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3 Direct Uses of Löb’s Theorem in MIRI Research 6
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1 Introduction

This expository note is devoted to answering the following question: why do many MIRI
research papers cite a 1955 theorem of Martin Löb [12], and indeed, why does MIRI focus so
heavily on mathematical logic? The short answer is that this theorem illustrates the basic
kind of self-reference involved when an algorithm considers its own output as part of the
universe, and it is thus germane to many kinds of research involving self-modifying agents,
especially when formal verification is involved or when we want to cleanly prove things in
model problems. For a longer answer, well, welcome!

I’ll assume you have some background doing mathematical proofs and writing computer
programs, but I won’t assume any background in mathematical logic beyond knowing the
usual logical operators, nor that you’ve even heard of Löb’s Theorem before.

To motivate the mathematical sections that follow, let’s consider a toy problem. Say that
we’ve designed Deep Thought 1.0, an AI that reasons about its possible actions and only
takes actions that it can show to have good consequences on balance. One such action is
designing a successor, Deep Thought 2.0, which has improved deductive abilities. But if
Deep Thought 1.0 (hereafter called DT1) is to actually build Deep Thought 2.0 (DT2),
DT1 must first conclude that building DT2 will have good consequences on balance.

There’s an immediate difficulty—the consequences of building DT2 include the actions that
DT2 takes; but since DT2 has increased deductive powers, DT1 can’t actually figure out
what actions DT2 is going to take. Naively, it seems as if it should be enough for DT1 to
know that DT2 has the same goals as DT1, that DT2’s deductions are reliable, and that
DT2 only takes actions that it deduces to have good consequences on balance.

Unfortunately, the straightforward way of setting up such a model fails catastrophically
on the innocent-sounding step “DT1 knows that DT2’s deductions are reliable”. If we try
and model DT1 and DT2 as proving statements in two formal systems (one stronger than
the other), then the only way that DT1 can make such a statement about DT2’s reliability
is if DT1 (and thus both) are in fact unreliable! This counterintuitive roadblock is best
explained by reference to Löb’s theorem, and so we turn to the background of that theorem.

2 Crash Course in Löb’s Theorem

2.1 Gödelian self-reference and quining programs

Löb’s Theorem makes use of the machinery of Kurt Gödel’s incompleteness theorems [10],
so we will discuss those first. Informally, Gödel found a way to import self-reference into a
mathematical system that was simply trying to talk about properties of natural numbers,
and then pointed out the odd consequences of a mathematical statement that asserts its own
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unprovability.

One (anachronistic) way of stating Gödel’s key insight is that you can use computer pro-
grams to search for proofs, and you can prove statements about computer programs. If we
think about any conjecture in mathematics that can be stated in terms of arithmetic, you
can write a rather simple program that loops over all possible strings, checks whether any
of them is a valid proof of the conjecture, and halts if and only if it finds one.

Thus, instead of trying to prove that conjecture directly, we could instead try to show
(or prove) that the program halts. Now, this generally doesn’t make things easier at all,
since we’re just restating the same problem in a more complicated way, and actually looping
over all strings is basically the worst way to try and find proofs of theorems. However,
this reformulation makes it more intuitive that we can embed self-reference in mathematics,
because we can embed self-reference in computer code!

The kind of self-reference I’m talking about is called a quine: a program that is able to
reproduce its own source code without taking any inputs. One way to do this is for the
program to include a string with a variable, and for it to replace that variable with the
original string itself, such that the resulting expanded string is the entire source code of the
program itself.

Exercise. Write a quining program in your favorite language. No fair copying one from the
Wikipedia article, and no fair making calls to external programs or the filesystem.

In addition to quines that merely print their source code, programs can be made which
perform arbitrary tasks using their own source code. Indeed, one prominent example of a
quining program that does other tasks is Ken Thompson’s famous C compiler Trojan horse
[15], which uses the quining trick to avoid ever being visible outside of machine code.

Thus we can have a program G which refers to itself in this way, and searches for proofs in
arithmetic related to its own source code. In particular, we consider G which searches for a
proof of the statement “G runs forever”, and halts if and only if it succeeds at finding one.

Now, we claim that G never finds a proof, and also that we can never prove that G runs
forever! For if we could prove that G ran forever, then G would find that proof, and it would
halt—and we could prove that it halted, and thereby produce a contradiction! On the other
hand, if G actually halted after some finite number of steps, then the number at which it
halts encodes a proof that G runs forever, which again leads to a contradiction!1

1I apologize for all of the exclamation points in the previous paragraph; in my defense, if any result
deserves exclamation points, it’s Gödel’s First Incompleteness Theorem!

Also, there’s a sleight of hand here in the demonstration that G never halts. We’ll get further into
that in Section 4.
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It seems silly to ask whether we could prove that G halts, given that G actually runs forever.
But it actually wouldn’t be a contradiction if we asserted that G actually halted, so long as
we didn’t say anything about how long it took! It’s only a claim like “G halts in fewer than
a googolplex steps” that would be an actual contradiction. It turns out that we could add
either “G never halts” or “G halts” (but not both!) as a new axiom of arithmetic, and not
introduce a contradiction by doing so. We express this by saying that G is undecidable, and
therefore we’ve proved

Theorem 2.1 (Gödel’s First Incompleteness Theorem) If the theory of arithmetic is
consistent, then there exist undecidable statements in the theory of arithmetic.

Remark. Gödel’s Theorem is a bit different from the Halting Problem; the latter shows
there’s no one program X that can tell whether every program Y halts or not, but of course
there may be particular programs X that tell you this fact for particular programs Y . But
this is saying that there’s no program X that can tell you definitively whether the program
G halts or runs forever.

So Gödel found that we can write undecidable statements about properties of natural num-
bers, and furthermore showed that adding new axioms won’t fix it, since you can repeat the
process with the new rule system for whether a statement is a theorem. (There’s only one
loophole, and it’s not a very exciting one: if we use inconsistent axioms, then everything is
a theorem, thanks to the Principle of Explosion, and therefore everything is decidable).

Now we’re not here to bury mathematical logic, but to use it. So from Gödel’s Theorem we
move on to...

2.2 Löb’s Theorem

Löb’s Theorem [12] takes the same framework as Gödel’s First Incompleteness Theorem, and
constructs programs of the following sort:

• Let X be any logical statement (the sort of thing that could be proved or disproved).

• Now let ProofSeeker(X) be the program that searches all possible proofs, and halts if
and only if one of them is a valid proof of the statement X.

• Finally, let L(X) be the statement “if ProofSeeker(X) halts, then X”.

Let’s ponder for a moment whether L(X) should be true or not, using three different kinds
of statements X.

• If X is a provable statement, for example “2 + 2 = 4”, then ProofSeeker(X) halts, and
L(X) is “if [true thing], then [true thing]”, which is a valid statement.
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• If X is disprovable, for example the statement “2 + 2 = 5”, then ProofSeeker(X)
does not halt, and L(X) is “if [false thing], then [false thing]”, which is also a valid
statement.

• If X is neither provable nor disprovable, for example Gödel’s statement G, then again
ProofSeeker(X) does not halt, and L(X) is “if [false thing], then [maybe true thing]”,
which is also a true statement (remember your propositional calculus).

