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Combinatorial Search and Optimization

Progress in combinatorial search since the 1990s (SAT, SMT, 
MIP, CP, …): from 100 variables, 200 constraints (early 90s) 
to 1,000,000 variables and 5,000,000 constraints in 25 
years

SAT:  Given a formula F, does it have a satisfying 
assignment?

Symbolic representation + combinatorial reasoning technology 
(e.g., SAT solvers) used in an enormous number of 
applications

(x1 � x2 � �x3)
� (� x2 � �x1)
� (� x1 � x3) 

x1=True
x2=False
x3=True
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Applications

logistics

chip design

timetabling Game playing

Package dependencies

scheduling Program synthesis

protein folding

network design



Problem Solving in AI
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General
Reasoning
Engine

Solution

Domain-specific instances

Problem
instance

applicable to all domains
that can be expressed in the 
modeling language

Model
Generator
(Encoder)

Key paradigm in AI:

Separate models from algorithms 

General modeling language and algorithms

What is the “right” modeling language?



Knowledge Representation

• Model is used to represent our domain knowledge
• Knowledge that is deterministic

– “If there is rain, there are clouds”: 
Clouds OR �(Rain)

• Knowledge that includes uncertainty
– “If there are clouds, there is a chance for rain”

• Probabilistic knowledge
– “If there are clouds, the rain has probability 0.2”

Probability (Rain=True | Clouds=True)=0.2

Probabilistic/statistical modeling useful in many domains: 
handles uncertainty, noise, ambiguities, model 
misspecifications, etc. Whole new range of applications!



Applications of Probabilistic Reasoning

Social sciences

robotics

Personal assistants
Image classification

Machine Translation

bioinformatics Semantic labeling

ecology

Translate into 
Russian “the spirit is 
willing, but the flesh 
is weak” 

.. but, how do we represent probabilistic knowledge?



Graphical models

For any configuration (or state), defined by an assignment of values to 
the random variables, we can compute the weight/probability of that 
configuration.

SPRINKLERRAINWET GRASS 

SPRINKLER

True False

R
A

IN
True 0.01 0.99
False 0.5 0.5

RAIN

True False

0.2 0.8

Example: Pr [Rain=T, Sprinkler=T, Wet=T] ∝ 0.01  * 0.2  *  0.99  

WET

True False

… …

0.99 0.01
… …

Factor “Rain => � Sprinkler”“Rain OR Sprinkler => Wet Grass” “Rain”

Idea: knowledge encoded as soft dependencies/constraints among the 
variables (essentially equivalent to weighted SAT)

SPRINKLER

True False

R
A

IN
True F T
False T T

How to do reasoning?



Probabilistic Reasoning

Typical query: What is the probability of an event? For example,
Pr[Wet=T] = ∑x={T,F} ∑y={T,F} Pr[Rain=x, Sprinkler=y, Wet=T]

Involves (weighted) model counting:
• Unweighted model counting (hard constraints):

Pr[Wet=T] =  (# SAT assignments with Wet=True) / (# of SAT assignments) 
• Weighted model counting (soft constraints):

Pr[Wet=T] = (weight of assignments with Wet=True) / (weight of assignments) 

8

SPRINKLERRAINGRASS WET



Problem Solving in AI

General
Reasoning
Engine

Solution
Problem
instance

Model
Generator
(Encoder)

For deterministic knowledge bases, soundness of the reasoning 
engine is crucial

– Lots of work on verifying “proofs”

For probabilistic reasoning, more emphasis on scalability than 
accuracy guarantees

– (Markov Chain) Monte Carlo sampling
– Variational methods
– Small errors might be OK, probability 0.546780 vs. 0.546781. 
– 0.01 vs. 0.96 typically NOT OK

With accuracy guarantees
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Model/Solution Counting

Deterministic reasoning:
SAT:  Given a formula F, does it have a satisfying 

assignment?

Probabilistic reasoning:
Counting (#-SAT):  How many satisfying assignments 

(=models) does a formula F have?
{x1=True, x2=False, x3=True}

…
{x1=False, x2=False, x3=False}

(x1 � x2 � �x3)
� (� x2 � �x1)
� (� x1 � x3) 

(x1 � x2 � �x3)
� (� x2 � �x1)
� (� x1 � x3) 

x1=True
x2=False
x3=True
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The Challenge of Model Counting

• In theory
– Counting how many satisfying assignments at least as hard as 

deciding if there exists at least one
– Model counting is #P-complete

(believed to be harder than NP-complete problems)

• Practical issues
– Often finding even a single solution is quite difficult!
– Typically have huge search spaces

• E.g. 21000 | 10300 truth assignments for a 1000 variable formula
– Solutions often sprinkled unevenly throughout this space

• E.g. with 1060 solutions, the chance of hitting a solution at random is 
10�240
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How Might One Count?

