Learning to Distinguish Between Belief and Truth

Stefano V. Albrecht

June 15, 2016

Department of Computer Science The University of Texas at Austin Introduction

Behavioural Hypothesis Testing

The Future

Introduction

Multi-Agent Systems

Sources of uncertainty:

- states
- \cdot actions
- behaviour

Model-free methods:

- E.g. regret, policy gradient, model-free RL
- Does not address behaviour uncertainty

Model-free methods:

- E.g. regret, policy gradient, model-free RL
- Does not address behaviour uncertainty

Model-based methods:

• Learn model of agent behaviour during interaction, e.g.

Decision tree

Neural network

State machine

• Use model to plan own actions

Why agent modelling?

- Generalise observations to unseen situations
- Plan into the future (e.g. guided exploration, risk control)
- But...

Why agent modelling?

- Generalise observations to unseen situations
- Plan into the future (e.g. guided exploration, risk control)
- But...

Problem: no model criticism

Does not check validity of model during interaction

May use *incorrect model* without ever realising it

Agent Modelling - Example

Simple example:

- Rock-Paper-Scissors
- Human plays R-P-S-R-P-S-...

Model human as fixed distribution:

- + Limit model is $<\frac{1}{3},\frac{1}{3},\frac{1}{3}>$
- Expected payoff with correct model is 1
- Expected payoff with learned model is 0

Robot never realises that model is wrong!

Agent Modelling - Example

Complex examples:

- elderly support
- user interfaces
- electronic markets

What can go wrong?

- In general, anything
- Wrong models can make wrong predictions
- Wrong predictions can lead to bad actions

Model is effective hypothesis (belief) of agent

- Hypothesis can be *false*
- But: model not treated as hypothesis

Idea: learn beliefs over multiple models

Same problem:

- $Pr(\theta_X|H^t)$ is relative likelihood, not absolute truth
- Models may still be wrong

Belief and Truth

We need agent to do both:

- Construct hypothesis of behaviour
- Contemplate **truth** of hypothesis

Belief and Truth

We need agent to do both:

- · Construct hypothesis of behaviour
- Contemplate **truth** of hypothesis

Allows agent to...

- Reject model
- Change assumptions
- Change modelling method
- Get better model

– or –

• Resort to *safe* policy with no/minimal model

Behavioural Hypothesis Testing

Model is hypothesis because:

- true or false
- testable

Natural question:

Given hypothesis π_j^* for agent *j* and history H^t , does *j* really behave according to π_i^* ?

Behavioural Hypothesis Testing – Example

t	(a_1^t, a_2^t)	π_2^*
1	(R, P)	(.3, .1, .6)
2	(S, R)	$\langle .2,.3,.5 \rangle$
3	(P,S)	$\langle .7,.1,.2 \rangle$
4	(P,S)	$\langle .0,.4,.6 \rangle$
5	(R, P)	$\langle .4,.2,.4 \rangle$

Natural to compute some score from table:

- e.g. empirical frequency (Conitzer and Sandholm, 2007; Foster and Young, 2003)
- But: when is scoring scheme sufficient?
- But: how to choose threshold parameter for score?

Natural to compute some score from table:

- e.g. empirical frequency (Conitzer and Sandholm, 2007; Foster and Young, 2003)
- But: when is scoring scheme sufficient?
- But: how to choose threshold parameter for score?

Proposed solution: Frequentist hypothesis test (p-value)

- Allow for multiple scoring criteria in test statistic
- Significance level α invariant of scoring scheme

Each agent *i* has behaviour $\pi_i \in \Pi_i$

- $\pi_i(H^t) \in \Delta(A_i)$
- A_i is action space for agent i
- $H^{t} = (s^{0}, a^{0}, s^{1}, a^{1}, ..., s^{t})$ is history
- + s^{τ} is signal/state observed at time τ
- · $a^{\tau} = (a_1^{\tau}, ..., a_m^{\tau})$ is tuple of actions taken at time τ

We control *i* and observe *j*

- π_j is true behaviour of j
- π_i^* is hypothesised behaviour of j
- Question: $\pi_j^* = \pi_j$?

We control *i* and observe *j*

- π_j is true behaviour of j
- π_i^* is hypothesised behaviour of j
- Question: $\pi_j^* = \pi_j$?

Cannot answer directly since π_j unknown, but

- We know $\mathbf{a}_j^t = (a_j^0, ..., a_j^{t-1})$ from H^t
- Can generate $\hat{\mathbf{a}}_j^t = (\hat{a}_j^0, ..., \hat{a}_j^{t-1})$ using π_j^*
- Two-sample problem: were \mathbf{a}_i^t and $\hat{\mathbf{a}}_j^t$ generated by π_i^* ?

