Jan Leike

Future of Humanity Institute University of Oxford

9 June 2016

Reinforcement Learning Today¹

¹Volodymyr Mnih et al. "Human-Level Control through Deep Reinforcement Learning". In: *Nature* 518.7540 (2015), pp. 529–533.

If we upscale DQN, do we get strong AI?

Narrow Reinforcement Learning

Atari 2600

fully observable ergodic very large state space ε -exploration works

Narrow Reinforcement Learning

Atari 2600	The Real World TM
fully observable	partially observable
ergodic	not ergodic
very large state space	infinite state space
ε -exploration works	ε -exploration fails

Narrow Reinforcement Learning

Atari 2600	The Real World TM
fully observable	partially observable
very large state space ε -exploration works	infinite state space ε -exploration fails
ergodic MDPs	general environments

Outline

AIXI

Optimality

Game Theory

AI Safety

Outline

AIXI

Optimality

Game Theory

AI Safety

Goal: maximize $\sum_{t=1}^{\infty} \gamma_t r_t$ where $\gamma : \mathbb{N} \to [0, 1]$ is a discount function with $\sum_{t=1}^{\infty} \gamma_t < \infty$

Goal: maximize $\sum_{t=1}^{\infty} \gamma_t r_t$ where $\gamma : \mathbb{N} \to [0, 1]$ is a discount function with $\sum_{t=1}^{\infty} \gamma_t < \infty$

Assumptions

- ▶ $0 \le r_t \le 1$
- \mathcal{A} and \mathcal{E} are finite

Jan Leike

General Reinforcement Learning

8 / 32

Value of policy π in environment ν :

$$V_{\nu}^{\pi}(\boldsymbol{x}_{< t}) := \frac{1}{\sum_{k=t}^{\infty} \gamma_{k}} \mathbb{E}_{\nu}^{\pi} \left[\sum_{k=t}^{\infty} \gamma_{k} r_{k} \middle| \boldsymbol{x}_{< t} \right]$$

Value of policy π in environment ν :

$$V_{\nu}^{\pi}(\boldsymbol{x}_{< t}) := \frac{1}{\sum_{k=t}^{\infty} \gamma_{k}} \mathbb{E}_{\nu}^{\pi} \left[\sum_{k=t}^{\infty} \gamma_{k} r_{k} \, \middle| \, \boldsymbol{x}_{< t} \right]$$

• optimal value:
$$V_{\nu}^* := \sup_{\pi} V_{\nu}^{\pi}$$

• ν -optimal policy: $\pi_{\nu}^* := \arg \max_{\pi} V_{\nu}^{\pi}$

Value of policy π in environment ν :

$$V_{\nu}^{\pi}(\boldsymbol{x}_{< t}) := \frac{1}{\sum_{k=t}^{\infty} \gamma_{k}} \mathbb{E}_{\nu}^{\pi} \left[\sum_{k=t}^{\infty} \gamma_{k} r_{k} \middle| \boldsymbol{x}_{< t} \right]$$

• optimal value: $V_{\nu}^* := \sup_{\pi} V_{\nu}^{\pi}$

- ν -optimal policy: $\pi_{\nu}^* := \arg \max_{\pi} V_{\nu}^{\pi}$
- Effective horizon:

$$H_t(\varepsilon) := \min\left\{k \left| \frac{\sum_{i=t+k}^{\infty} \gamma_i}{\sum_{i=t}^{\infty} \gamma_i} \le \varepsilon\right\}\right\}$$

Jan Leike

²Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

³Marcus Hutter. Universal Artificial Intelligence. Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

• countable set of environments $\mathcal{M} = \{\nu_1, \nu_2, \ldots\}$

Jan Leike

²Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

³Marcus Hutter. Universal Artificial Intelligence. Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

- countable set of environments $\mathcal{M} = \{\nu_1, \nu_2, \ldots\}$
- prior $w: \mathcal{M} \to [0,1]$

Jan Leike

²Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

³Marcus Hutter. Universal Artificial Intelligence. Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

- countable set of environments $\mathcal{M} = \{\nu_1, \nu_2, \ldots\}$
- ▶ prior $w : \mathcal{M} \to [0, 1]$ Solomonoff prior² $w(\nu) \propto 2^{-K(\nu)}$

Jan Leike

²Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

³Marcus Hutter. Universal Artificial Intelligence. Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

