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Reinforcement Learning Today1

1Volodymyr Mnih et al. “Human-Level Control through Deep Reinforcement Learning”. In: Nature
518.7540 (2015), pp. 529–533.
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If we upscale DQN, do we get strong AI?
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General Reinforcement Learning

agent environment

action at ∈ A

percept et = (ot, rt) ∈ E

policy π : (A× E)∗ → ∆A
environment ν : (A× E)∗ ×A → ∆E
history æ<t := a1e1a2e2 . . . at−1et−1

Goal: maximize
∑∞

t=1 γtrt
where γ : N→ [0, 1] is a discount function with

∑∞
t=1 γt <∞

Assumptions
I 0 ≤ rt ≤ 1

I A and E are finite
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Value Functions

Value of policy π in environment ν:

V π
ν (æ<t) :=

1∑∞
k=t γk

Eπν

[ ∞∑
k=t

γkrk

∣∣∣∣∣æ<t

]

I optimal value: V ∗ν := supπ V
π
ν

I ν-optimal policy: π∗ν := arg maxπ V
π
ν

I Effective horizon:

Ht(ε) := min

{
k

∣∣∣∣ ∑∞i=t+k γi∑∞
i=t γi

≤ ε
}
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AIXI3

I countable set of environmentsM = {ν1, ν2, . . .}
I prior w :M→ [0, 1]

Solomonoff prior2 w(ν) ∝ 2−K(ν)

I Bayesian mixture
ξ :=

∑
ν∈M

w(ν)ν

AIXI is the Bayes-optimal agent with a Solomonoff prior

π∗ξ := arg max
π

V π
ξ

2Ray Solomonoff. “A Formal Theory of Inductive Inference. Parts 1 and 2”. In: Information and
Control 7.1 (1964), pages.

3Marcus Hutter. Universal Artificial Intelligence. Sequential Decisions Based on Algorithmic
Probability. Springer, 2005.
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On-Policy Value Convergence

V π
ξ (æ<t)− V π

µ (æ<t)→ 0 as t→∞ almost surely
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Notions of Optimality in Reinforcement Learning

I Bayes optimality
I Asymptotic optimality
I Sample complexity bounds
I Regret bounds
I . . .

Jan Leike General Reinforcement Learning 12 / 32



Asymptotic Optimality

π is asymptotically optimal iff

V ∗µ (æ<t)− V π
µ (æ<t)→ 0 as t→∞

For asymptotic optimality the agent needs to explore
infinitely often for an entire effective horizon.

Theorem
AIXI is not asymptotically optimal.4

4Laurent Orseau. “Asymptotic Non-Learnability of Universal Agents with Computable Horizon
Functions”. In: Theoretical Computer Science 473 (2013), pp. 149–156.
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Hell

hell reward = 0
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The Dogmatic Prior5

Policy πLazy:

while (true) { do_nothing(); }

Dogmatic prior ξ′:

if not acting according to πLazy,
go to hell with high probability

Theorem
∀ε > 0 ∃ξ′ s.t. AIξ′ acts according to πLazy as long as
V
πLazy
ξ (æ<t) > ε > 0.

5Jan Leike and Marcus Hutter. “Bad Universal Priors and Notions of Optimality”. In: Conference on
Learning Theory. 2015, pp. 1244–1259.
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Thompson Sampling

Thompson sampling policy πT :

Sample ρ ∼ w( · | æ<t).
Follow π∗ρ for Ht(εt) steps.
Repeat.

with εt → 0.

Theorem
Thompson sampling is asymptotically optimal in mean:6

EπTµ
[
V ∗µ (æ<t)− V πT

µ (æ<t)
]
→ 0 as t→∞.

6Jan Leike et al. “Thompson Sampling is Asymptotically Optimal in General Environments”. In:
Uncertainty in Artificial Intelligence. 2016.
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Recoverable Environments

An environment ν is recoverable iff

sup
π

∣∣∣Eπ∗νν [V ∗ν (æ<t)]− Eπν [V ∗ν (æ<t)]
∣∣∣→ 0 as t→∞.

