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Abstract

It might seem reasonable that after seeing unboundedly many
examples of a true Π1 statement that a rational agent ought to be
able to become increasingly confident, converging toward probability
1, that this statement is true. However, we have proven that this plus
some plausible coherence properties, necessarily implies arbitrarily low
limiting probabilities assigned to some short true Π2 statements.

1 Introduction

Christiano et al. [2013] have investigated probability distributions over logical
statements. Model theory translates between collections of axioms and
statements, and models within which those statements are true or false. It
has been established that, starting from a probability measure P(µ) on models,
we can go to a probability measure P(pφq) on logical formulas φ which are
true or false in those models. This distribution P will obey desirable coherence
constraints such as that if A → B is a tautology then P(pAq) ≤ P(pBq).
Conversely, starting with a probability distribution on formulas which obeys
the same coherence constraints, we can go to a probability measure on
models by playing a martingale with formulas selected with their conditional
probability given previous formulas, until a complete theory is obtained.

As a concrete example, suppose that, inspired by Solomonoff induction, we
would like formulas or axioms F ∈ F with length |F | in some alphabet A to
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have probability at least equal to 2−|F |. Then we can obtain a corresponding
probability distribution over formulas, and hence over models, by beginning
with the empty formula and iteratively adjoining well-formed formulas ran-
domly generated from A, discarding formulas which yield inconsistencies.
Demski [2012] proposes a prior PL along these lines and suggests a sampling
procedure to converge to P in the limit.

Algorithm 1 gives this computable procedure, slightly adapted from the
published version. In this algorithm, gens() is a function which generates a
random sentence according to the probability distribution over formulas, and
con(σ, t) is a function which returns true if there is not a proof of contradiction
of length t or less from the set σ of sentences, and false otherwise.

Algorithm 1: Sampling procedure searching proofs up to length t

Function SAMPLE(t, φ):
S ←− []
loop

push(gens(), S) /* Add a random sentence to S */

y ←− con(S ∪ {φ }, t)
n←− con(S ∪ {¬φ }, t)
if ¬y ∧ ¬n then the random sentence was inconsistent

pop(S)
if y ∧ ¬n then φ holds in this sample

return true
if ¬y ∧ n then ¬φ holds in this sample

return false

Roughly, as we increase t, Algorithm 1 spends longer and longer checking
for contradictions and so converges on the true probability distribution in the
limit.

By adjoining e.g. the axioms of first-order arithmetic (PA) to the initial
empty set S of sentences we can obtain a probability distribution PPA which
assumes PA, and hence obtain probabilities over logical sentences about
first-order arithmetic. Probabilities of PA theorems will be 1, but statements
F not proven or disproven by first-order arithmetic will have probability at
least 2−|F | since they have at least this probability of being added immediately.

The limit of SAMPLE(t, φ) starting with PA will assign positive proba-
bility to Σ1 statements S which are false in the standard natural numbers
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N, or fail to converge to 1 for Π1 statements true in N, even in the limit of
seeing unboundedly many negative (resp. positive) examples of S and no
positive (resp. negative) examples of S. This is because SAMPLE has a
fixed positive probability of adding S at the start of its exploration. This
corresponds to assigning positive probability to nonstandard models in which
the Σ1 statement S is true.

It may seem sensible at first that a rational agent ought to be able to con-
verge toward limiting probabilities of 1 for true Π1 statements (probabilities
of 0 for false Σ1 statements) after seeing unboundedly many confirmations,
via scientific induction and probabilistic reasoning. For example, Hutter et al.
[2013] demands this (via the “Gaifman condition”) in his logical prior. How-
ever, Π1 convergence is not without downsides, so great as to argue strongly
against Π1 convergence as a desirable property for rational agents. (The
alternative being that rational agents should behave similarly to the original
sample distribution, and not perform scientific induction of unprovable Π1

statements with probabilistic confidence approaching 1 even in the limit of
an infinite number of confirming examples.)

We will demonstrate that convergence on Π1 truths implies bad behavior
with respect to assigning probabilities to statements in Π2. In particular, Π1

convergence along with basic coherence properties implies that some true
statements in Π2 will be assigned probability zero in the limit. (Contrast to
the limiting distribution of SAMPLE where short true Π2 statements S will
never have probability falling below 2−|S|.)

2 Main result

Let P : N×N→ [0, 1] be a function, where P (t, pφq) represents the probability
that an agent assigns to the statement φ at time t (where pφq is the Gödel
number of φ). So that an agent can actually determine the probabilities it
assigns, we require that each bit of P (t, pφq) is a computable function of t
and pφq.

Theorem 1. P (t, pφq) cannot satisfy all three of the following properties:

1. Coherence: If φ =⇒ ¬ψ, then

lim sup
t→∞

P (t, pφq) + P (t, pψq) ≤ 1.
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2. Scientific induction: If φ is a true Π1 sentence, then

lim
t→∞

P (t, pφq) = 1.

3. Π2 open mindedness: If φ is a true Π2 statement, then

lim inf
t→∞

P (t, pφq) > 0.

Proof. First note that conditions 1 and 2 imply that if φ is a false Π2 sentence,
then limt→∞ P (t, pφq) = 0. This is simply because any false Π2 sentence must
have some counterexample which is a true Π1 sentence. If ψ is this counterex-
ample, then limt→∞ P (t, pψq) = 1, and lim inft→∞ P (t, pφq) + P (t, pψq) ≤ 1,
so limt→∞ P (t, pφq) = 0.

So if there were a function P (t, pφq) satisfying all these conditions, then
each Π2 statement φ would be equivalent to the statement lim inft→∞ P (t, pφq) >
0. This is in fact a Σ2 statement: ∃n, b : ∀t ≥ n : P (t, pφq) ≥ 1/2b. So every
Π2 statement is equivalent to a Σ2 statement and is thus a ∆2 statement, but
the inclusion ∆2 ⊂ Π2 is known to be strict, so this is a contradiction.

3 Interpretation

A system with Π1 convergence assigns probabilities approaching 1 to Π1

statements for which it has seen sufficiently many examples. A Π2 statement
is composed of infinitely many Σ1 statements, each of which is a negated
Π1 statement. By the time we have observed the truth of the first trillion
Σ1 statements, at the end of sufficient time, there may be some further Σ1

statement for the trillion-and-first case, where the corresponding scientific
induction on its negated Π1 counterpart tells us to be extremely confident
that no example will ever be found. By the time the trillion-and-first positive
example of the Σ1 statement has been found, we are even more confident of
the untruth of the trillion-and-second statement. Thus attempting to create a
probability distribution which performs scientific induction on Π1 statements,
converging to probability 1 for the true versions of such statements, can create
zero limiting probabilities assigned to true Π2 statements.

By our main result, this effect is inevitable.
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