- countable set of environments $\mathcal{M} = \{\nu_1, \nu_2, \ldots\}$
- ▶ prior $w : \mathcal{M} \to [0, 1]$ Solomonoff prior² $w(\nu) \propto 2^{-K(\nu)}$
- Bayesian mixture

$$\xi := \sum_{\nu \in \mathcal{M}} w(\nu) \nu$$

Jan Leike

²Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

³Marcus Hutter. Universal Artificial Intelligence. Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

- countable set of environments $\mathcal{M} = \{\nu_1, \nu_2, \ldots\}$
- ▶ prior $w : \mathcal{M} \to [0, 1]$ Solomonoff prior² $w(\nu) \propto 2^{-K(\nu)}$
- Bayesian mixture

$$\xi := \sum_{\nu \in \mathcal{M}} w(\nu)\nu$$

AIXI is the Bayes-optimal agent with a Solomonoff prior

$$\pi_{\xi}^* := \arg\max_{\pi} V_{\xi}^{\pi}$$

³Marcus Hutter. Universal Artificial Intelligence. Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

Jan Leike

²Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

On-Policy Value Convergence

$V^{\pi}_{\xi}(\pmb{x}_{< t}) - V^{\pi}_{\mu}(\pmb{x}_{< t}) o 0$ as $t o \infty$ almost surely

Outline

AIXI

Optimality

Game Theory

AI Safety

Notions of Optimality in Reinforcement Learning

- Bayes optimality
- Asymptotic optimality
- Sample complexity bounds
- Regret bounds

Asymptotic Optimality

 π is asymptotically optimal iff

$$V^*_\mu(oldsymbol{x}_{< t}) - V^\pi_\mu(oldsymbol{x}_{< t}) o 0$$
 as $t o \infty$

⁴Laurent Orseau. "Asymptotic Non-Learnability of Universal Agents with Computable Horizon Functions". In: *Theoretical Computer Science* 473 (2013), pp. 149–156.

Asymptotic Optimality

 π is asymptotically optimal iff

$$V^*_\mu(oldsymbol{x}_{< t}) - V^\pi_\mu(oldsymbol{x}_{< t}) o 0$$
 as $t o \infty$

For asymptotic optimality the agent needs to explore infinitely often for an entire effective horizon.

⁴Laurent Orseau. "Asymptotic Non-Learnability of Universal Agents with Computable Horizon Functions". In: *Theoretical Computer Science* 473 (2013), pp. 149–156.

Asymptotic Optimality

 π is asymptotically optimal iff

$$V^*_\mu(oldsymbol{x}_{< t}) - V^\pi_\mu(oldsymbol{x}_{< t}) o 0$$
 as $t o \infty$

For asymptotic optimality the agent needs to explore infinitely often for an entire effective horizon.

Theorem *AIXI is not asymptotically optimal.*⁴

⁴Laurent Orseau. "Asymptotic Non-Learnability of Universal Agents with Computable Horizon Functions". In: *Theoretical Computer Science* 473 (2013), pp. 149–156.

Hell

Hell

hell) reward = 0

⁵ Jan Leike and Marcus Hutter. "Bad Universal Priors and Notions of Optimality". In: *Conference on Learning Theory*. 2015, pp. 1244–1259.

Policy π_{Lazy} :

while (true) { do_nothing(); }

Jan Leike

⁵ Jan Leike and Marcus Hutter. "Bad Universal Priors and Notions of Optimality". In: *Conference on Learning Theory*. 2015, pp. 1244–1259.

Policy π_{Lazy} :

```
while (true) { do_nothing(); }
```

Dogmatic prior ξ' :

if not acting according to π_{Lazy} , go to hell with high probability

⁵ Jan Leike and Marcus Hutter. "Bad Universal Priors and Notions of Optimality". In: *Conference on Learning Theory*. 2015, pp. 1244–1259.

Policy π_{Lazy} :

```
while (true) { do_nothing(); }
```

Dogmatic prior ξ' :

if not acting according to π_{Lazy} , go to hell with high probability

Theorem $\forall \varepsilon > 0 \exists \xi' \text{ s.t. Al}\xi' \text{ acts according to } \pi_{Lazy} \text{ as long as } V_{\xi}^{\pi_{Lazy}}(\boldsymbol{x}_{< t}) > \varepsilon > 0.$

⁵Jan Leike and Marcus Hutter. "Bad Universal Priors and Notions of Optimality". In: *Conference on Learning Theory*. 2015, pp. 1244–1259.

Thompson Sampling

```
Thompson sampling policy \pi_T:

Sample \rho \sim w(\cdot \mid \boldsymbol{x}_{\leq t}).

Follow \pi_{\rho}^* for H_t(\varepsilon_t) steps.

Repeat.
```

with $\varepsilon_t \to 0$.

