Issues Concerning AI Transparency

Tom Dietterich
Why do we need transparency?

• Trust
• Effective human-machine interaction
• Effective machine-to-machine collaboration
• Software engineering
Goal: Trustable AI Systems

• Trustable AI in high-stakes applications
 – Self-driving cars
 – Autonomic power grid
 – Medical devices and surgical robots
 – Cyber defense
 – Weapons systems
 – etc.

• Trustable human augmentation
 – Trustable information source
 – Trustable personal assistant
 – Trustable augmented reality

• Trust that the system has not been compromised by cyberattack
Interaction and Collaboration

• In order for a human to interact successfully with an AI system...
 – human needs to understand
 • what the AI system knows and does not know
 • what the system can and cannot do
 • situations under which the system can and cannot be trusted
 • good predictive model of how the system will behave; when it will engage in clarifying dialogues

• In order for multiple AI systems to collaborate they need
 – models of each other: knowledge, capabilities, preferences, costs
Related Needs

• Software Engineering Tools
 – Training: building the software using machine learning
 – Testing: finding failure pathways
 – Debugging: fixing errors
Explanation Paradox

• In the 1980s, Expert Systems vendors found that the market demanded that there be an “Explanation Facility”
 – But no one ever used these in practice
• People are surprisingly willing to trust a system after only a small amount of experience with it
 – Over-estimate how general the system’s knowledge is?
 – Assume that the system is based on broad fundamental principles rather than thousands of memorized cases?
Fundamental Issues

• Issue 1: Some AI knowledge or behaviors may not have short descriptions
 – Deep learning may produce a hierarchical cross product of local generalizations
 – Theorems may have no short proofs
 • many different information sources
 • many interlocking steps
 • Example: latest results on Pythagorean coloring and the Busy Beaver problem, Erdös discrepancy conjecture
• Issue 2: How do we ensure that explanations are faithful to the actual mechanism of the system?
 – What kinds of intervention or feedback are supported by the explanation?
 • Inserting a breakpoint at an inference step?
 • Manipulating a component (e.g., feature or parameter value) and observing its consequences?
 • Feedback on the explanation results in changes in the system behavior?
Example: End-User Feedback to Learning Systems

- Can the user edit the explanation and cause the “right” changes in the classifier?

User edits the explanation (e.g., adds/deletes features)
• Issue 3: How do we validate “generality”?
 – Test that similar inputs always exercise similar components and produce similar outputs
 • Validate this formally?
 • Test experimentally? What is the smallest change that can produce an output difference greater than Δ?
 – Enforce “smoothness” of the input-output mapping
 • detect and remove fractal behavior?
 • ensure that the influence of every subcomponent is limited?
 – Ensure that there are no hidden back doors
• Issue 4: How can we easily test complex situations?
 – Need ways of generating complex scenarios
 – Need to ensure that there are no “tells” that are exploited by the AI system
 • “Tank in the trees” problem
 • UTF-16 ^@p^@r^@o^@b^@l^@e^@m
 – Need to be able to manage augmented reality tests
 • Real queries to the web?
 • Real sensor data with overlaid augmentations?
 • Example: simulated weapons in carry-on bags
 – Simulated Human-in-the-loop?
• Issue 5: How do we evaluate explanation quality?

 – What metrics?
 • User satisfaction (??)
 • User takes appropriate actions based on the explanations
 • User develops appropriate trust (knows when and when not to trust)
 • User can predict future behaviors
 – actions the system will take
 – when the system will ask for help

 – Human user studies are expensive
 – Cheaper proxies?
• Issue 6: Transparency for Multiple AI Collaboration
 – Metrics for successful collaboration?
 – Accuracy of each system’s model of the other systems?
 • probability that delegation succeeds?
 • probability that agent A proactively takes a step that will help agent B? Including warning B of potential trouble?
• Issue 7: Transparency for Software Engineering
 – Adversarial testing: Engineer defines bad outcomes and then applies AI search methods to find high probability paths to those outcomes
 – Debugging
 • Can the engineer easily find the cause of failures discovered through testing?
 • Can the cause be easily fixed?
 • Without introducing new failures?