So it seems like L(X) is always true. And it would certainly be handy if L(X) were provable
for every X: for instance, you could use the second case above to show that mathematics
proves no contradictions! Because if we could prove “if ProofSeeker(“2 + 2 = 5”) halts, then
2+2 = 5”, then we would have the contrapositive “if 2+2 6= 5, then ProofSeeker(“2+2 = 5”)
never halts”, and since we can prove 2 + 2 6= 5, then we could prove that there is no contra-
dictory proof of 2 + 2 = 5.

Alas, that proof of mathematical consistency is too good to be true. As in the case of
Gödel’s Theorem, something being true is no guarantee of it being provable. And in fact,
we find that L(X) is only provable in the first of the three cases above:

Theorem 2.2 (Löb’s Theorem) For all statements X, if L(X) is provable, then X is
provable.

(There is a neatly presented formal proof of this theorem at The Cartoon Guide to Löb’s
Theorem [16].)

So in particular, if we could prove that mathematics would never prove a contradiction,
then in fact mathematics would prove that contradiction! (Note that by the Principle of
Explosion, this is indeed a possible state of affairs: if your mathematical axioms lead to a
contradiction, then they can prove every statement in the language, including the statement
that your mathematical axioms don’t lead to a contradiction!) Thus the only systems that
prove their own consistency are the inconsistent ones; incidentally, this is precisely Gödel’s
Second Incompleteness Theorem, although he originally proved it without Löb’s Theorem.

Remark. If you’re interested in going deeper on these topics, Computability and Logic by
Boolos, Burgess, and Jeffrey [5] is a good reference.

Remark. There is also a version of Löb’s Theorem for bounded proof searches, in the sense
of “look through all formulas of length ≤ N and see if any of them are a proof of φ”, and it
controls the length of the proof of φ in terms of the length of the proof of �φ → φ. In the
limit of arbitrarily large computational resources, the phenomena we care about happen in
the same way that they do in the case of infinite computation (i.e. access to halting oracles),
and so we will generally discuss the latter case because the proofs are simpler and clearer.
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3 Direct Uses of Löb’s Theorem in MIRI Research

We can now exhibit three simple cases where Löb’s Theorem comes up in MIRI research
topics: one where it forms an unexpected obstacle to justifying self-modifications, one where
it neatly enables mutual cooperation in a nonstandard Prisoner’s Dilemma setup, and one
where it frustrates a naive decision algorithm.

3.1 “The Löbstacle”

Let’s return to the problem we discussed in the Introduction: Deep Thought 1.0 wants
to verify that switching on its successor, Deep Thought 2.0, will have good consequences.
Because DT2 has better deductive capacities, DT1 cannot deduce exactly what actions DT2
will take, but it does know that DT2 has the same utility function, and that it too will only
take actions it deduces to be good.

Intuitively, this should be enough for DT1 to “trust” DT2, to say that whatever DT2 does,
DT2 must have deduced that to be good, and therefore it must actually be good. But that
last clause is analogous to the Löbian statement L(X): “if the action is deduced to be good,
then it must actually be good”! And therefore DT1 cannot generally prove that clause (un-
less its reasoning is inconsistent), since then it could prove that every action is good.

This is not just an analogy; when we consider a simple mathematical model of a self-
modifying agent that uses proofs in some consistent formal system to justify its actions,
that agent has precisely this problem. In models that presume infinite computing power
and represent different deductive powers with different axiom systems, a simple agent with
a utility function will only create successors whose formal systems are strictly weaker than
its own, since only those are fully trusted by the current system.

There are a number of partial and potential remedies to this “Löbstacle”, some of them
more appealing than others. For more details, see the MIRI preprints Tiling Agents for Self-
Modifying AI, and the Löbian Obstacle [18] and Problems of self-reference in self-improving
space-time embedded intelligence [9].

3.2 Löbian cooperation

The second topic concerns a variation on the usual Prisoner’s Dilemma. Rather than playing
directly, you write an algorithm to play against other algorithms on your behalf, as in Robert
Axelrod’s famous algorithmic Prisoner’s Dilemma tournament [1]. However, instead of that
setup, in which the algorithms play iterated games against one another, in this case your
algorithm and theirs get to read the opponent’s source code, calculate for as long as they like,
and then play only once.

Using quining (recall Section 2.1), one can write a program that cooperates if and only
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if the opponent’s source code is identical to its own. However, there are many ways to write
such programs, and different ones will not cooperate with each other; this is therefore a
fragile form of mutual cooperation.

There’s a different algorithm which (at the cost of using lots of computation) avoids that
fragility. We call this agent FairBot, and it operates as follows:

• Both FairBot and its opponent X are functions of one argument, which take the op-
ponent’s source code and output either C or D.

• When FairBot() is called on the input X, it searches through all proofs of length ≤ N
to see whether any are valid proofs of the statement “X(FairBot)= C”. If yes, then
it outputs C; if no, then it outputs D.

(Here N is a parameter that doesn’t depend on X; we’ll think of it as some extremely large
number. The only reason we have that parameter at all is so that our algorithm does in fact
always return an output in finite time.)

Some things are clear from the definition of FairBot. One is that it is capable of coop-
eration: if X is a simple algorithm that always returns C, then FairBot will return C as
well. Another is that (unless arithmetic is inconsistent) FairBot will never be exploited
(cooperate while its opponent defects).

What is less immediately clear is the outcome when FairBot plays against itself. Intu-
itively, it seems like both mutual cooperation and mutual defection are stable fixed points
of the situation. However, a Löbian statement breaks the deadlock in favor of cooperation!

To see this, ignore for the moment the parameter N . Then if we consider the statement
L(“FairBot(FairBot)= C”), we find that it follows directly from the code of FairBot. For
if there is a proof that FairBot(FairBot)= C, then FairBot will discover that proof and
output C. But then, by Löb’s Theorem, there must be an actual proof of the statement
“FairBot(FairBot)= C”!2

As mentioned in Section 2.2, there is a quantitatively bounded version of Löb’s Theorem
such that this works even with the parameter N , for sufficiently large values of N .

Furthermore, this form of cooperation is much more robust: two such programs don’t need to
figure out that they are functionally identical, they only need to search for proofs about one
another’s output. Moreover, even algorithms that are not functionally identical to FairBot

can achieve mutual cooperation with it.

2Note the asymmetry: a proof of defection does not directly lead to defection, since FairBot acts based
only on whether it finds a proof of cooperation, and it nowhere presumes that finding a proof of defection
precludes finding another proof of cooperation. Again, the formal system can’t correctly know that it is
consistent!

7



The FairBot algorithm is due to Vladimir Slepnev; for more on Löbian cooperation, see
the MIRI paper Program Equilibrium in the Prisoner’s Dilemma via Löb’s Theorem [11].
We will return to this topic in Section 7.1 when we have developed a few more tools.

3.3 Spurious counterfactuals

The third topic concerns an unexpected issue that comes up when the agent is a part of the
same universe that the agent is proving theorems about.

