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Goal 1: Uncertainty Aware ML Systems

* Design machine learning systems that “know what they know”
[Li, Littman, Walsh ICML’08]

* Provide guarantees on predictions
* Allow systems to abstain and/or produce ambiguous predictions

e Achieve this in:
* Closed Worlds = Known Unknowns
* Open Worlds = Unknown Unknowns

e Why?
e Safe and Trustworthy Al
* End User Acceptability
* Computational Efficiency — use more complex model if simpler model is uncertain



Goal 2: Transparent Uncertainty in ML Systems

* Design machine learning systems that can “explain their uncertainty”
* Give insight into why they abstained or produced ambiguous answer

* Achieve these goals in:
* Closed Worlds = Known Unknowns
* Open Worlds = Unknown Unknowns

* Why?
 Basis for feedback to learning systems
* Basis for investigating anomalies
* Mechanism for building trust



Outline

* Conformal Prediction for Uncertainty Aware Classification
* Empirical performance in closed worlds
* Empirical performance in open worlds
* Not effective in open worlds — Suggests integrating with anomaly detection

* Explanations for Anomaly Detection
* What is an anomaly explanation?
* How to compute explanations?
* How to evaluate explanations?



Standard Classification

Classes: {Human, Animal, Hybrid}

Animal

Predictor > Human

Human

Uncertainty in the system is not made explicit in the predictions.




Conformal Prediction [vovk et al., 2005)

Most basic type of explanation of
uncertainty

Classes: {Human, Animal, Hybrid}

> {Animal, Hybrid}

Conformal Predictor > {Animal, Human, Hybrid}

> {Human}

* Conformal predictors output sets of labels.

e Label set is correct if it contains true label.



Conformal Prediction: Accuracy

Classes: {Human, Animal, Hybrid}

> {Animal, Hybrid}

Conformal Predictor > {Animal, Human, Hybrid}

> {Human}

Accuracy Constraint (e.g. 95%)

Requirement: must return label sets that achieve accuracy constraint



Conformal Prediction: Accuracy

But we can get 100% accuracy by always returning all labels.

Classes: {Human, Animal, Hybrid}

* {Animal, Human, Hybrid}

Conformal Predictor > {Animal, Human, Hybrid}

> {Animal, Human, Hybrid}

Accuracy Constraint (e.g. 95%)

Requirement: must return label sets that achieve accuracy constraint



Conformal Prediction: Ambiguity

Want to minimize ambiguity of returned label sets.

Classes: {Human, Animal, Hybrid}

> {Animal, Hybrid}
ambiguity = 1/2

Conformal Predictor > {Animal, Human, Hybrid}
ambiguity =1

> {Human}
ambiguity =0

Accuracy Constraint (e.g. 95%)

Ambiguity = # of predicted labels—1/# of labels—1 €[0,1]



Conformal Prediction: Constrained Objective

Minimize: expected ambiguity

Subject to: accuracy constraint

Classes: {Human, Animal, Hybrid}

> {Animal, Hybrid}

Conformal Predictor > {Animal, Human, Hybrid}

> {Human}

Accuracy Constraint (e.g. 95%)



Inside Conformal Prediction

Conformal prediction is a wrapper around any predictor that produces
“non-conformity scores” over the classes relative to training data

Your Favorite

Predictor

Training Data

Predictor quality influences ambiguity of conformal prediction.

Non-conformity Scores
[human,animal,hybrid]

[6, 0.5, 0.1]

{Animal, Hybrid}

[0.01, 10, 7]

[0.1, 0.5, 0.15]

—{Animal, Human, Hybrid}

{Human}

Accuracy Constraint (e.g. 95%)



Non-conformity Scores: Nearest Neighbor

NonConformity(X, Y) = distance to closest Y/distance to closest non Y

Nearest Neighbor
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Non-conformity Scores: Random Forest

NonConformity(X, Y) = # of trees not predicting Y/# of trees

AAAAA

E— - animal hybrid human  hybrid human

Random Forest

. ] NonConformity(X, animal) = 4/5
R ; st X. - . NonConformity(X, human) = 3/5
" e E . NonConformity(X, hybrid) = 3/5




Conformal Prediction: Neural Networks

NonConformity(X, Y) = max output for not Y /output for Y

Neural Networks
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: NonConformity(X, hybrid) =0.15/0.8 = 0.19




Inside Conformal Prediction

Non-Conformity Score

Histogram
Calibration
Data
Your Favorite Non-conformity
Predictor Scores
[0.05, 0.9, 0.1]
> —
Animal Hybrid Human
Training Data Accuracy Constraint (e.g. 95%)

Are at least 5% of the calibration scores weirder than this label with this example?



Inside Conformal Prediction

Non-Conformity Score

Histogram
Calibration
Data
g
Your Favorite Non-conformity X
Predictor Scores
[0.05, 0.9, 0.1]
> —
Animal Hybrid ) Human
Training Data Accuracy Constraint (e.g. 95%)

Are at least 5% of the calibration scores weirder than this label with this example?



Conformal Prediction: Empirical Evaluation

* Very few empirical evaluations of conformal prediction
e Rarely look at ambiguity

* Most results for Nearest Neighbor -- often yields large ambiguity in
our experience

* How does ambiguity vary with amount of training data in closed
worlds?

* How does conformal prediction perform in open worlds?



Closed World: Random Forest Results

* Arrhythmia: 452 data points, 13 labels, major class imbalances
e Cardiotocography: 2126 instances, 10 labels, balanced classes
* Image Segmentation: 2310 instances, 8 labels, balanced classes

* |ris: 150 instances, 3 labels, balanced classes



Closed World: Random Forest
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Ambiguity

Closed World: Random Forest
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Ambiguity

Closed World: Random Forest

Segmentation
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Closed World: Random Forest

e Overall, we see “ideal behavior” on these data sets.

* Close to 0 ambiguity with small amount of data.



Closed World: Convolutional Network: Cifar 10
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Closed World: Deep Net

Ambiguity
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Closed World Observations

e Overall, we see “ideal behavior” on these data sets for both random
forest and convolutional network.

* Close to 0 ambiguity with small amount of data.

* Neural network very rarely abstains (negative ambiguity) compared
to the random forest



Open World: Conformal Prediction

Training Labels = {Human, Animal, Hybrid}

{Animal}

Predictor > 0

{Human, Animal}

We don’t have a label for “monster”!

Only reasonable output is to abstain (empty set)




Open World Experiments

* Feed novel classes to conformal predictor
 Random Forest : withheld a l[abel from each training set

* Convolutional Network : feed it images that have nothing to do with
Cifar 10



Ambiguity

Open World: Random Forest

Ambiguity for just novel classes
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Ambiguity

Open World: Random Forest

Ambiguity for just novel classes
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Open World: Convolutional Network
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Open World: Convolutional Network

Ambiguity for just novel Nethack images
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Open World Observations

* In all but one case there was practically no abstention

* The theory of conformal prediction does not address the issue of
open worlds

* Appears that standard conformal prediction on its own is not
sufficient for open worlds



Next Steps for Open Worlds

Non-conformity

, Scores -
Predictor >

Accuracy Constraint

New algorithms for training predictors.

Goal: yield reliable abstention for novel classes.



Next Step for Open Worlds

normal Non-conformity
data Scores
Anosnaly Predictor >
Detector
anomalous
data
Anomaly Accuracy Constraint
Handler

How to select anomaly threshold?

Can we provide any guarantees in open worlds?