Compute *p*-value:

$$p = P\left(|T(\tilde{\mathbf{a}}_{j}^{t}, \hat{\mathbf{a}}_{j}^{t})| \geq |T(\mathbf{a}_{j}^{t}, \hat{\mathbf{a}}_{j}^{t})|\right)$$
$$\tilde{\mathbf{a}}_{j}^{t} \sim \left(\pi_{j}^{*}(H^{0}), ..., \pi_{j}^{*}(H^{t-1})\right)$$

Null-assumption: $\pi_j^* = \pi_j$

Reject π_i^* if p below some significance level $\alpha \in [0, 1]$

Test statistic:

$$T(\tilde{\mathbf{a}}_{j}^{t}, \hat{\mathbf{a}}_{j}^{t}) = \frac{1}{t} \sum_{\tau=1}^{t} T_{\tau}(\tilde{\mathbf{a}}_{j}^{\tau}, \hat{\mathbf{a}}_{j}^{\tau})$$
$$T_{\tau}(\tilde{\mathbf{a}}_{j}^{\tau}, \hat{\mathbf{a}}_{j}^{\tau}) = \sum_{k=1}^{K} w_{k} \left(Z_{k}(\tilde{\mathbf{a}}_{j}^{\tau}, \pi_{j}^{*}) - Z_{k}(\hat{\mathbf{a}}_{j}^{\tau}, \pi_{j}^{*}) \right)$$

 $w_k \in \mathbb{R}$ is weight for score function $z_k \in Z$ Intuition: $z_k(\tilde{\mathbf{a}}_j^{\tau}, \pi_j^*)$ likelihood that π_j^* produced $\tilde{\mathbf{a}}_j^{\tau}$

$$Z_1(\mathbf{a}_j^t, \pi_j^*) = \frac{1}{t} \sum_{\tau=0}^{t-1} \frac{\pi_j^*(H^{\tau})[a_j^{\tau}]}{\max_{a_j} \pi_j^*(H^{\tau})[a_j]}$$

$$z_1(\mathbf{a}_j^t, \pi_j^*) = \frac{1}{t} \sum_{\tau=0}^{t-1} \frac{\pi_j^*(H^{\tau})[a_j^{\tau}]}{\max_{a_j} \pi_j^*(H^{\tau})[a_j]}$$

$$Z_{2}(\mathbf{a}_{j}^{t},\pi_{j}^{*}) = \frac{1}{t}\sum_{\tau=0}^{t-1} 1 - \mathbb{E}_{a_{j}\sim\pi_{j}^{*}(H^{\tau})} \left| \pi_{j}^{*}(H^{\tau})[a_{j}^{\tau}] - \pi_{j}^{*}(H^{\tau})[a_{j}] \right|$$

$$z_1(\mathbf{a}_j^t, \pi_j^*) = \frac{1}{t} \sum_{\tau=0}^{t-1} \frac{\pi_j^*(H^{\tau})[a_j^{\tau}]}{\max_{a_j} \pi_j^*(H^{\tau})[a_j]}$$

$$Z_{2}(\mathbf{a}_{j}^{t},\pi_{j}^{*}) = \frac{1}{t}\sum_{\tau=0}^{t-1} 1 - \mathbb{E}_{a_{j}\sim\pi_{j}^{*}(H^{\tau})} \left| \pi_{j}^{*}(H^{\tau})[a_{j}^{\tau}] - \pi_{j}^{*}(H^{\tau})[a_{j}] \right|$$

$$z_3(\mathbf{a}_j^t, \pi_j^*) = \sum_{a_j \in A_j} \min \left[\frac{1}{t} \sum_{\tau=0}^{t-1} [a_j^\tau = a_j]_1, \frac{1}{t} \sum_{\tau=0}^{t-1} \pi_j^* (H^\tau)[a_j] \right]$$

27

Can show that test statistic eventually normal, but:

- shaped gradually over time
- initially skewed

Need special distribution to capture dynamics:

• Skew-normal distribution (Azzalini, 1985)

$$f(x \mid \xi, \omega, \beta) = \frac{2}{\omega} \phi\left(\frac{x-\xi}{\omega}\right) \Phi\left(\beta\left(\frac{x-\xi}{\omega}\right)\right)$$

- + ϕ and Φ are standard normal PDF and CDF
- Learn parameters ξ, ω, β during interaction

 π_i, π_j, π_j^* : random action distribution in each time step Tested all combinations of score functions z_1, z_2, z_3

$$\begin{array}{||c||} \pi_j^* = \pi_j \\ \hline & \pi_j^* \neq \pi_j \\ \hline & |A_j| = 2 \\ \hline & |A_j| = 10 \\ \hline & |A_j| = 20 \end{array}$$

Experiments: Random Behaviours

Score combination can "heal" convergence:

 π_i, π_j, π_i^* : behaviour from same adaptive class (LFT, CDT, CNN)

 π_i, π_j, π_i^* : behaviour from same adaptive class (LFT, CDT, CNN)

Limitation:

Does not probe specific aspects of hypothesis!

- S. Albrecht, J. Crandall, and S. Ramamoorthy.
 Belief and truth in hypothesised behaviours.
 Artificial Intelligence, 235:63–94, 2016.
- S. Albrecht and S. Ramamoorthy.
 Are you doing what I think you are doing? Criticising uncertain agent models.

In 31st Conference on Uncertainty in Artificial Intelligence, pages 52–61, 2015.

The Future

Testing is only part of bigger picture...

• Need hypothesis "contemplation"

Testing is only part of bigger picture...

• Need hypothesis "contemplation"

Testing is only part of bigger picture...

• Need hypothesis "contemplation"

The Future

Exploration:

• How and when to explore aspects of hypothesis?

using random exploration

Revision:

• How to revise and improve aspects of hypothesis?

Example:

- Hypothesis is reinforcement learner
- How to revise
 - ... learning rate?
 - ... exploration rate?
 - ... discount rate?

Individual pieces of puzzle exist

- Need integration into complete solution
- Important, feasible, and timely
- Relevant in all areas of AI

Challenges:

- Complexity, soundness, completeness, etc.
- Contemplate usefulness, not just correctness
- Can agent learn on its own how to contemplate?

Thank you