The setting is a pure computational universe U() which takes no input, and which just
runs and eventually outputs a number. Within that universe there is an agent A() which
knows the code for U(), which does some computations as part of the natural order of the
universe and then outputs something.

This may seem like a rather extreme setup, and it is: we want to see what we can say
about agents that know the source code of the universe and wield arbitrarily large compu-
tational resources, because it is often easier to show what happens with such agents than
what happens with more realistic, messy, and bounded agents. Moreover, any obstacles we
discover in the ideal setting are likely to correspond in the real setting to obstacles that can’t
be overcome merely by adding more knowledge and computing power to the system.

Let’s first consider a really simple sort of universe (Algorithm 1), where A() must try to
figure out whether to open door number 1, door number 2, or neither.

Algorithm 1: U()

if A() = 1 then
return 100

else if A() = 2 then
return 1

else
return −∞

end

This requires us to specify the function A(). Now of course we could consider a function
A() hard-coded to return 1, but that’s not especially interesting. Instead, we’ll write one
(Algorithm 2) which tries to deduce which door (if either) to open, by looking through proofs
of arithmetical statements.

It seems obvious that there should be proofs of A() = 1→ U() = 100 and A() = 2→ U() = 1
whose Gödel numbers are smaller than a googolplex, and therefore A should correctly prove
those statements and choose Door 1.
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Algorithm 2: A()

Door1 ← −∞;
Door2 ← −∞;
n = 1;

while Door1 + Door2 = −∞ and n < 1010100 do
if n encodes a valid proof of “A() = 1→ U() = c” for some c then

Door1 ← c;
if n encodes a valid proof of “A() = 2→ U() = c” for some c then

Door2 ← c;
n+ = 1;

end
if Door1 ≥ Door2 then

return 1
else

return 2
end

But there’s something very strange that can happen instead: A could prove A() = 2 →
U() = 1, and then prove a “spurious counterfactual” such as A() = 1 → U() = −1, which
then makes A() stop looking early and select door number 2! This wouldn’t be a contradic-
tion, because if A() = 2, then A() = 1 → U() = −1 is formally true3. But why should it
actually happen?

It’s clearest to see in the case where I can make one innocent-seeming change to A(): I
ask that before it starts searching through all n < 1010100 to see if they encode proofs, I want
it to check two particular proofs. The first is the simple proof that A() = 2 → U() = 1,
and the second is a statement φ. Now if φ really is a proof of the spurious counterfactual
A() = 1 → U() = −1, it’s clear from the rest of the source code of A() that it will break
the while loop and choose Door 2. In fact, we can formalize that reasoning: there’s a proof
that if φ is a proof of A() = 1 → U() = −1, then in fact it’s true that A() = 2 and thus
A() = 1→ U() = −1.

But this is almost a Löbian statement, just with the addition of a specific φ rather than
an existential quantifier! By the machinery of quining, we can find a φ that serves our pur-
poses, so it works just as before: since the Löbian statement is provable, so is the conclusion
A() = 1→ U() = −1, by means of that particular φ.

3Note, however, that it’s impossible to prove a spurious counterfactual about the choice you actually
take, and thus it could not be consistent to find a spurious proof that A() = 1→ U() = 2 or that A() = 2→
U() = 11
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Even without that malicious change, these kinds of agents and universes are susceptible
to spurious counterfactuals. In Section 7.2, we’ll consider a similar setup, but with a more
careful ordering of which proofs it pays attention to, and that agent can be shown to make the
correct decisions (given enough deductive power). The idea was originally due to Benja Fal-
lenstein; Tsvi Benson-Tilson’s paper UDT with Known Search Order [3] discusses spurious
counterfactuals and a different response to them.

4 Crash Course in Model Theory

For the later topics, we’ll need some additional background in mathematical logic. Let’s start
out by just talking formally about the natural numbers with addition and multiplication.

4.1 Axioms and theories

We begin with a language of symbols, and we don’t start out assuming anything about what
they mean. We’ll take some symbols of the propositional calculus, set theory, arithmetic,
and three special symbols:

{(, ),∧,∨,¬,→,↔,∈, ∀,∃,=,+, ·,O, S,N}

Here we’ll think of N as standing in for the set of natural numbers, O as standing in for
zero, and S as standing in for the successor (so that SO represents 1, SSO represents 2, etc.).
That way we don’t need rules for dealing with infinitely many number symbols, or rules for
dealing with digits. We’ll also add an infinite family of symbols like x and y for variables
(so long as they’re quantified over with ∀ or ∃). Finally, we’ll use letters like φ to stand in
for a formula within the language, but note that φ is not itself part of the language, so we
can’t say things like ∀φ.

We’ll import the standard rules of the propositional calculus and set theory as applied
to the appropriate symbols (for instance, whenever φ ∧ ψ is a theorem, then both φ and ψ
are theorems), but we won’t yet assume any properties of +, ·,O, S, or N. That’s because
we’ll want to pick our own axioms about arithmetic on the natural numbers! This creates a
theory, the set of all theorems that follow from the axioms; different sets of axioms can give
rise to different theories.

So let’s take some true statements about the natural numbers, make them axioms of our
logical system, and see what kind of theory we get. (Parenthetical comments are included
for our intuition, but are not actually a part of the theory.)

1. O ∈ N (zero is a natural number)

2. ∀x ∈ N Sx ∈ N (if x is a natural number, so is its successor)
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3. ∀x ∈ N∀y ∈ N (x+y ∈ N)∧ (x ·y ∈ N) (the product and sum of two natural numbers
are also natural numbers)

4. ∀x ∈ N∀y ∈ N (Sx = Sy)→ (x = y) (if the successors are equal, so are the originals)

5. ∀y ∈ N(y = O) ∨ (∃x ∈ N Sx = y) (every nonzero number has a predecessor)

6. ∀x ∈ N (x+O = x)∧ (x ·O = O) (how zero interacts with addition and multiplication)

7. ∀x ∈ N∀y ∈ N (x + Sy = S(x + y)) ∧ (x · Sy = (x · y) + x) (how successor interacts
with addition and multiplication)

A theory can contain contradictions, of course: some theorem φ such that ¬φ is also a
theorem. So how can we tell whether the theory built on these axioms contains any contra-
dictions? We could try proving things and see if we ever find a contradiction, but as there
are infinitely many theorems, we couldn’t be sure that we just hadn’t found a contradiction
yet.

But there’s another thing we could do: exhibit an example of a set for which all of the
axioms hold! That serves as conclusive evidence that the theory does not contain contradic-
tions, because φ is either actually true or actually false for that specific set, and so at most
one of φ and ¬φ can actually be a theorem.

We need to do a little more than exhibit an object: we need to have a correspondence
between the symbols in the language and the parts of the object. So for instance, we iden-
tify the symbol O with the number 0, SO with 1, and so on4; we identify N with the full set of
natural numbers N; and we identify addition and multiplication with the usual operations on
N. We call such an object a model, and such a correspondence an interpretation of the theory.

However, the same theory can have many models, some of them not at all what you were
thinking of when you made the axioms...

4.2 Alternative and nonstandard models

For instance, an alternate model of the theory above is the set with a single element “Alice”;
we identify O with Alice, and then SO with Alice as well (so SO = O), and so on; we declare
that Alice+Alice=Alice·Alice=Alice; and then we identify N with the set {Alice}. Note that
all of the axioms above are true of this alternate model, even if their intuitive meanings aren’t!

