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Abstract

An intelligent agent embedded within the real
world must reason about an environment which
is larger than the agent, and learn how to
achieve goals in that environment. We discuss
attempts to formalize two problems: one of in-
duction, where an agent must use sensory data
to infer a universe which embeds (and com-
putes) the agent, and one of interaction, where
an agent must learn to achieve complex goals in
the universe. We review related problems for-
malized by Solomonoff and Hutter, and explore
challenges that arise when attempting to for-
malize analogous problems in a setting where
the agent is embedded within the environment.

1 Introduction

An intelligent agent embedded in the real world faces
an induction problem: how can it learn about the en-
vironment in which it is embedded, about the universe
which computes it? Solomonoff (1964) formalized an
induction problem faced by agents which must learn
to predict an environment which does not contain the
agent, and this formalism has inspired the development
of many useful tools, including Kolmogorov complexity
and Hutter’s AIXI. However, a number of new difficul-
ties arise when the agent must learn about the environ-
ment in which it is embedded.

An agent embedded in the world also faces an in-
teraction problem: how can an agent learn to achieve
a complex set of goals within its own universe? Legg
and Hutter (2007) have formalized an “intelligence mea-
sure” which scores the performance of agents that learn
about and act upon an environment that does not con-
tain the agent, but again, new difficulties arise when
attempting to do the same in a naturalized setting.

This paper examines both problems. Section 2
introduces Solomonoff’s formalization of an induction
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problem where the agent is separate from the environ-
ment, and Section 3 discusses troubles that arise when
attempting to formalize the analogous naturalized in-
duction problem. Section 4 discusses Hutter’s interac-
tion problem, and Section 5 discusses an open problem
related to formalizing an analogous naturalized interac-
tion problem.

Formalizing these problems is important in order
to fully understand the problem faced by an intelligent
agent embedded within the universe: a general artifi-
cial intelligence must be able to learn about the envi-
ronment which computes it, and learn how to achieve
its goals from inside its universe. Section 6 concludes
with a discussion of why a theoretical understanding
of agents interacting with their own environment seems
necessary in order to construct highly reliable smarter-
than-human systems.

2 Solomonoff’s Induction Problem

Solomonoff (1964) posed one of the earliest and sim-
plest descriptions of a problem in which an agent must
construct realistic world-models and promote correct
hypotheses based on observations, performing reason-
ing akin to scientific induction. Intuitively, the problem
considered by Solomonoff runs as follows: the universe
is separated into an agent and an environment. Every
turn, the agent observes one bit of output from the en-
vironment. The task of the agent is to, in each turn,
predict its next observation.

To formally describe the agent’s performance, it is
necessary to decide what counts as a possible environ-
ment, then to decide how to measure how well an agent
predicts an environment, and then to choose the distri-
bution over environments against which the agent will
be scored.

What counts as a possible environment? In
Solomonoff’s formalization, the goal is to consider hypo-
thetical agents which can learn an arbitrarily complex
environment, and so Solomonoff chooses the set of envi-
ronments to be anything that is computable. This can
be formalized by defining the set of all environments
as the set T of all Turing machines with access to an
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advance-only output tape.
How are an agent’s predictions scored? Consider an

environment M ∈ T where Mn denotes the nth bit on
the output tape of M . Let an agent A be a function
which takes a string M≺t of observations made before
turn t, which outputs a prediction of Mt in the form of
a rational number interpreted as the probability that
Mt = 1. For convenience, define At := A(M≺t). To
score A against M on all time steps, it is necessary
to account for the fact that M may eventually stop
outputting bits; define dMe to be the last turn in which
M outputs a bit (this value may be ∞). Then A may
be scored against M using standard logarithmic loss:1

SM (A) :=

dMe∑
t=1

Mt log(At) + (1−Mt) log(1−At). (1)

Against which distribution over Turing machines
should the agent be scored? The answer determines
which agents are considered to be “good predictors.” If
the agent is to be evaluated against its ability to learn
one specific environment, the trivial distribution con-
taining only that environment may be chosen—but then
the high-scoring agents would be agents which have that
environment hard-coded into them; this would hardly
be a problem of learning. The choice of distribution
defines the manner in which agents must be biased to
achieve a high score: how should predictors be biased?