⁶Jan Leike et al. "Thompson Sampling is Asymptotically Optimal in General Environments". In: Uncertainty in Artificial Intelligence. 2016.

Thompson Sampling

Thompson sampling policy π_T :

Sample $\rho \sim w(\cdot | \boldsymbol{x}_{< t})$. Follow π_{ρ}^{*} for $H_t(\varepsilon_t)$ steps. Repeat.

with $\varepsilon_t \to 0$.

Theorem

Thompson sampling is asymptotically optimal in mean:⁶

$$\mathbb{E}_{\mu}^{\pi_{T}} \left[V_{\mu}^{*}(\boldsymbol{\varkappa}_{< t}) - V_{\mu}^{\pi_{T}}(\boldsymbol{\varkappa}_{< t}) \right] \to 0 \text{ as } t \to \infty$$

⁶Jan Leike et al. "Thompson Sampling is Asymptotically Optimal in General Environments". In: Uncertainty in Artificial Intelligence. 2016.

Recoverable Environments

An environment ν is recoverable iff

$$\sup_{\pi} \left| \mathbb{E}_{\nu}^{\pi_{\nu}^{*}}[V_{\nu}^{*}(\boldsymbol{x}_{< t})] - \mathbb{E}_{\nu}^{\pi}[V_{\nu}^{*}(\boldsymbol{x}_{< t})] \right| \to 0 \text{ as } t \to \infty.$$

Recoverable Environments

An environment ν is recoverable iff

$$\sup_{\pi} \left| \mathbb{E}_{\nu}^{\pi_{\nu}^{*}}[V_{\nu}^{*}(\boldsymbol{x}_{< t})] - \mathbb{E}_{\nu}^{\pi}[V_{\nu}^{*}(\boldsymbol{x}_{< t})] \right| \to 0 \text{ as } t \to \infty.$$

For non-recoverable environments:

Either the agent gets caught in a trap or it is not asymptotically optimal. Regret

$$R_m(\pi,\mu) := \max_{\pi'} \mathbb{E}_{\mu}^{\pi'} \left[\sum_{t=1}^m r_t \right] - \mathbb{E}_{\mu}^{\pi} \left[\sum_{t=1}^m r_t \right]$$

Regret

$$R_m(\pi,\mu) := \max_{\pi'} \mathbb{E}_{\mu}^{\pi'} \left[\sum_{t=1}^m r_t \right] - \mathbb{E}_{\mu}^{\pi} \left[\sum_{t=1}^m r_t \right]$$

A problem class is *learnable* iff $\exists \pi \ \forall \mu \ R_m(\pi, \mu) \in o(m)$.

Regret

$$R_m(\pi,\mu) := \max_{\pi'} \mathbb{E}_{\mu}^{\pi'} \left[\sum_{t=1}^m r_t \right] - \mathbb{E}_{\mu}^{\pi} \left[\sum_{t=1}^m r_t \right]$$

A problem class is *learnable* iff $\exists \pi \ \forall \mu \ R_m(\pi, \mu) \in o(m)$.

Fact: The general RL problem is *not* learnable.

Regret in Non-Recoverable Environments

Regret in Non-Recoverable Environments

Regret in Non-Recoverable Environments

Sublinear Regret

Theorem If

- $\mu \in \mathcal{M}$ is recoverable,
- π is asymptotically optimal in mean, and
- γ satisfies some weak assumptions,

then regret is sublinear.⁷

⁷Jan Leike et al. "Thompson Sampling is Asymptotically Optimal in General Environments". In: Uncertainty in Artificial Intelligence. 2016.

Optimality Summary

	AIXI	TS	All policies
Sublinear regret	×	recoverable	×
Sample complexity	×	?	
Pareto optimality	\checkmark	\checkmark	\checkmark
Bayes optimality	\checkmark	×	
Asymptotic optimality	×	\checkmark	

Outline

AIXI

Optimality

Game Theory

Al Safety

Jan Leike

Multi-Agent Environments

Multi-Agent Environments

• π_i is an ε -best response iff $V_{\sigma_i}^* - V_{\sigma_i}^{\pi_i} < \varepsilon$

Multi-Agent Environments

- π_i is an ε -best response iff $V_{\sigma_i}^* V_{\sigma_i}^{\pi_i} < \varepsilon$
- ► π₁,..., π_n play an ε-Nash equilibrium iff each π_i is an ε-best response