Fine, let’s patch this. We can’t add an axiom directly saying it’s not this particular model,

4Of course, this example does take a leap of faith in accepting the existence of infinitely many natural
numbers; some mathematicians reject that, call themselves strict finitists, and assert that we have no idea
whether the axioms of arithmetic are consistent. But they do accept that any theory with a completely
specified finite model must be consistent.
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since Alice isn’t part of the language of the theory itself. But we can add an axiom saying
SO 6= O, which is true of the model of the natural numbers we want, but not true of the
Alice model.

Well, we excluded that alternate model, but there are still others we haven’t excluded.
In particular, we can consider arithmetic mod n as a model for any n! In order to exclude
these, we could add axioms saying SSO 6= O, SSSO 6= O, etc, or we could be more econom-
ical and just use the axiom ∀x ∈ N Sx 6= O. (The resulting theory is known as Robinson
arithmetic, and is interesting in its own right.)

Have we eliminated all alternate models from this theory? Hardly! We’re just getting
started. Consider the model where N refers to the natural numbers combined with one
additional entity, “Bob”; we identify S(Bob)=Bob, Bob·0 = 0, Bob·x =Bob for all x 6= 0,
and Bob+x =Bob for all x. Then we again see that this satisfies all of our axioms so far.
We could patch this with the axiom ∀x ∈ N Sx 6= x, but again we can build more and
more complicated alternate models. (One particularly interesting model for Robinson arith-
metic consists of all polynomials with integer coefficients whose leading term is nonnegative.)

It turns out that what we’re missing from the natural numbers is the principle of induc-
tion. (Indeed, with Robinson arithmetic you can’t even prove that addition is commu-
tative!) In order to express induction in the language (which doesn’t have variables for
properties, only for numbers), we must resort to an infinite family of new axioms: for ev-
ery logical formula φ(x) (with no free variables except for x), we want to add the axiom
(φ(0) ∧ (∀x ∈ Nφ(x)→ φ(Sx)))→ ∀y ∈ Nφ(y).5

With all of that completed, we’ve got the axioms for the theory of Peano Arithmetic. Now
are we done with alternative models? Of course not! Remember how Gödel’s self-referential
formula G was undecidable? There are models of Peano arithmetic where G holds, and other
models where G fails to hold.

The models where G holds include our standard intuitive model of the natural numbers,
since as we discussed before, G definitely does not halt at any finite number. But then, what
kind of model of Peano Arithmetic could G fail to halt on?

It may help to think of the model of N with Bob. If we do Gödel’s construction in Robinson
Arithmetic, there will be no contradiction if we assert that the special extra number Bob
in fact satisfies the property that the formula G is checking (the property which represents

5Actually, we need to get a bit more complicated to do all inductive proofs on the natural numbers; what
we truly need is that if φ(x, z1, . . . , zk) is a logical formula, then

∀z1 ∈ N . . . ∀zk ∈ N (φ(0, z1, . . . , zk) ∧ (∀x ∈ Nφ(x, z1, . . . , zk)→ φ(Sx, z1, . . . , zk)))→ ∀y ∈ Nφ(y, z1, . . . , zk).
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“this is a valid proof that no number is a valid proof of G”). This is okay, because Bob
doesn’t actually have a representation in terms of lots of S’s and an O, so this assertion can’t
be used to actually construct a finite sequence of logical formulas that comprise a proof that
no number is a valid proof of G. This loophole suffices to maintain consistency for the new
system!

We’re using Peano Arithmetic, though, so our nonstandard models will be weirder than
the natural numbers plus Bob. The key to understanding these is that G never halts at any
finite number, but we can’t actually define in our formal language what “finite” means. The
nonstandard models of Peano Arithmetic are those which have all the usual numbers but
also lots of extra numbers that are “too large” to ever be written as lots of S’s followed by
an O, but which nonetheless are swept along in any inductive statement. (I still don’t know
quite how to visualize this model, but you can rigorously construct it using set theory.) And
again, a “number” that can’t actually be written in S’s and an O can be asserted to represent
a valid proof, but that proof can’t be extracted from the number and used against itself, so
it all works out consistently.

Remark. Since nonstandard models of arithmetic contain numbers larger than any of the
usual natural numbers, they can be used in other areas of mathematics. If you take the
reciprocal of one of those numbers, you get an infinitesimal; thus you can use these to define
the concepts of calculus without using limits! This is known as nonstandard analysis.

And it doesn’t end there! As I mentioned before, we can add eitherG or ¬G as an extra axiom
of Peano Arithmetic, and since adding a new axiom changes the rules for what counts as a
valid proof, we can redo Gödel’s construction in our new formal system, and have statements
that are undecidable given the new rules. Or we can directly talk about the consistency of
Peano Arithmetic (by making a statement that asserts that there is no proof in PA that
0 = 1), and the consistency of the system with all the rules of Peano Arithmetic plus the
axiom that PA is consistent, and so on. (Ponder for a moment the formal system which has
all the axioms of PA, plus the axiom that PA is consistent, plus the axiom that “the system
which has all the axioms of PA, plus the axiom that PA is consistent” is inconsistent. As
it turns out, this is a perfectly consistent system6!) We’ll work with a particular hierarchy
of such formal systems in Section 6, but before then, we’ll discuss another MIRI paper that
relates to theories and models.

Remark. Again, Computability and Logic by Boolos, Burgess, and Jeffrey [5] covers all of
this material at a much deeper level.

6Assuming that the standard ZFC axioms of set theory are consistent, as we do throughout this paper,
since we use these to construct models of all the weird axiomatizations of Peano Arithmetic.
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5 Uses of Model Theory in MIRI Research

5.1 Reflection in probabilistic logic

The topic of the first MIRI mathematical workshop paper, Definability of Truth in Prob-
abilistic Logic [7], isn’t directly entwined with Löb’s Theorem. But we’ve just covered the
necessary background to understand it, and we’ll need another ingredient before getting to
the other MIRI papers in these notes, so we might as well detour here!

This paper concerns probabilistic logic: assigning probabilities in [0, 1] to logical statements,
rather than just assigning them the labels “provable”, “disprovable7”, and “undecidable”.
We’ll want to make sure we assign the value 1 to all provable statements and 0 to all dis-
provable statements, and that we assign values to the undecidable statements in a consistent
way (so if φ and ψ are undecidable but φ→ ψ is provable, then the probability we assign to
φ should be less than or equal to the probability we assign to ψ).

Why is this an important topic for MIRI to study? Probabilistic logic is an interesting,
clean, and rich model for Bayesian reasoning and for bounded inference. Consider an AI
that cannot deduce with certainty whether P = NP ; knowing it one way or the other should
certainly change its actions (for instance, its cryptographic precautions against other agents),
and so the most sensible way to proceed seems to be assigning it a tentative probability based
on the available evidence, using that probability to do consequentialist calculations, and up-
dating it in the light of newer evidence. So, in order to understand bounded reasoning,
we might start with the nice and symmetrical (if unrealistic) case of a coherent probability
assignment over all logical statements.