The natural answer comes in the form of an intu-
ition canonized by William of Ockham seven hundred
years ago: predictors in the real world do well to pre-
fer the simplest explanation which fits the facts. There
are exponentially more possible explanations of increas-
ing complexity (e.g. 2N N -bit explanations) and so
any particular explanation of greater complexity should
have less probability. Thus it seems natural to score
the agent according to a distribution in which simple
environments have greater weight than complex envi-
ronments. The most natural way to define a simplicity
distribution over Turing machines is to fix some univer-
sal Turing machine U ,2 and assign probability 2−〈M〉 to
each Turing machine M , where 〈M〉 is the number of
bits needed to specify M to U .

Now Solomonoff’s induction problem may be fully
described: An environment is any Turing machine M
with an advance-only output tape. An agent A is a
function which takes an output history and produces
a rational number interpreted as the probability that
the next observation will be 1. The agent is scored
according to SM (A) against a simplicity distribution.
Formally, Solomonoff’s induction problem is the prob-
lem of maximizing the “Solomonoff induction” score

SI(A) :=
∑
M∈T

2−〈M〉 · SM (A). (2)

1. This score may not converge, in the infinite case, but
it is nevertheless useful for comparing agents.

2. U must be chosen such that
∑

M∈T 2−〈M〉 = 1.

Like many good problem descriptions, this one lends
itself readily to an idealized unbounded solution, known
as Solomonoff induction:

Solomonoff induction. The agent starts
with a simplicity distribution over T . Upon
receiving the nth observation on, it condi-
tions its distribution on this observation by
removing all Turing machines that do not
produce n bits, or that do not write on as
the nth bit on their output tape. It then
predicts that the (n + 1)th bit is a 1 with
probability equal to the measure on remain-
ing Turing machines which write 1 as the
(n + 1)th bit on their output tape.

Indeed, it is in terms of this idealized solution that
Solomonoff originally posed his induction problem
(Solomonoff 1964).

A Solomonoff inductor is a very powerful predic-
tor. It can “learn” any computable environment:
Solomonoff (1978) showed that given any computable
probability distribution over bit strings, a Solomonoff
inductor’s predictions will converge to the true proba-
bilities.

With his induction problem, Solomonoff provides a
full description of a scenario in which an agent must
learn an arbitrarily complex computable environment
separate from the agent. Insights from the induction
problem have proven useful in practice: This prob-
lem became the basis of algorithmic information the-
ory (Hutter, Legg, and Vitanyi 2007). The simplic-
ity prior over Turing machines is the celebrated “uni-
versal prior” (Solomonoff 2003). Solomonoff induc-
tion is a crucial ingredient in Hutter’s AIXI (2000)
that solves the analogous universal decision problem,
and many of Solomonoff’s insights are present in the
Legg-Hutter “universal measure of intelligence” (2007).
Solomonoff’s work served as the basis for Kolmogorov
complexity (Solomonoff 1960), a powerful conceptual
tool in computer science.

Unfortunately, the prediction problem faced by
agents acting in the real world is not Solomonoff’s in-
duction problem: it is a problem of an agent modeling
a world in which the agent is embedded as a subpro-
cess, where the agent is made out of parts of the world
and computed by the universe. Formally describing
this more realistic problem turns out to be significantly
more difficult.

3 The Naturalized Induction Problem

In Solomonoff’s induction problem, the agent and its
environment are fundamentally separate processes, con-
nected only by an observation channel. In reality,
agents are embedded within their environment; the
universe consists of some ontologically continuous sub-
strate (atoms, quantum fields) and the “agent” is just a
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part of the universe in which we have a particular inter-
est. What, then, is the analogous prediction problem
for agents embedded within (and computed by) their
environment?

This is the naturalized induction problem, and it is
not yet well understood. A good formalization of this
problem, on par with Solomonoff’s formalization of the
computable sequence induction problem, would repre-
sent a significant advance in the theory of general rea-
soning.

An analogous formalization of the naturalized in-
duction problem must yield a scoring metric akin to
SI(·), which scores an algorithm’s ability to predict its
environment. But what metric is this? There are at
least three open questions of naturalized induction:

First, given an algorithm, what is the set of all en-
vironments that the algorithm could have to induce?
It would be strange to score the agent against all com-
putable environments, as almost all Turing machines
will not in fact embed that algorithm. Perhaps the
set of environments could be defined with respect to
the proposed algorithm, as the set of Turing machines
which embed it. But how is that set defined? What
does it mean for a Turing machine to “embed” an algo-
rithm? Intuitions about embeddings have been difficult
to formalize.