Problem characteristics:

� Space naturally divided into 
rows, columns, sections, …

� Many seats empty

� Uneven distribution of people 
(e.g. more near door, aisles, 
front, etc.)

Analogy: How many people are present in the hall?
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From Counting People to #SAT

Given a formula F over n variables,
– Auditorium            :      search space for F
– Seats                    :      2n truth assignments
– Occupied seats    :      satisfying assignments

: occupied seats (47) = satisfying assignments
: empty seats (49)
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#1: Brute-Force Counting

Idea:
– Go through every seat
– If occupied, increment counter

Advantage:
– Simplicity, accuracy

Drawback:
– Scalability

: occupied seats (47)
: empty seats (49)
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#2: Branch-and-Bound (DPLL-style)

Idea:
– Split space into sections

e.g. front/back, left/right/ctr, …
– Use smart detection of full/empty 

sections
– Add up all partial counts

Advantage:
– Relatively faster, exact

Drawback:
– Still “accounts for” every single 

person present:  need extremely 
fine granularity

– Scalability
Framework used in DPLL-based
systematic exact counters
e.g. Cachet [Sang-et]

See also compilation approaches [Darwiche et. al]

Approximate model counting?
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#3: Estimation By Sampling -- Naïve

Idea:
– Randomly select a region
– Count within this region
– Scale up appropriately

Advantage:
– Quite fast

Drawback:
– Robustness: can easily under- or 

over-estimate
– Scalability in sparse spaces:

e.g. 1060 solutions out of 10300

means need region much larger 
than 10240 to “hit” any solutions

No way of knowing if the answer is accurate or not!
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A Distributed Coin-Flipping Strategy   
(Intuition)

Idea:
Everyone starts with a hand up
– Everyone tosses a coin
– If heads, keep hand up,

if tails, bring hand down
– Repeat till no one hand is up
Return 2#(rounds)

Does this work?
• On average,  Yes!
• With M people present, need roughly log2M rounds for 

a unique hand to survive

Let’s Try Something Different …
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Making the Intuitive Idea Concrete

• How can we make each solution “flip” a coin?
– Recall: solutions are implicitly “hidden” in the formula
– Don’t know anything about the solution space structure

• How do we transform the average behavior into a robust 
method with provable correctness guarantees?

Somewhat surprisingly, all these issues can be resolved!



Random parity constraints

• XOR/parity constraints:
– Example:   a � b � c � d = 1 satisfied if an odd number of a,b,c,d are set to 1

• Each solution satisfies this random constraint with probability ½
• Pairwise independence: For every two configurations A and 

B, “A satisfies X ” and “B satisfies X ” are independent 
events
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Randomly generated parity constraint  X

Each variable 
added with prob. 
0.5

x1 � x3 � x4 � x7 � x10 =  1

Clause 1 Clause m

var 1 var 10
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Using XORs for Counting

Given a formula F
1. Add some XOR constraints to F to get F’

(this eliminates some solutions of F)
2. Check whether F’ is satisfiable
3. Conclude “something” about the model count of F

Key difference from previous methods:
o The formula changes
o The search method stays the same (SAT solver). If SAT solver is 

sound, so it this procedure!

Streamlined
formula

CNF formula

XOR
constraints

Off-the-shelf
SAT Solver

deduce
model
count

repeat a few times
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The Desired Effect

M = 50 solutions 22 survive

7 survive

13 survive

3 surviveunique solution

If each XOR cut the solution space roughly in half, would
get down to a unique solution in roughly log2 M steps!



What about weighted counting?

For any configuration (or state), defined by an assignment of values to 
the random variables, we can compute the weight/probability of that 
configuration.

SPRINKLERRAINWET GRASS 

SPRINKLER

True False

R
A

IN
True 0.01 0.99
False 0.5 0.5

RAIN

True False

0.2 0.8

Example: Pr [Rain=T, Sprinkler=T, Wet=T] ∝ 0.01  * 0.2  *  0.99  

WET

True False

… …

0.99 0.01
… …

Factor “Rain => � Sprinkler”“Rain OR Sprinkler => Wet Grass” “Rain”
SPRINKLER

True False

R
A

IN
True F T
False T T



Hashing as a random projection

• XOR/parity constraints:
– Example:   a � b � c � d = 1 satisfied if an odd number of a,b,c,d are set to 1
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Randomly generated parity constraint  X

Each variable 
added with prob. 
0.5

x1 � x3 � x4 � x7 � x10 =  1

configurations

w
ei

gh
t

Set weight to zero if constraint is not satisfied

configurations

w
ei

gh
t

0 50 1000

1

2

3

Configurations

W
ei
gh
t Random projection
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Using XORs for Weighted Counting

