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Formalizing logical induction

Definitions

L := a language of propositional logic, including connectives
¬, ∧, ∨, →, ↔, for constructing proofs using modus ponens.

S := all sentences expressible in L.

Γ := a set of axioms in S for encoding and proving
statements about variables and computer programs (e.g. First
Order Logic + Peano Arithmetic).

a belief state := a map P : S → [0, 1] that is constant
outside some finite subset of S.

a reasoning process P := a computable sequence of belief
states {Pn : L→ [0, 1]}.

We can now state some properties that we think a “good
reasoning process” should satisfy.

4 / 34



Logical Induction Andrew Critch (MIRI) critch@intelligence.org

Formalizing logical induction

Desirable properties

A “good” reasoning process P should satisfy:

1 (computability) There should be a Turing machine which
computes Pn(φ) for any input (n, φ).

2 (convergence) The limit P∞(φ) := lim
n→∞

Pn(φ) should exist

for all sentences φ.

3 (coherent limit) P∞ should be a coherent probability
distribution, i.e. obey laws like
P∞(A ∧ B) + P∞(A ∨ B) = P∞(A) + P∞(B)

4 (non-dogmatism) If Γ 0 φ then P∞(φ) < 1, and if Γ 0 ¬φ
then P∞(φ) > 0.
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Formalizing logical induction

Progress

Our forthcoming paper, “Logical Induction” (Garrabrant et al,
2016), shows that these properties are:

Related: A single property, the Garrabrant Induction
Criterion (GIC), implies them all.

Feasible: We have a logical induction algorithm, “LIA2016”,
that satisfies the GIC.

Extensible: Many further desirable properties follow from
GIC, and are hence satisfied by LIA2016.
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Properties of Garrabrant Inductors / LIA2016

Conservatism

(uniform non-dogmatism) For any recursively enumerable
sequence of sentences {φn}n∈N such that Γ ∪ {φn}n∈N is
consistent, there is a constant ε > 0 such that for all n,

P∞(φn) ≥ ε.

(Occam bounds) There exists a fixed positive constant C
such that for any sentence φ with Kolmogorov complexity
κ(φ), if Γ 0 ¬φ, then

P∞(φ) ≥ C2−κ(φ),

and if Γ 0 φ, then

P∞(φ) ≤ 1− C2−κ(φ).
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Properties of Garrabrant Inductors / LIA2016

Self-reflection

(belief in consistency) Let con(t) be the sentence ⌜There is
no proof of contradiction (⊥) from Γ using t or fewer
symbols⌝. Then

lim
n→∞

Pn(con(n)) = 1.

(belief in future consistency) In fact, for any encoding f of
a computable function f : N→ N,

lim
n→∞

Pn(con(f (n))) = 1.

For example, f (n) could be nn
nn

, or even Ackermann(n, n).
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Properties of Garrabrant Inductors / LIA2016

Important concept: polytime generable

We say that a sequence of statements (or other objects) φ is
polytime generable (p.g.) if there exists a Turing machine M
such that M(n) generates the output φn in time polynomial in n.

A polytime generable sequence φn can be thought of as a sequence
of T/F questions that is relatively easy to generate, but which can
be arbitrarily difficult to answer deductively as n grows. In other
words, think:

p.g. statements

↔
easy to state, hard to verify
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Properties of Garrabrant Inductors / LIA2016

Important concept: polytime generable

Example (statements that are hard to verify). Say f is any
computable function. Fix an encoding f of f . By the parametric
diagonal lemma [Boolos, 1993; p.53], there is a sentence G (−)
with one free variable such that for all n, Γ proves

G (n)↔ “There is no proof of G (n) in ≤ f (n) characters.”

Then the sequence φn := G (n) is log-time generable: writing down
φn only requires substituting the string n into G (−), which takes
O(log(n)) time. But if Γ is consistent, the length of the shortest
proof of φn is at least f (n). Nonetheless, we have. . .
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Properties of Garrabrant Inductors / LIA2016

Timely learning

(provability induction) Any p.g. sequence of theorems φn
will eventually be believed by Pn as soon as they are
generated, i.e.

lim
n→∞

Pn(φn) = 1.

In particular, P can be seen to “outpace deduction” by a
factor of f for any computable function f .

An analogy: Ramanujan vs Hardy. Imagine the φn are output
by a heuristic algorithm that generates mathematical facts without
proofs, similar in style to S. Ramanujan. Then Pn resembles G.H.
Hardy: he can only verify those results very slowly using the proof
system Γ, but after enough examples, he begins to trust
Ramanujan as soon as he speaks, even if the proofs of
Ramanujan’s later conjectures are impossibly long.
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Properties of Garrabrant Inductors / LIA2016

Important concept: timely manner

Given any sequences x and y , we write

xn 'n yn for
(

lim
n→∞

xn − yn = 0
)
,

xn &n yn for
(

lim inf
n→∞

xn − yn ≥ 0
)
, and

xn .n yn for
(

lim sup
n→∞

xn − yn ≤ 0
)
.

Given p.g. sequences of statements φ and probabilities p, we say
that P assigns p to φ in a timely manner if

Pn(φn) 'n pn
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Properties of Garrabrant Inductors / LIA2016

Timely learning

Henceforth, φ will always denote a p.g. sequence of sentences.

(timely adoption of limits) Let p be a p.g. sequence of
rational probabilities. If

P∞(φn) 'n pn.

then
Pn(φn) 'n pn.

The same implication holds with . or & in place of '.