If the naturalized induction problem is to capture
the problem of an agent learning about the real world,
then the set of environments must contain reality. The
set of all environments, therefore, must be a set of “pos-
sible realities”: what structure is this? Does the set
of all Turing machines actually contain our universe?
Currently, the Standard Model of physics seems com-
putable to any desired finite precision. But then again,
reality looked Newtonian to scientists of in centuries
past. If artificial agents are to be able to surpass their
programmers’ scientific knowledge, a formalization of
intelligent learning should not presuppose the correct-
ness of present-day physical science. Modern theories
as to the nature of physical reality may turn out to be
mistaken or incomplete, and an ideal reasoner must be
able to adapt to such surprises. What set of possible
environments definitely contains reality, in light of the
potential for surprises?

Second, given an environment drawn from this set
of possible environments, how is the agent’s ability to
learn that environment scored? Are agents scored bet-
ter for constructing new sensors? Are they scored better
for finding some way to affect their environment so as to
make it easier to predict? These are not questions that
can be reduced to Solomonoff’s prediction task. For-
malizing inductive success is much more difficult when
the environment can act on the agent’s internals, and
when the agent-environment boundary can shift over
time. Questions of evaluation are further covered in
sections 4 and 5.

Third, given a set of possible environments and a
scoring metric, what is the distribution against which
an agent should be scored? As in Solomonoff’s induc-

tion problem, this distribution must capture reality’s
bias towards simplicity, but defining a simplicity dis-
tribution over some set of “possible realities” may be
nontrivial.

Of course, answers to these questions would be im-
practical at best and almost certainly uncomputable,
but they would yield conceptual tools by which practi-
cal programs implementing sufficiently advanced agents
(that face the naturalized induction problem) could be
evaluated. For example, a formalization of naturalized
induction would likely shed light on questions about
how a reasoner should let the fact that it exists affect
its beliefs, and may further lend insight into what sort
of priors an ideal reasoner would use. Unfortunately, it
is not yet clear how to approach the problems outlined
above.3

Can Solomonoff induction be ported into a natu-
ralized context? Perhaps, but the application is not
straightforward. Even ignoring problems of ensuring
that the environment has something corresponding to
the “turns” and “observations” of Solomonoff’s induc-
tion problem, Solomonoff’s approach solves the prob-
lem by simply being larger than the environment: a
Solomonoff inductor contains a distribution over all
Turing machines, and one of those is, by assumption,
the “real” environment. Solutions of this form don’t
apply when the agent is a subprocess within the envi-
ronment.

Computable approximations of Solomonoff induc-
tion can be limited to the consideration of only “rea-
sonably sized” environments, but this does not much
help. Imagine a Solomonoff inductor which only con-
siders Turing machines which can be specified in length
less than l and which run for at most t steps between
each turn:4 this inductor would run for more than t
steps per turn, and therefore the environment it is in
would run for more than t steps per turn. The inductor
would assign zero probability to its own existence!

An agent embedded in an environment must reason
about an environment that is larger than itself; this con-
straint is inherent to naturalized induction. Solutions
will require agents to reason about environments which
they cannot compute. Reasoning of this form is known
as “logically uncertain” reasoning, and it may be pos-
sible to port a logically uncertain variant of Solomonoff
into a naturalized context. However, a satisfactory the-
ory of reasoning under logical uncertainty does not yet
exist. (For further discussion, see Soares and Fallen-
stein [2015].)

3. Orseau and Ring (2012) give a characterization of the
problem which humans face, in implementing a space-time
embedded agent, but their problem description requires that
we provide a distribution ρ which already characterizes our
beliefs about the environment, and so sheds little light on
questions of naturalized induction.

4. Such as AIXItl, a computable approximation of Hut-
ter’s AIXI (2000).
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4 Hutter’s Interaction Problem

Even a full description of naturalized induction would
not completely describe the problem faced by an intel-
ligence acting in the world. Real agents must not only
predict their environment, but act upon it.

With this in mind, Hutter (2000) extends
Solomonoff’s induction problem to an interaction prob-
lem, in which an agent must not only learn the external
environment but interact with it. Hutter’s interaction
problem runs similarly to Solomonoff’s induction prob-
lem: the universe is separated into agent and environ-
ment, and the agent gets to observe the environment
through an input channel. But now, an “output chan-
nel” is added, which lets the agent affect the environ-
ment by one “action” per turn.

As before, a formalization requires answers to the
questions of (1) what counts as an environment; (2)
how an agent is scored on each environment; and (3)
against which distribution over environments the agent
is scored. In Hutter’s interaction problem, the first and
last answers follow readily from Solomonoff induction,
with some minor tweaks. It is the answer to the second
question, of scoring, where Hutter’s interaction problem
provides new insight.

