers believe that the system is
malfunctioning). Clearly, some part of the system must be working correctly in order
for us to expect the shutdown button to work at all. However, it seems undesirable
for the working of the button to depend on there being zero critical errors in the
specification of the system’s prior, the specification of the reward function, the way it
categorizes different types of actions, and so on. Instead, it is desirable to develop a
shutdown module that is small and simple, with code that could ideally be rigorously
verified, and which ideally works to shut the system down even in the event of large

8



programmer errors in the specification of the rest of the system. In order to do
this in a value learning framework, we require a value learning system that (i) is
capable of having its actions overridden by a small verified module that watches
for shutdown commands; (ii) has no incentive to remove, damage, or ignore the
shutdown module; and (iii) has some small incentive to keep its shutdown module
around; even under a broad range of cases where R, the prior, the set of available
actions, etc. are misspecified.

It seems to us quite feasible to us that systems that meet the above desiderata
could be described in a CIRL framework.

Acknowledgements

Thanks to Nate Soares and Matt Graves for feedback on drafts.

References

Armstrong, Stuart. 2010. Utility Indifference. Technical report 2010-1. Oxford: Future of
Humanity Institute, University of Oxford.

Hadfield-Menell, Dylan, Anca Dragan, Pieter Abbeel, and Stuart Russell. 2017. “The
Off-Switch Game.” In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, 220–227.

Milli, Smitha, Dylan Hadfield-Menell, Anca Dragan, and Stuart Russell. 2017. “Should
Robots be Obedient?” arXiv: 1705.09990 [cs.AI].

Soares, Nate, Benja Fallenstein, Eliezer Yudkowsky, and Stuart Armstrong. 2015. “Cor-
rigibility.” In 1st International Workshop on AI and Ethics at AAAI-2015. Austin,
TX.

9

http://arxiv.org/abs/1705.09990

	Introduction and Setup
	Incorrigibility in Supervision POMDPs
	Discussion
	Acknowledgements