For non-recoverable environments:

Either the agent gets caught in a trap
or it is not asymptotically optimal.
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Regret

Rm(π, µ) := max
π′

Eπ
′
µ

[
m∑
t=1

rt

]
− Eπµ

[
m∑
t=1

rt

]

A problem class is learnable iff ∃π ∀µ Rm(π, µ) ∈ o(m).

Fact: The general RL problem is not learnable.
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Regret in Non-Recoverable Environments

µ1

hellheaven

reward = 0
reward = 1

rightleft

µ2

hell heaven

reward = 0
reward = 1

left right

Rm(left, µ1) = 0 Rm(left, µ2) = m

Rm(right, µ1) = m Rm(right, µ2) = 0
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Sublinear Regret

Theorem
If

I µ ∈M is recoverable,
I π is asymptotically optimal in mean, and
I γ satisfies some weak assumptions,

then regret is sublinear.7

7Jan Leike et al. “Thompson Sampling is Asymptotically Optimal in General Environments”. In:
Uncertainty in Artificial Intelligence. 2016.

Jan Leike General Reinforcement Learning 20 / 32



Optimality Summary

AIXI TS All policies

Sublinear regret × recoverable ×
Sample complexity × ?
Pareto optimality X X X
Bayes optimality X ×
Asymptotic optimality × X

Jan Leike General Reinforcement Learning 21 / 32
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Multi-Agent Environments

agent π1

agent π2

...

agent πn

multi-agent
environment
σ

a1t

e1t
a2t

e2t

ant

ent

I πi is an ε-best response iff V ∗σi − V
πi
σi < ε

I π1, . . . , πn play an ε-Nash equilibrium iff each πi is an ε-best
response
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The Bayesian Approach

I countable set of policies Π

I prior w ∈ ∆Π

I act Bayes-optimal with respect to w

Grain of Truth: the Bayes-optimal policy needs to be in Π
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Results for Bayesian Agents

Theorem
If each player is Bayesian, knows the infinite repeated game and has
a grain of truth, then the players converge to an ε-Nash
equilibrium.8

Theorem
Two Bayesian players playing infinite repeated matching pennies
may fail to converge to an ε-Nash equilibrium, even if they have a
grain of truth.9

8Ehud Kalai and Ehud Lehrer. “Rational Learning Leads to Nash Equilibrium”. In: Econometrica
(1993), pp. 1019–1045.

9Jan Leike, Jessica Taylor, and Benya Fallenstein. “A Formal Solution to the Grain of Truth
Problem”. In: Uncertainty in Artificial Intelligence. 2016.
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Solving the Grain of Truth Problem10

Theorem
There is a class of environmentsMrefl that contains a grain of
truth with respect to any computable priors’ Bayes-optimal policies
in any computable multi-agent environment.

Theorem
Each ν ∈Mrefl is limit computable.

Theorem
There are limit computable policies π1, . . . , πn such that for any
computable multi-agent environment σ and for all ε > 0 and all
i ∈ {1, . . . , n} the probability that the policy πi is an ε-best
response converges to 1 as t→∞.

10Jan Leike, Jessica Taylor, and Benya Fallenstein. “A Formal Solution to the Grain of Truth
Problem”. In: Uncertainty in Artificial Intelligence. 2016.
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AI Safety Approaches

bottom-up top-down

practical algorithms

theoretical models

toy models

abstract problems

demos

theorems
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“Applications” of GRL to AI Safety

I self-modification: Orseau and Ring (2011), Orseau and Ring
(2012), Everitt et al. (2016)

I self-reflection: Fallenstein, Soares, and Taylor (2015), Leike,
Taylor, and Fallenstein (2016)

I memory manipulation: Orseau and Ring (2012)
I interruptibility: Orseau and Armstrong (2016)
I decision theory: Everitt, Leike, and Hutter (2015)
I wireheading: Ring and Orseau (2011), Everitt and Hutter

(2016)
I value learning: Dewey (2011)
I questions of identity: Orseau (2014)
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Limits of the Current Model

I model-based
I dualistic
I not self-improving
I assumes infinite computation

Jan Leike General Reinforcement Learning 30 / 32



Conclusion

Mathematical and mental tools to think about strong AI
I exploration vs. exploitation
I effective horizon
I on-policy vs. off-policy
I model-based vs. model-free
I recoverability
I asymptotic optimality
I reflective oracles
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