So let’s consider a Gödelian obstacle that bedevils logic, and see if it looks different within
probabilistic logic. That obstacle is Tarski’s undefinability of truth [14].

OK, so we’ve previously established that some statements are undecidable, and in fact,
undecidable statements hold in some models of a theory but not others. We might want
to endorse some particular model as the “true” one (for instance, our standard model of
the natural numbers, without all of those weird nonstandard numbers), and say that logical
statements are true if they hold in that model and false if they don’t. This truth predicate
exists outside the language, and so the logical statements can’t talk about the truth predi-
cate, only about weaker notions like provability. All that is perfectly fine, thus far.

The trouble comes when we try to construct a language that contains its own truth predicate
T , either by finding a formula for it using the previously existing symbols, or by directly
adding a new symbol with some rules of usage, such that for all φ, it’s true that T (φ)↔ φ.
Either approach is doomed, by an argument that should seem familiar by now: there exists

7By this, we mean statements whose negation is provable, not statements which cannot be proven.
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a sentence X that refers to itself by quining, so that it’s provable that X ↔ T (¬X). And
now, clearly, neither T (X) nor T (¬X) can hold.

All right, so what changes when you incorporate probabilities?

Let’s introduce a symbol P which represents the probability of a logical statement. We’d
like P to satisfy some mathematical coherence properties, like P (φ ∧ ψ) ≤ P (φ), and we’d
also like P to be able to discuss itself. Now what happens when we consider the statement
Y constructed such that Y ↔ (P (Y ) < 0.5)? Does this create a contradiction?

It depends on what kind of statements P is allowed to make about itself! Namely, if P
isn’t allowed to make exact statements about its own values, but only arbitrarily precise ap-
proximations, then everything can work out consistently. Namely, in the place of the failed
reflection principle T (T (φ)↔ φ), we take the reflection principle

∀φ∀a, b ∈ Q (a < P (φ) < b)→ (P (a < P (φ) < b) = 1) . (5.1)

In the paper, they prove that with this reflection principle and the natural coherence condi-
tions, there indeed is a probability valuation that works for the values of P .

How does this avoid a collision with the statement Y above? It turns out that the true
value of P (Y ) is 0.5, but P isn’t able to know whether P (Y ) is exactly 0.5, or slightly above
it, or slightly below it, and so P (P (Y ) < 0.5) is 0.5 as well, and so on. For any rational
ε > 0, you can prove with certainty that P (0.5− ε < P (Y ) < 0.5 + ε) = 1, but you can’t get
from this anything sharp enough to produce a contradiction; in particular, you can’t prove
the generalization that ∀ε > 0P (0.5− ε < P (Y ) < 0.5 + ε) = 1.

Remark. Nonstandard arithmetic isn’t needed for this result, but it can shed some light
on the fact that P (0.5 − ε < P (Y ) < 0.5 + ε) = 1 for any rational ε. Since some models of
N include nonstandard natural numbers, P can’t rule out the possibility that reciprocals of
nonstandard natural numbers (infinitesimals) exist, and so P (Y ) may as well be imagined
as 0.5 plus or minus an infinitesimal...

Remark. Since the result in the Definability of Truth paper is nonconstructive, it’s worth
noting that there’s a followup paper by Christiano on computationally tractable approxima-
tions of probabilistic logic: Non-Omniscience, Probabilistic Inference, and Metamathematics
[6].

6 Crash Course in Gödel-Löb Modal Logic

The final topics in this survey require some topics outside the usual first course in mathe-
matical logic, namely the Gödel-Löb modal logic of provability. This modal logic captures
exactly the parts of Peano Arithmetic that relate to self-reference, and by leaving out the
rest, it has a pleasingly simple structure and plenty of powerful tools for analysis. Thus it’s
a great setting for model problems in decision theory, as we shall see.
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6.1 The modal logic of provability

You may have heard of modal logic before, in the context of philosophy: Aristotle defined
ways of arguing about which facts are necessary or possible rather than merely true or false.
By the twentieth century, people had formalized various kinds of modal logic, where you take
the usual language of propositional logic and add the symbols � and �, as well as new axioms
and rules incorporating them. �φ is usually interpreted as the statement “it is necessary
that φ”, and �φ as “it is possible that φ”. (We actually only need �, since in all modal
logics of interest to us, �φ↔ ¬�¬φ.)

Philosophers have tried out various sets of axioms, mostly in order to write intimidat-
ingly technical-looking arguments for their preferred metaphysical conclusions8, but we’re
more interested in a particular modal logic that constitutes a perfectly rigorous—and quite
useful—reflection of Löbian phenomena in Peano Arithmetic and other such systems. This is
the Gödel-Löb modal logic (alternately, ‘the modal logic of provability’ or simply ‘provability
logic’), which we will denote as GL.

We can construct GL in two different ways. First, we can let �φ represent the formula
of Peano Arithmetic that asserts that φ is provable in Peano Arithmetic, and then restrict
ourselves to the formulas and proofs that use only �, the logical operators, and Boolean
variables (including the constants > for true and ⊥ for false, but no numbers, arithmeti-
cal operations, or quantifiers). Or, equivalently, we can start with those elements of the
language, and then add the following axioms and rules:

• All tautologies of the propositional calculus are axioms of GL, including tautologies
where an expression including � has been substituted for a variable (for instance,
�p ∨ ¬�p is an axiom).

• Modus Ponens Rule: if the expressions A and A→ B are theorems, then so is B.

• Distribution Axioms: for any expressions A and B in the language, we have the axiom
�(A→ B)→ (�A→ �B).

• Generalization Rule: if the expression A is a theorem, then so is �A.

• Gödel-Löb Axioms: for any expression A, we have the axiom �(�A→ A)→ �A.

It’s a nontrivial theorem that these approaches give us the same modal logic! So GL really
does capture the self-referential parts of Peano Arithmetic, while leaving aside the arithmeti-
cal parts; for instance, the statement that Peano Arithmetic is consistent is simply ¬�⊥.

Exercise. Show, using the rules of GL, that �⊥ ↔ � � p; recall that �p = ¬�¬p. Infor-
mally, that is, no statement can be proven consistent with Peano Arithmetic unless Peano

8Gödel himself, toward the end of his life, circulated a modal logic version of Anselm’s ontological proof
of the existence of God. The proof is of course formally valid, but the axioms are a bit overpowered and
underjustified.
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Arithmetic is inconsistent. [Hint: First prove that �⊥ → � � p, then that � � p → �⊥.
For the latter, it will help to rewrite ¬�⊥ as �⊥ → ⊥, then consider the Löbian axiom
�(�⊥ → ⊥)→ �⊥.]

While every specific deduction we would want to make in GL can be made via formal
manipulations in the system, this is a computationally intractable way to handle deduction.
(Deducing whether a given modal statement is a theorem of GL is NP-complete in general,
just as it is in Peano Arithmetic.) However, there are some special cases where there are
efficient algorithms for deducing provability in GL, and these happen to include cases of
direct interest to decision theory...

