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Goal 1: Uncertainty Aware ML Systems 

• Design	machine	learning	systems	that	“know	what	they	know”		
[Li,	Li/man,	Walsh	ICML’08]	
•  Provide	guarantees	on	predicNons	
•  Allow	systems	to	abstain	and/or	produce	ambiguous	predicNons	

• Achieve	this	in:		
•  Closed	Worlds	=	Known	Unknowns		
•  Open	Worlds	=	Unknown	Unknowns	

	
• Why?	
•  Safe	and	Trustworthy	AI	
•  End	User	Acceptability	
•  ComputaNonal	Efficiency	–	use	more	complex	model	if	simpler	model	is	uncertain	

	



Goal 2: Transparent Uncertainty in ML Systems

• Design	machine	learning	systems	that	can	“explain	their	uncertainty”	
•  Give	insight	into	why	they	abstained	or	produced	ambiguous	answer	
	

• Achieve	these	goals	in:		
•  Closed	Worlds	=	Known	Unknowns		
•  Open	Worlds	=	Unknown	Unknowns	

• Why?	
•  Basis	for	feedback	to	learning	systems	
•  Basis	for	invesNgaNng	anomalies	
•  Mechanism	for	building	trust	

	



Outline

• Conformal	PredicNon	for	Uncertainty	Aware	ClassificaNon	
•  Empirical	performance	in	closed	worlds	
•  Empirical	performance	in	open	worlds	
•  Not	effecNve	in	open	worlds	→		Suggests	integraNng	with	anomaly	detecNon	

•  ExplanaNons	for	Anomaly	DetecNon	
• What	is	an	anomaly	explanaNon?	
•  How	to	compute	explanaNons?	
•  How	to	evaluate	explanaNons?	



Standard ClassificaCon

Predictor	

Animal	

Human	

Human	

Classes:	{Human,	Animal,	Hybrid}	

Uncertainty	in	the	system	is	not	made	explicit	in	the	predicNons.	



Conformal PredicCon [Vovk et al., 2005]

Conformal	Predictor	

{Animal,	Hybrid}	

{Human}	

{Animal,	Human,	Hybrid}	

Classes:	{Human,	Animal,	Hybrid}	

•  Conformal	predictors	output	sets	of	labels.	

•  Label	set	is	correct	if	it	contains	true	label.	

Most	basic	type	of	explanaNon	of		
uncertainty		



Conformal PredicCon: Accuracy

Conformal	Predictor	

{Animal,	Hybrid}	

{Human}	

{Animal,	Human,	Hybrid}	

Classes:	{Human,	Animal,	Hybrid}	

Accuracy	Constraint	(e.g.	95%)	

Requirement:	must	return	label	sets	that	achieve	accuracy	constraint	



Conformal PredicCon: Accuracy

Conformal	Predictor	

{Animal,	Human,	Hybrid}	

{Animal,	Human,	Hybrid}	

{Animal,	Human,	Hybrid}	

Classes:	{Human,	Animal,	Hybrid}	

Accuracy	Constraint	(e.g.	95%)	

But	we	can	get	100%	accuracy	by	always	returning	all	labels.	

Requirement:	must	return	label	sets	that	achieve	accuracy	constraint	



Conformal PredicCon: Ambiguity

Conformal	Predictor	

{Animal,	Hybrid}	

{Human}	

{Animal,	Human,	Hybrid}	

Classes:	{Human,	Animal,	Hybrid}	

Accuracy	Constraint	(e.g.	95%)	

Ambiguity	=	 # of predicted labels−1/# of labels−1 ∈[𝟎,𝟏]		

Want	to	minimize	ambiguity	of	returned	label	sets.	

ambiguity	=	0	

ambiguity	=	1	

ambiguity	=	1/2	



Conformal PredicCon: Constrained ObjecCve

Conformal	Predictor	

Classes:	{Human,	Animal,	Hybrid}	

Accuracy	Constraint	(e.g.	95%)	

Minimize:	expected	ambiguity	
	
Subject	to:	accuracy	constraint	

{Animal,	Hybrid}	

{Human}	

{Animal,	Human,	Hybrid}	



Inside Conformal PredicCon

Your	Favorite	
Predictor	

Conformal	
PredicNon	

Non-conformity	Scores	
[human,animal,hybrid]	

Accuracy	Constraint	(e.g.	95%)	

Conformal	predicNon	is	a	wrapper	around	any	predictor	that	produces		
“non-conformity	scores”	over	the	classes	relaNve	to	training	data	
	
Predictor	quality	influences	ambiguity	of	conformal	predicNon.	

{Animal,	Hybrid}	

{Human}	

{Animal,	Human,	Hybrid}	

[6,	0.5,	0.1]	

[0.1,	0.5,	0.15]	

[0.01,	10,	7]	

Training	Data	



Non-conformity Scores: Nearest Neighbor

Nearest	Neighbor	 NonConformity(X,	Y)	=	 distance to closest Y/distance to closest non Y 	

X	

Training	Data	

X	

𝑌∈{human,animal,hybrid}	



Non-conformity Scores: Random Forest

Random	Forest	 NonConformity(X,	Y)	=	 # of trees not predicting Y/# of trees 	

X	

X	

animal	 hybrid	 human	 hybrid	 human	

NonConformity(X,	animal)	=	4/5	
NonConformity(X,	human)	=	3/5	
NonConformity(X,	hybrid)	=	3/5	



Conformal PredicCon: Neural Networks

Neural	Networks	 NonConformity(X,	Y)	=	 max output for not Y /output for Y 	

X	

X	 NonConformity(X,	animal)	=	0.8/0.15	=	5.3	
NonConformity(X,	human)	=	0.8/0.05	=	16	
NonConformity(X,	hybrid)	=	0.15/0.8		=		0.19	

0.8			hybrids	

0.15		animal	

0.05	human	



Inside Conformal PredicCon

Your	Favorite	
Predictor	

Conformal	
PredicNon	

Accuracy	Constraint	(e.g.	95%)	Training	Data	

CalibraNon	
Data	

Non-Conformity	Score	
Histogram		

Non-conformity		
Scores	
[0.05,	0.9,	0.1]	

Animal			Hybrid				Human	

Are	at	least	5%	of	the	calibraNon	scores	weirder	than	this	label	with	this	example?	