• countable set of policies Π

- countable set of policies Π
- prior $w \in \Delta \Pi$

- countable set of policies Π
- prior $w \in \Delta \Pi$
- \blacktriangleright act Bayes-optimal with respect to w

- countable set of policies Π
- prior $w \in \Delta \Pi$
- \blacktriangleright act Bayes-optimal with respect to w

Grain of Truth: the Bayes-optimal policy needs to be in $\boldsymbol{\Pi}$

Results for Bayesian Agents

Theorem

If each player is Bayesian, knows the infinite repeated game and has a grain of truth, then the players converge to an ε -Nash equilibrium.⁸

⁸Ehud Kalai and Ehud Lehrer. "Rational Learning Leads to Nash Equilibrium". In: *Econometrica* (1993), pp. 1019–1045.

⁹Jan Leike, Jessica Taylor, and Benya Fallenstein. "A Formal Solution to the Grain of Truth Problem". In: Uncertainty in Artificial Intelligence. 2016.

Results for Bayesian Agents

Theorem

If each player is Bayesian, knows the infinite repeated game and has a grain of truth, then the players converge to an ε -Nash equilibrium.⁸

Theorem

Two Bayesian players playing infinite repeated matching pennies may fail to converge to an ε -Nash equilibrium, even if they have a grain of truth.⁹

⁸Ehud Kalai and Ehud Lehrer. "Rational Learning Leads to Nash Equilibrium". In: *Econometrica* (1993), pp. 1019–1045.

⁹Jan Leike, Jessica Taylor, and Benya Fallenstein. "A Formal Solution to the Grain of Truth Problem". In: Uncertainty in Artificial Intelligence. 2016.

Solving the Grain of Truth Problem¹⁰

Theorem

There is a class of environments \mathcal{M}_{refl} that contains a grain of truth with respect to any computable priors' Bayes-optimal policies in any computable multi-agent environment.

¹⁰ Jan Leike, Jessica Taylor, and Benya Fallenstein. "A Formal Solution to the Grain of Truth Problem". In: Uncertainty in Artificial Intelligence. 2016.

Solving the Grain of Truth Problem¹⁰

Theorem

There is a class of environments \mathcal{M}_{refl} that contains a grain of truth with respect to any computable priors' Bayes-optimal policies in any computable multi-agent environment.

Theorem Each $\nu \in \mathcal{M}_{refl}$ is limit computable.

¹⁰ Jan Leike, Jessica Taylor, and Benya Fallenstein. "A Formal Solution to the Grain of Truth Problem". In: Uncertainty in Artificial Intelligence. 2016.

Solving the Grain of Truth Problem¹⁰

Theorem

There is a class of environments \mathcal{M}_{refl} that contains a grain of truth with respect to any computable priors' Bayes-optimal policies in any computable multi-agent environment.

Theorem Each $\nu \in \mathcal{M}_{refl}$ is limit computable.

Theorem

There are limit computable policies π_1, \ldots, π_n such that for any computable multi-agent environment σ and for all $\varepsilon > 0$ and all $i \in \{1, \ldots, n\}$ the probability that the policy π_i is an ε -best response converges to 1 as $t \to \infty$.

¹⁰Jan Leike, Jessica Taylor, and Benya Fallenstein. "A Formal Solution to the Grain of Truth Problem". In: Uncertainty in Artificial Intelligence. 2016.

Outline

AIXI

Optimality

Game Theory

AI Safety

AI Safety Approaches

AI Safety Approaches

bottom-up	top-down
practical algorithms	theoretical models
toy models	abstract problems
demos	theorems

"Applications" of GRL to AI Safety

- self-modification: Orseau and Ring (2011), Orseau and Ring (2012), Everitt et al. (2016)
- self-reflection: Fallenstein, Soares, and Taylor (2015), Leike, Taylor, and Fallenstein (2016)
- memory manipulation: Orseau and Ring (2012)
- interruptibility: Orseau and Armstrong (2016)
- decision theory: Everitt, Leike, and Hutter (2015)
- wireheading: Ring and Orseau (2011), Everitt and Hutter (2016)
- value learning: Dewey (2011)
- questions of identity: Orseau (2014)

Limits of the Current Model

- model-based
- dualistic
- not self-improving
- assumes infinite computation

Conclusion

Mathematical and mental tools to think about strong AI

- exploration vs. exploitation
- effective horizon
- on-policy vs. off-policy
- model-based vs. model-free
- recoverability
- asymptotic optimality
- reflective oracles

Jan Leike. "Nonparametric General Reinforcement Learning". PhD thesis. Australian National University, 2016

http://jan.leike.name/