6.2 Fixed points of modal statements

In Section 3.2, we figured out what happens when two different programs try to prove the-
orems about one another. In that case, the programs were simple enough that we could
directly see where to apply Löb’s Theorem, but in general we’d like to be able to handle
more complicated phenomena. Fortunately, modal logic comes equipped with a powerful
tool for doing precisely that: the theory of fixed points for modal sentences.

In Peano Arithmetic, the Gödel statement G refers to itself via quining, in order to claim
that it cannot be proved in PA; in GL, G corresponds to the formula p ↔ ¬�p. Similarly,
we can have all sorts of formulas that refer to themselves and each other by quining, and
these are represented by formulas p ↔ φ(p, q1, . . . , qk) that are modalized in p: every oc-
currence of p in φ happens within the scope of some �. (After all, quining can only refer
to the provability of the statement’s own Gödel number, not directly to the statement itself!)

As it happens, whenever you have this setup in GL, with p equivalent to a formula that
is modalized in p, then p is equivalent to some other formula which doesn’t use p at
all! For example, the Gödel statement is equivalent to the inconsistency of arithmetic:
�(p↔ �¬p)↔ �(p↔ �⊥).

In the case of one-variable formulas p ↔ φ(p) with φ(p) modalized in p, there’s a neat
tool that helps us calculate these fixed points (where the result will involve no variables at
all, just logical connectives, �, >, and ⊥).

First, for many modal logics including GL, there’s a corresponding class of sets and rela-
tions (called Kripke frames) such that a formula is provable in the modal logic if and only
if a corresponding property holds for every Kripke frame in that class. And secondly, in the
special case of sentences without variables in GL, we can reduce to checking a linear hierarchy
corresponding to a world in which �⊥ holds, a world in which ��⊥ ∧ ¬�⊥ holds, and so
on up the ladder of �n+1⊥∧¬�n⊥ for each n9. If you’ll grant me that result (known as an

9Note that these all correspond to nonstandard models of Peano Arithmetic, but that in some sense they
approach the standard model as n→∞.
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adequacy result for GL), I can show you how to construct a “truth table” and a variable-free
fixed point for such a formula!

Let’s take as our example the formula p ↔ (��p → �(p → �¬p)), which has p equiv-
alent to a modalized expression of p. As with truth tables in propositional calculus, we’ll
break the formula down into constituent parts. But instead of assuming p to be > or ⊥,
we’ll use some rules involving � to propagate it to the expression (��p→ (p→ �¬p)) and
thereby to p.

World �p ��p �¬p �(p→ �¬p) ��p→ �(p→ �¬p) p p→ �¬p
�⊥ ? ? ? ? ? ? ?

��⊥ ∧ ¬�⊥ ? ? ? ? ? ? ?
�3⊥ ∧ ¬�2⊥ ? ? ? ? ? ? ?

We then notice that if �⊥, then �X for any modal expression X, so we can fill in sev-
eral of the entries in the first row.

World �p ��p �¬p �(p→ �¬p) ��p→ �(p→ �¬p) p p→ �¬p
�⊥ 1 1 1 1 ? ? ?

��⊥ ∧ ¬�⊥ ? ? ? ? ? ? ?
�3⊥ ∧ ¬�2⊥ ? ? ? ? ? ? ?

(Note: we’ll use 1 and 0 instead of > and ⊥ so that humans can read these tables.) Now we
can use the rules of predicate logic to figure out the big expression, and since we’re assuming
it’s equivalent to p itself10, we can fill in the last two entries on the first row:

World �p ��p �¬p �(p→ �¬p) ��p→ �(p→ �¬p) p p→ �¬p
�⊥ 1 1 1 1 1 1 1

��⊥ ∧ ¬�⊥ ? ? ? ? ? ? ?
�3⊥ ∧ ¬�2⊥ ? ? ? ? ? ? ?

Here’s where things start to get interesting. In the next world (defined by ��⊥ ∧ ¬�⊥),
it’s not the case that all �A are provable. Instead, we’ll use the following lemma:

Lemma 6.1 For all modal expressions A, GL proves (�n+1⊥∧¬�n⊥)→ �A if and only if
GL proves (�k+1⊥ ∧ ¬�k⊥)→ A for all k < n.

Exercise. Prove this lemma by induction on n.

Then, since p holds in the �⊥ world (which we’ll denote as world 0, since there n = 0),
�p holds in world 1 (defined by ��⊥ ∧ ¬�⊥), while ¬p does not hold in world 0, so �¬p
does not hold in world 1. Similarly, since �p and p → �¬p hold in world 0, ��p and
�(p → �¬p) hold in world 1, and we can complete the first row (note that now, p → �¬p
will be false):

10This part requires our assumption that the expression is modalized in p, since otherwise we couldn’t fill
in the value for it without first knowing the value for p.
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World �p ��p �¬p �(p→ �¬p) ��p→ �(p→ �¬p) p p→ �¬p
�⊥ 1 1 1 1 1 1 1

��⊥ ∧ ¬�⊥ 1 1 0 1 1 1 0
�3⊥ ∧ ¬�2⊥ ? ? ? ? ? ? ?

Continuing with the second row, we find that p flips to false:

World �p ��p �¬p �(p→ �¬p) ��p→ �(p→ �¬p) p p→ �¬p
�⊥ 1 1 1 1 1 1 1

��⊥ ∧ ¬�⊥ 1 1 0 1 1 1 0
�3⊥ ∧ ¬�2⊥ 1 1 0 0 0 0 1
�4⊥ ∧ ¬�3⊥ ? ? ? ? ? ? ?

And with the third row, when considering �¬p, it is important to remember that the lemma
above requires A to be true in all previous rows, so even though ¬p is now true, �¬p remains
false. We will fast-forward through the next few rows:

World �p ��p �¬p �(p→ �¬p) ��p→ �(p→ �¬p) p p→ �¬p
�⊥ 1 1 1 1 1 1 1

��⊥ ∧ ¬�⊥ 1 1 0 1 1 1 0
�3⊥ ∧ ¬�2⊥ 1 1 0 0 0 0 1
�4⊥ ∧ ¬�3⊥ 0 1 0 0 0 0 1
�5⊥ ∧ ¬�4⊥ 0 0 0 0 1 1 0
�6⊥ ∧ ¬�5⊥ 0 0 0 0 1 1 0

And here it stabilizes: every further row is identical11. And now that we’ve found the
truth values of p, if we find a constant formula with the same truth values, then by the
adequacy result I mentioned in passing, there must be a proof of equivalence in GL!

We can get such a formula by taking Boolean combinations of the formulas that define
the worlds (since the truth table stabilizes eventually, one only needs a finite combination of
these); in the present case, that formula is ¬(�3⊥∧¬�2⊥)∧¬(�4⊥∧¬�3⊥), or equivalently
�4⊥ → �2⊥. So in the end, we have the fixed point

�(p↔ (��p→ �(p→ �¬p)))↔ �(p↔ (�4⊥ → �2⊥)),

and our algorithm for finding it is polynomial in the complexity of the statement (in fact,
quadratic: we add columns for sub-expressions, and there’s a linear bound for how many
rows we need to calculate).