Inside Conformal PredicCon Non-Conformity	Score	
Histogram		

Animal			Hybrid				Human	

Are	at	least	5%	of	the	calibraNon	scores	weirder	than	this	label	with	this	example?	

Your	Favorite	
Predictor	

Conformal	
PredicNon	

Accuracy	Constraint	(e.g.	95%)	Training	Data	

CalibraNon	
Data	

Non-conformity		
Scores	
[0.05,	0.9,	0.1]	



Conformal PredicCon: Empirical EvaluaCon

• Very	few	empirical	evaluaNons	of	conformal	predicNon	
•  Rarely	look	at	ambiguity	

• Most	results	for	Nearest	Neighbor		--	oten	yields	large	ambiguity	in	
our	experience	

• How	does	ambiguity	vary	with	amount	of	training	data	in	closed	
worlds?	

• How	does	conformal	predicNon	perform	in	open	worlds?		



Closed World: Random Forest Results

• Arrhythmia:	452	data	points,	13	labels,	major	class	imbalances		

• Cardiotocography:	2126		instances,	10	labels,	balanced	classes	

•  Image	SegmentaNon:	2310	instances,	8	labels,	balanced	classes	

•  Iris:	150	instances,	3	labels,	balanced	classes	



Closed World: Random Forest

Number	of	examples	 Number	of	examples	

Accuracy	Constraint	=	95%	
Ac
cu
ra
cy
	

Arrhythmia	
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ity

	

Arrhythmia	

Other	data	sets	are	qualitaNvely	similar.	



Closed World: Random Forest

Accuracy	Constraint	

Am
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gu
ity

	

Arrhythmia	

Accuracy	Constraint	
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bi
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Cardiotocography	



Closed World: Random Forest

Accuracy	Constraint	
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ity

	

SegmentaNon	

Accuracy	Constraint	
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Iris	



Closed World: Random Forest

• Overall,	we	see	“ideal	behavior”	on	these	data	sets.	
	
• Close	to	0	ambiguity	with	small	amount	of	data.		



Closed World: ConvoluConal Network: Cifar 10



Closed World: Deep Net

Number	of	CalibraNon	Examples	
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ity

	

Cifar	10	

Accuracy	Constraint	

Am
bi
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ity

	

Cifar	10	



Closed World ObservaCons

• Overall,	we	see	“ideal	behavior”	on	these	data	sets	for	both	random	
forest	and	convoluNonal	network.	

	
• Close	to	0	ambiguity	with	small	amount	of	data.	

• Neural	network	very	rarely	abstains	(negaNve	ambiguity)	compared	
to	the	random	forest		



Open World: Conformal PredicCon

Predictor	

{Animal}	

{Human,	Animal}	

???	

Training	Labels	=	{Human,	Animal,	Hybrid}	

Conformal	
PredicNon	

We	don’t	have	a	label	for	“monster”!	

Only	reasonable	output	is	to	abstain	(empty	set)	

∅	



Open World Experiments

•  Feed	novel	classes	to	conformal	predictor	

• Random	Forest	:	withheld	a	label	from	each	training	set	

• Convolu@onal	Network	:	feed	it	images	that	have	nothing	to	do	with	
Cifar	10	



Open World: Random Forest

Number	of	examples	
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Arrhythmia	

Number	of	examples	
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Cardiotocography	

Abstains	=	Knows	what	it	knows	

Confident	in	single	label	

Ambiguity	for	just	novel	classes	



Open World: Random Forest

Number	of	examples	
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SegmentaNon	

Number	of	examples	
Am
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Cardiotocography	

Ambiguity	for	just	novel	classes	

Confident	in	single	label	

Confident	in	single	label	



Open World: ConvoluConal Network

Nethack	sprite	sheet	
images	



Open World: ConvoluConal Network

Learning	Curves	vs	CalibraNon	Scores	

Number	of	calibraNon	examples	

Am
bi
gu
ity

	

Cifar	10	

Ambiguity	for	just	novel	Nethack	images	

Confident	in	single	label	



Open World ObservaCons

•  In	all	but	one	case	there	was	pracNcally	no	abstenNon	

•  The	theory	of	conformal	predicNon	does	not	address	the	issue	of	
open	worlds	

• Appears	that	standard	conformal	predicNon	on	its	own	is	not	
sufficient	for	open	worlds	



Next Steps for Open Worlds

Predictor	 Conformal	
PredicNon	

Accuracy	Constraint	

Non-conformity	
Scores	

New	algorithms	for	training	predictors.	
	
Goal:	yield	reliable	abstenNon	for	novel	classes.	



Next Step for Open Worlds

Predictor	 Conformal	
PredicNon	

Anomaly		
Detector	

normal	
data	

Anomaly		
Handler	

anomalous	
data	

Accuracy	Constraint	

Non-conformity	
Scores	

How	to	select	anomaly	threshold?	
	
Can	we	provide	any	guarantees	in	open	worlds?	