Given a weighted formula F
1. Add some XOR constraints to F to get F’

(this eliminates some solutions of F)
2. Check whether F’ is satisfiable Find MAX-weight assignment
3. Conclude “something” about the weighted model count of F

Key difference from previous methods:
o The formula changes
o The search method stays the same (MAX-SAT, ILP, CP solvers)

Streamlined
formula

weighted formula

XOR
constraints

Off-the-shelf
Optimizer

Deduce
weighted

model
count

repeat a few times



Accuracy Guarantees

Main Theorem (stated informally): 

With probability at least 1- δ (e.g., 99.9%), 
WISH (Weighted-Sums-Hashing) computes a sum defined
over 2n configurations (probabilistic inference, #P-hard)
with a relative error that can be made as small as desired,
and it requires solving θ(n log n) optimization instances 
(NP-equivalent problems).
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Key Features

• Strong accuracy guarantees

• Modular design: can plug in off-the-shelf optimization tools
– Branch and Bound / MaxSAT (Toulbar)
– Integer Linear Programming (IBM CPLEX)

• Decoding techniques for error correcting codes (LDPC)

• Even without optimality guarantees, bounds/approximations 
on the optimization translate to bounds/approximations on 
the weighted sum

• Straightforward parallelization (independent optimizations)
– We experimented with >600 cores
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Inference benchmark: Ising models from physics
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Guaranteed relative error: ground truth is 
provably within this small error band
(too small to see with this scale)

Variational methods 
provide inaccurate 
estimates 
(well outside the 
error band)

27

WISH

Belief Propagation

Mean Field

BP variant

=Ground Truth



Inference benchmark: Ising models from physics
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Inference benchmark: Ising models from physics
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Gibbs Sampling



Inference benchmark: Ising models from physics
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Gibbs Sampling

Belief Prop.



Inference benchmark: Ising models from physics
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Gibbs Sampling

Belief Prop.

WISH



Implementations and experimental results

• Many implementations based on this idea (originated from theoretical work due 
to [Stockmeyer-83, Valiant-Vazirani-86]):

– Mbound, XorSample [Gomes et al-2007]

– WISH, PAWS [Ermon et al-2013]

– ApproxMC, UniWit,UniGen [Chakraborty et al-2014]

– Achilioptas et al at UAI-15 (error correcting codes)

– Belle et al. at UAI-15 (SMT solvers)

• Fast because they leverage good SAT/MAX-SAT solvers! 

• How hard are the “streamlined” formulas (with extra parity constraints)?
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Sparse/ Low-density parity constraints

The role of sparse (low-density) parity constraints

X = 1 Æ length 1, large variance
X � Y = 0 Æ length 2,  variance?
X � Y � Q = 0 Æ length 3,  variance?

X � Y � … � Z = 0     Æ length n/2, small variance 

The shorter the constraints are, the easier they are to reason about.
The longer the constraints are, the more accurate the counts are

33

Increasingly 
complex 
constraints /

… Increasingly low 
variance -

Can short constraints actually be used?



0 50 1000

1
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Configurations
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Low density parity constraints

• Short XOR/parity constraints
– a � b � c � d = 1: satisfied if an odd number of a,b,c,d are set to 1
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Each variable added 
with probab. << 0.5 Randomly generated parity constraint X

x1 � x7 =  1

configurations

w
ei

gh
t

Before:



Random coin flipping

• Recall the distributed coin flipping mechanism
• Ideally, each configuration flips a coin independently

0000 … 11110001 1101 1110

Heads Tails

Configurations

Coin flips



• Issue: we cannot simulate so many independent coin flips (one for 
each possible variable assignment)

• Solution: each configuration flips a coin pairwise independently

• Any two coin flips are independent
• Three or more might not be independent
Still works! Pairwise independence guarantees that configurations do not 

cluster too much in single bucket. 
Can be simulated using random parity constraints: simply add each 

variable with probability ½. 

Pairwise Independent Hashing

…

``Long’’ parity constraints are difficult to deal with!



• New class of  average universal hash functions (coin flips generation 
mechanism)

• Pairs of coin flips are NOT guaranteed to be independent anymore
• Key idea: Look at large enough sets. If we look at all pairs, on average 

they are “independent enough”. Main result:
1. These coin flips are good enough for probabilistic inference (applies to all 

previous techniques based on hashing; same theoretical guarantees)
2. Can be implemented with short parity constraints

Average Universal Hashing

…



Short Parity Constraints for Probabilistic Inference 
and Model Counting

Main Theorem (stated informally): [AAAI-16] 

For large enough n (= number of variables),
– Parity constraints of length log(n) are sufficient.
– Parity constraints of length log(n) are also necessary.