Remark. We demonstrated the fixed-point algorithm only for one-variable expressions, but
you can also take a statement of the form p ↔ φ(p, q1, . . . , qk), where φ is modalized in p

11Since every expression �A either remains true forever or switches over to false and remains that way
forever, we can see that every expression must eventually stabilize; and if we’ve decomposed it at each step
involving a �, once two rows are identical, all subsequent rows must be as well.
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(not necessarily in any of the qi), and find an equivalent expression p ↔ ψ(q1, . . . , qk). The
machinery for this is more difficult, as one needs to deal with more complicated Kripke frames
(in the general case of GL, a Kripke frame is a set equipped with a transitive, irreflexive,
well-founded relation), but it can be mechanized as well.

I swept quite a lot under the rug in this section; if you want to get to know the topic on
a much sounder basis, read The Logic of Provability [4] by Boolos. (This is an advanced
textbook, so wait until after your first course in mathematical logic!)

7 Uses of Gödel-Löb Modal Logic in MIRI Research

7.1 Modal Combat in the Prisoner’s Dilemma

We’re now ready to handle the preprint Robust Cooperation in the Prisoner’s Dilemma:
Program Equilibrium via Provability Logic [2], which encompasses the results from Section
3.2, and studies “modal agents” represented by expressions in modal logic.

Recall the idea of Löbian cooperation from Section 3.2. One embarrassing thing about
FairBot is that it doesn’t check whether its potential cooperation would actually make any
difference. It happily cooperates with CooperateBot, the constant strategy that simply re-
turns C for every opponent. That’s a bit like cooperating against a rock because the rock
“cooperated” with you.

Let’s consider the following alternative: first we define DefectBot as the constant strat-
egy that simply returns D for every opponent; then we define PrudentBot as the algorithm
that, given the source code of an opponent X, searches in Peano Arithmetic for a proof of the
statement “X cooperates with PrudentBot, and if Peano Arithmetic is consistent12, then fur-
thermore X defects against DefectBot”, and cooperates if and only if it finds such a proof13.

Now it’s more difficult to figure out what happens when FairBot plays the open-source-
code Prisoner’s Dilemma against PrudentBot, if we view these as proof searches in Peano
Arithmetic. But if we assume infinite computational power (i.e. the ability to consult a
halting oracle about proof searches in Peano Arithmetic), then they can be written out as
simple statements in modal logic. Let p = “FairBot cooperates with PrudentBot”, q =
“PrudentBot cooperates with FairBot”, r = “FairBot cooperates with DefectBot”, and

12Why does PrudentBot include the consistency requirement? Because certain actions that depend on
agents require the consistency of Peano Arithmetic; for instance, FairBot does defect against DefectBot,
but knowing this requires knowing that Peano Arithmetic is consistent, since otherwise FairBot might find
a proof that DefectBot cooperates, using the Principle of Explosion.

13Also, why not directly check whether your cooperation causes the opponent’s cooperation, by defining
MagicBot which cooperates if and only if it finds a proof of the statement “X cooperates with MagicBot if
and only if MagicBot cooperates with X”? Because this makes it susceptible to spurious counterfactuals as
in Section 3.3, and in fact MagicBot is equivalent to FairBot when they are rendered as modal statements.
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s = “DefectBot cooperates with FairBot”. Then we have

p ↔ �q

q ↔ �(p ∧ (¬�⊥ → ¬r))
r ↔ �s

s ↔ ⊥.

If we look for the fixed point of this modal system, we can use the truth table formalism of
the fixed-point theorem (we do all of these simultaneously, since every variable is equivalent
to a fully modalized expression) to show that p↔ >, q ↔ >, r ↔ �⊥, and of course s↔ ⊥.

Exercise. Show this formally.

So what actually happens when you run the bounded versions of these agents against one
another (with sufficiently high bounds on how deep they search for proofs before giving up)?
Again, the bounded analogue of Löb’s Theorem helps any valid proof in GL to go through
if the proof bounds are sufficiently large. And since we really don’t expect there to be a
contradiction in Peano Arithmetic or any of the systems built atop it by addition of the
axioms ¬�n⊥14, in the bounded case we should expect that every search for �n⊥ comes up
empty. Thus p and q are true, and r and s are false. (This is equivalent, in the infinite com-
putation case, to specifying that we care about what actually holds in the standard model
of the natural numbers.)

Therefore we can use these tools to analyze interactions between “modal agents” repre-
sented by families of modal statements like FairBot and PrudentBot, and moreover, we can
figure out what actually happens using an efficient algorithm rather than the huge brute-
force proof search!

It’s a little tricky to define these modal agents in one fell swoop, so let’s start with the
simplest case: agents that don’t check their opponent’s action against any third parties, but
only against themselves. (We will call these “modal agents of rank 0”.) A rank 0 modal
agent is represented by a formula p↔ φ(p, q), where φ is modalized in both p and q (we don’t
allow modal agents to run the other agent, only to prove things about them; this avoids the
infinite regress of two agents simulating each other forever, waiting for the other to ‘make
the first move’). By the modal fixed-point theorem, this is equivalent in GL to p↔ φ̃(q) for
some φ̃ modalized in q, so we will define rank 0 modal agents using those formulas.

Then if we have two modal agents of rank 0, represented by p ↔ φ(q) and q ↔ ψ(p),
the simultaneous fixed point of these formulas gives us constant sentences (combinations of

14If this step worries you, you may be reassured to know that the standard axioms of set theory are
strong enough to assert that this tower upon Peano Arithmetic is consistent all the way up. Of course, that
simply means that maybe set theory is contradictory, but if so then the contradiction has been hiding pretty
effectively from the mathematical community for the last few decades...
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�n⊥) from which we can deduce their actions.

Now let’s allow calls to third parties, like PrudentBot’s call to the opponent’s action against
DefectBot. We’ll insist that it bottom out in a finite number of statements: for this, it suf-
fices that every modal agent can only predict its opponent’s action against itself and against
modal agents of strictly lower rank. That is,

Definition. X = 〈φ, Z1, . . . , Zk〉 is a modal agent of rank n ≥ 0 if φ is a fully modalized
formula of k + 1 variables p, r1, . . . , rk, and each Zi is a modal agent of rank < n.

Given two modal agents X = 〈φX , Z1, . . . , Zk〉 and Y = 〈ψY ,W1, . . . ,Wl〉, we then construct
the family of formulas given by recursively applying the modal agents to each other and
applying the third parties to the originals:

pX ↔ φX(qY , rZ1 , . . . , rZk
)

qy ↔ ψY (pX , sW1 , . . . , sWl
)

rZi
↔ φZi

(t(Y,Zi), u
Zi
1 , . . . , u

Zi
mi

)

t(Y,Zi) ↔ ψY (rZi
, v(W1,Zi), . . . , v(Wl,Zi))

and so on until it bottoms out. (Please excuse the proliferation of indices and the imperfect
rigor, and take another look at the example above of PrudentBot versus FairBot, where
FairBot=〈�p〉, PrudentBot=〈�(p ∧ (¬�⊥ → ¬r)), DefectBot〉, and DefectBot=〈⊥〉.)