Hence, any p.g. assignment of probabilities that P will learn, it
learns in a timely manner.
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Properties of Garrabrant Inductors / LIA2016

Timely learning

(introspection) A Garrabrant inductor P roughly knows what
its own beliefs are at the time that it has them. Formally, for
any polytime generable sequence of statements φn, any
interval (a, b) and any ε > 0, for sufficiently large n:

Pn(φn) ∈ (a + ε, b − ε) =⇒ Pn ⌜Pn(φn) ∈ (a, b)⌝ > 1− ε
Pn(φn) /∈ (a− ε, b + ε) =⇒ Pn

( ⌜Pn(φn) ∈ (a, b)⌝ ) < ε

(Liar’s Paradox resistance) Fix a rational p ∈ (0, 1), and use
Cantor’s Diagonal Lemma to define a sequence of “liar
sentences” Ln satisfying

Γ ` Ln ↔ ⌜Pn(Ln) ≤ p⌝ .
Then

lim
n→∞

Pn(Ln) = p.
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Properties of Garrabrant Inductors / LIA2016

Self-trust

(Trust in future beliefs) For any computable function
f (n) > n and polytime generable sentences φn, we have a
result roughly interpretable as saying that a GI’s current
beliefs about the sequence, conditioned on its future beliefs,
agree with its future beliefs:

“P(φn | ⌜Pf (n)(φn) ≥ pn⌝) &n pn”.

The precise statement (see paper for definitions) looks like
this:

En([φn] · Indδn(⌜Pf (n)(φn) ≥ pn⌝)) &n pn · En(⌜Pf (n)(φn)⌝).
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Properties of Garrabrant Inductors / LIA2016

Learning statistical patterns

(Learning pseudorandom frequencies) Let φ be a p.g.
sequence of Γ-decidable sentences. If φ is pseudorandom over
O(P) with frequency p (defined in paper), then

lim
n→∞

Pn(φn) = p.

(Learning pseudorandom trends) A stronger version of the
above, where the frequencies vary over time.
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Properties of Garrabrant Inductors / LIA2016

Learning provable relationships

(Learning case breakdowns) Let φ
1
, . . . , φ

k
be k p.g.

sequences of sentences such that for each n, Γ proves that
φ1n, . . . , φ

k
n are exclusive and exhaustive (i.e. exactly one of

them is true). Then

lim
n→∞

(
Pn(φ1n) + · · ·+ Pn(φkn)

)
= 1

(Learning affine relations) A stronger version of the above,
holding for every coherence relationship expressible as an
affine combination of probabilities.
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Properties of Garrabrant Inductors / LIA2016

Other properties

Well-behaved conditional credences, the analog of conditional
probabilities;

Well-behaved logically uncertain variables, the analogues of
classical random variables;

Well-behaved expected value operators for logically uncertain
variables;

Relationship to universal semi-measures;

· · · (check out the paper)
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Formalizing the Garrabrant induction criterion

Formalizing the Garrabrant induction criterion

Intuitively, GIC will say that you cannot easily make $∞ betting
against a Garrabrant inductor unless you risk plausibly going
arbitrarily into debt.

After enough definitions, GIC looks like this:

A market P is said to satisfy the Garrabrant induction criterion
with respect to a deductive process D if it cannot be unboundedly
exploited by an polytime trader T with bounded loss tolerance:

∀T ∈ Traders : MinPWorth(T ,P,D) > −∞ ⇒
MaxPWorth(T ,P,D) < +∞.

A market P which meets this criterion is called a Garrabrant
inductor.
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Formalizing the Garrabrant induction criterion

Formalizing the Garrabrant induction criterion

Informally, Garrabrant induction is “a financial solution to the
computer science problem of metamathematics.”
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Formalizing the Garrabrant induction criterion

Formalizing the Garrabrant induction criterion

〈
Time permitting, use whiteboard

to elaborate and/or field questions.

〉
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LIA2016

LIA2016

The basic ideas behind LIA2016 are these:

Against finitely many traders, you can use Brouwer’s fxed
point theorem to balance your prices with your anticipation of
their trades, so that they mostly trade with each other and
don’t get much of your money.

Against all traders, you can balance your prices against an
ever-expanding finite pool of traders that every trader
eventually winds up in before it earns too much money, so
that the total complexity-weighted wealth of the trader pool is
bounded.
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LIA2016

LIA2016

〈
Time permitting, use whiteboard

to elaborate and/or field questions.

〉

32 / 34



Logical Induction Andrew Critch (MIRI) critch@intelligence.org

Conclusions (PowerPoint)

1 Formalizing logical induction
Definitions
Desirable properties

2 Properties of Garrabrant Inductors / LIA2016
Conservatism
Self-reflection
Timely learning
Self-trust
Learning statistical patterns
Learning provable relationships
Other properties

3 Formalizing the Garrabrant induction criterion

4 LIA2016

5 Conclusions (PowerPoint)

33 / 34



Logical Induction Andrew Critch (MIRI) critch@intelligence.org

Conclusions (PowerPoint)

Conclusions

Beamer → PowerPoint

34 / 34


	Formalizing logical induction
	Definitions
	Desirable properties

	Properties of Garrabrant Inductors / LIA2016
	Conservatism
	Self-reflection
	Timely learning
	Self-trust
	Learning statistical patterns
	Learning provable relationships
	Other properties

	Formalizing the Garrabrant induction criterion
	LIA2016
	Conclusions (PowerPoint)