Proof borrows ideas from the theory of low-density parity 
check codes.

Short constraints are much easier to deal with in practice.
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Example
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Can other constraints be used?

Sparse XOR constraints 
provide lower and upper 
bounds



Random Constraints for Probabilistic Inference
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1¬x1

x2

¬x2

x3

¬x3

x4

¬x4

e.g., f(a,b,c,d)=XOR(a,b,c,d)
f(a,b,c,d)=(a AND b) OR c

a

b

c

d

Function f(a,b,c,d)

Randomly 
wire inputs to 
(negated) 
variables Would this work well as a hash function?

x1

0



Noise sensitivity
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Performance of this family of hash functions depends on the noise 
sensitivity of f (a,b,c,d)

• Given a random input x, e.g. x=(0, 1,1,0)
• Randomly flip each bit of x with probability p Æ x’=(1, 1,1,0)
• How likely is that f(x) = f(x’)?

Theorem (informal statement): The more noise sensitive a function f 
is, the better the corresponding family of hash functions (with random 
wiring) behaves. [ICML-16]

f (a,b,c,d)

a
b

c
d



Random Constraints for Probabilistic Inference and 
Model Counting
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• Noise sensitivity can be computed in closed form from the Fourier 
spectrum of f. Known for many common functions!

• Intuitively, the more “oscillatory” f is, the more noise sensitive it is

• Corollary: XORs are the “best” hash function

f (a,b,c,d)

2-D sine 
wave

2-D parity 
function
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Using random constraints for counting

Given a formula F
1. Add some random constraints to F to get F’

(this eliminates some solutions of F)
2. Check whether F’ is satisfiable
3. Conclude “something” about the model count of F

Difference from previous method:
Can use other constraints instead of XORs! For example, majority 

function or “tribes”

Streamlined
formula

CNF formula

Random
constraints

Off-the-shelf
SAT Solver

deduce
model
count

repeat a few times



Experimental results
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Tribes: One or two orders of magnitude faster!

(x1 � x2 � �x3)
� (� x4 � �x5)
� (� x6 � x7) 



Hashing as a random projection

• XOR/parity constraints:
– Example:   a � b � c � d = 1 satisfied if an odd number of a,b,c,d are set to 1
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Randomly generated parity constraint  X

Each variable 
added with prob. 
0.5

x1 � x3 � x4 � x7 � x10 =  1

configurations

w
ei

gh
t

Set weight to zero if constraint is not satisfied

configurations

w
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gh
t
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W
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t Random projection

This random projection:

1. “simplifies” the model
2. preserves its “key properties”



Variational Inference: basic idea

Approximate a complex distribution p using a simpler (tractable) 
distribution q (e.g., a Gaussian distribution)
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Credit: Minka et al.



Variational Inference
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p

Qtract

q*

DKL(q*||p)

q* is the best approximation 
of p, among the tractable 
distributions in Qtract

Issue: this “distance” can be 
arbitrarily large

No guarantee on the 
accuracy if Q is too simple: 
the approximation can be 
arbitrarily bad

E.g., mean field
q(x1,x2,x3)= q1(x1) q2(x2) q3(x3)



Variational Inference with Random Projections
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p

Qtract

q*
R(p)

Random projection

Information projection



Variational Inference with Random Projections
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p

Qtract

q*
R(p)



Variational Inference with Random Projections
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p

Qtract

q*

R(p)

Main result: after the random projection (e.g., using XORs), the 
resulting distribution can be well approximated using standard 
variational inference (with guarantees)



General Variational Result

Theorem:
If an approximating set of distributions Q contains the set of 

degenerate distributions D, then variational inference over Q
using this random projection scheme will yield tight bounds on 
the partition function (model count).
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Mean Field with Random Projections
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hidden
0

1

1

0

1

0

0

1

0

0

visible

0

1

1

0

1

0

0

1

0

0

Fully factored distribution:
p(x) = p(x1) p(x2) … p(xn)

Randomly-projected mean field:

Variational objective is still coordinate-wise 
concave and has fewer variables



RBMs

53



Conclusions

• Reasoning engines for deterministic knowledge are 
guaranteed to provide the right answer

• Probabilistic reasoning:
– So far, main focus on scalability rather than 

accuracy/robustness
– Recent approaches: try to “reduce” to deterministic 

problems so that we can leverage existing solvers.
– Provides nice theoretical guarantees, as opposed to 

traditional approaches (MCMC, variational)
– Lots more to explore: continuous variables, satisfiability 

modulo theory, accuracy vs runtime tradeoffs
• Dream: general purpose, probabilistic inference 

engines that are both scalable and (provably) accurate
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