Thus any two modal agents can be played against each other, and the result of that “modal
combat15” computed by an effective algorithm. So there’s an actual Haskell program, written
by Mihaly Barasz and Marcello Herreshoff, that checks the result of the modal combat, and
that program helped the authors to find many other patterns about modal agents (including
the discovery of PrudentBot, which is never exploited, achieves mutual cooperation with
itself and with FairBot, and which correctly defects against CooperateBot).

Among the other results in that paper:

• Third parties are necessary to get cooperation from FairBot while defecting against
CooperateBot; no modal agent of rank 0 can achieve both.

• No modal agent globally dominates another modal agent, since it is possible to write
another modal agent which punishes or rewards agents for their other decisions. (For
example, consider TrollBot, which cooperates with its opponent if and only if it proves
that its opponent cooperates with DefectBot.)

• In another obstacle to strong definitions of optimality, consider WaitFairBotN defined
by 〈¬�N+1⊥∧�(¬�N⊥ → p)〉. Then any modal agent that defects against DefectBot
will fail to elicit mutual cooperation from WaitFairBotN for sufficiently large N .

15I came up with that pun. I’m proud of it.
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• Finally, there are some modal agents that can be exploited by non-modal agents
but not by any modal agent. Consider MimicFairBot, which cooperates with X if
and only if Peano Arithmetic proves that X cooperates with FairBot. (That is,
MimicFairBot=〈�r, FairBot〉.) It is possible for an algorithm to exploit MimicFairBot
(consider the non-modal agent that cooperates if and only if the opponent’s source code
is identical to the source code of FairBot), but every modal agent treats MimicFairBot
and FairBot identically.

The field of modal combat is new and still wide-open, and I expect to see many more results
soon! Furthermore, it inspired an unexpected development in decision theory for one-player
games as well...

7.2 Modal Decision Theory

Recall the setup in Section 3.3: we have a universe U() which contains an agent A(). The
universe runs some computation and returns some outcome; as a part of that computation,
the agent runs some computation and returns some action. Everything is deterministic, but
we can think of a decision theory as a condition on the allowable form of A(); if you have
a certain decision theory, then you find yourself only in certain universes and you perform
some specific algorithm in those universes.

In order to define what we mean by a decision theory, then, we need to specify where
in the universe the agent goes. So we start with some utility values over outcomes, and a
universe template U(·) with a spot for an agent; then our decision theory specifies an agent
A() that goes there, such that we now have the universe UA() = U(A) which computes a
certain outcome; and we judge the decision theory based on how highly it values that out-
come.

Causal decision theory (CDT) and evidential decision theory (EDT) are two famous philo-
sophical examples of decision theory. Both of these require the universe template to supply
the agent with some additional information: in the case of CDT, a causal graph of the uni-
verse, and in the case of EDT, the actions and outcomes of other agents in the same universe
template.

Because CDT and EDT can be shown to make bad decisions on some problems even when
given the right info, several people have proposed alternatives, including timeless decision
theory [17] (TDT) and updateless decision theory (UDT). (For more on the philosophical
side of things, see Toward Idealized Decision Theory [13].) While working out models of
UDT, in particular, Vladimir Slepnev and Benja Fallenstein found a nice formalization of
a simple decision theory using modal logic, one that they could even prove optimal on a
certain class of modally defined problems!

Consider a universe template U(·) with a finite set of possible actions A and a finite set
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of possible outcomes O. We have some preference ordering over O, and we pick some default
action a0 to return if we can’t prove anything at all. We then define the decision theory
which takes U(·) and returns the agent A() given by Algorithm 3.

Algorithm 3: A() (Slepnev-Fallenstein model of UDT)

for x ∈ O (in descending order of preference) do
for a ∈ A do

if Peano Arithmetic proves “A() = a→ U() = x” then
return a

end

end

end
return a0

Note that this decision theory is immune to the spurious conterfactuals of Section 3.3: if it
ever proves a counterfactual, it immediately makes the antecedent true by returning that
action, so the consequent must be true as well. Moreover, if it proves any counterfactual,
then it has already tried and failed to achieve every outcome higher in its preference order.

Before we show an optimality result for Algorithm 3 in a special domain, we will have
to show what can go wrong with it in other domains. Firstly, the universe template could be
‘unfair’, in the sense that it cares about aspects of the agent that aren’t significantly related
to its output. For instance, we could have a universe template that gives the best outcome
if and only if A() is a tab-indented Python program, or if and only if A() can be proved to
always select the first action of A in alphabetical order (regardless of the details of U(·). We
will not worry about how to succeed on such pathological problems in general.

A very strong fairness condition for a universe template is that U(·) should be a function
of only the output of A, rather than depending on any other features16. We can define this
in Peano Arithmetic by choosing an encoding for agents in a particular universe template,
then writing a sentence that asserts (A() = B())→ (UA() = UB()); the universe template is
‘provably extensional’ if that statement is a theorem of Peano Arithmetic.

Everything thus far can be represented in modal logic. We will represent O and A by prov-
ably mutually exclusive and exhaustive (p.m.e.e.) families of modal statements. For example,
{p∧q, p∧¬q,¬p} is a p.m.e.e. family. Then if the universe template and the agent are modal
expressions, the universe template is provably extensional if (a ↔ b) → (U(a) ↔ U(b)) is a

16Note that this condition is too strong to include modal combat, since there it also matters whether
a given formal system can prove what the algorithm’s output is, not only what the output is. Thus our
optimality theorem will not cover modal combat, which is consistent, given that we mentioned in the last
section that we lack a good optimality result for modal combat.
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theorem of GL. (You can check that the universe from Algorithm 1 corresponds to a provably
extensional modal universe with 3 actions and 3 outcomes.)

However, the modal version of Algorithm 3 can fail even on provably extensional modal
universe templates; indeed, for any modally defined decision theory there is an “evil prob-
lem” which it fails on. (This can be shown by representing the modal decision theory itself
in the universe template, and punishing any agent that acts identically to the action of the
modal decision theory.) So our definition of optimality must allow some way around this.

As it happens, although for any decision theory one can write a specific universe template
that frustrates it, for any fixed universe template there is a modification of Algorithm 3
which succeeds on it, and this modification is simply a replacement of “proves in Peano
Arithmetic” with “proves in Peano Arithmetic given ¬�n⊥” for sufficiently large n. We can
then show that this modification achieves the best outcome that is achievable by any modal
decision theory.

This result shows that we’re on to something: in this restricted domain, we can do as
well as it’s possible to do, as long as we’re bringing enough deductive capacity to bear! Note
that here, the universe acts on the agent only by running it and using the output, while the
agent interacts with the source code of the universe only by proving things about it. So in
particular, it’s less rich than modal combat, in which your agent is proving things about the
universe, but another part of that universe (the opponent) is proving things about the agent
as well.

So before we count ourselves done with using modal logic in decision theory, we have many
open questions about competition and bargaining and other phenomena. It’s a beautiful
Löbian universe, waiting for us to explore!

In addition to the contributions of Vladimir Slepnev and Benja Fallenstein, the “evil decision
problems” were introduced by Nick Bone. If you’d like to get into this topic, I recommend
Benja’s recent posts on evil decision problems in provability logic, optimality of the model
of UDT [8], and its sequel.
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