Again, the set of all environments can naturally be
defined as the set T of all Turing machines. However,
instead of having an advance-only output tape, environ-
ments are now Turing machines which take an observa-
tion/action history and compute the next observation
to be sent to the agent. That is, fix some countable set
O of observations which can be sent from environment
to agent, and some countable set A of actions which
can be sent from agent to environment, and then con-
sider Turing machines which take a finite list of actions
and computes a new observation O. An agent, then,
is any function which takes a finite list of observations
and computes a new action A.5 Again, the distribution
over environments will be the “universal” simplicity dis-
tribution (with respect to some fixed universal Turing
machine U).

It remains to decide how an agent is scored: what
counts as the “success” of an agent A interacting with
an environment M? Hutter (2000) formalizes interac-
tion as follows. First, observations are defined such that
one part of the observation is a reward ; that is, elements
of O are tuples (o, r) where r is a rational number be-
tween 0 and 1, and o is additional observation data.
Let MA

t ∈ O denote the tth output of the machine M
when interacting with A, and let AM

t ∈ A denote the

5. Hutter (2000) uses a generalization in which both agent
and environment may be stochastic; in this case it is neces-
sary for agent and environment to receive a history of both
observations and actions. In the deterministic version, used
here for ease of exposition, the agent (environment) does not
need to be told the history of actions (observations) because
past actions (observations) may simply be recomputed.

tth action of A when interacting with M . That is,

MA
1 := M()

AM
1 := A(M())

MA
t := M(AM

≺t)

AM
t := A(MA

�t).

Let rAt denote the reward part of the observation MA
t .

Restrict consideration to the set Tr of environments
where rewards converge, that is, to environments M

such that 0 ≤
∑dMe

t=1 rAt ≤ 1 for all agents A. The total
rewards observed by an agent A interacting with M are
then used to score the agent, that is, define

RM (A) :=

dMe∑
t=1

rAt . (3)

This function measures the ability of A to learn and
manipulate M in order to maximize observed rewards
over time.

This choice of scoring mechanism yields a full de-
scription of Hutter’s interaction problem: it describes a
setting where an agent must interact with an environ-
ment in order to learn and maximize rewards. Indeed,
this scoring metric is used to define the “universal mea-
sure of intelligence” of Legg and Hutter (2007):

LH(A) :=
∑

M∈Tr

2−〈M〉 ·RM (A). (4)

We refer to the problem of finding agents which score
highly according to LH(·) as Hutter’s interaction prob-
lem.

As before, this problem description lends itself read-
ily to an idealized solution. In this case, the solution is
Hutter’s AIXI (2000), which in fact was the mechanism
by which Hutter first posed the interaction problem:

AIXI. The agent starts with a universal
prior, which it keeps consistent with obser-
vation using Solomonoff induction (modified
in the natural way for this problem). AIXI
chooses its action as follows: it has some
fixed time horizon h, and considers all pos-
sible sequences of h actions. It computes the
expected reward (according to its distribu-
tion over environments) for each sequence,
and then outputs the first action in the se-
quence that leads to highest rewards.

AIXI is an incredibly powerful and elegant agent. As
noted by Veness et al. (2011), AIXI captures “the ma-
jor ideas of Bayes, Ockham, Epicurus, Turing, von Neu-
mann, Bellman, Kolmogorov, and Solomonoff” in a sin-
gle equation. Barring a few minor quibbles,6 AIXI fully

6. The finite time horizon of AIXI is both arbitrary and
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characterizes a solution to Hutter’s interaction prob-
lem: while AIXI is uncomputable, it demonstrates the
method by which a high LH(·) score may be attained.
Indeed, computable approximations of AIXI have al-
ready yielded interesting results (Veness et al. 2011).

Indeed, if the problem faced by intelligent agents
acting in the real world to achieve goals was character-
ized by Hutter’s interaction problem, then this problem
description would fully characterize the problem of con-
structing smarter-than-human systems, and the prob-
lem of general intelligence would be reduced to one of
approximating AIXI.

However, Hutter’s interaction problem does not cap-
ture the problem faced by an agent acting in the real
world to achieve goals. Rather, it characterizes the
problem of an agent attempting to maximize sensory
rewards from an environment that can only affect the
agent via sensory information.

While this problem description has yielded many in-
sights, the distinction is important: the simplifying as-
sumptions of Hutter’s interaction problem mask a num-
ber of difficult open problems.

4.1 The Agent is Not Separate from the
Environment

Hutter’s interaction problem, like Solomonoff’s induc-
tion problem, assumes an impregnable separation be-
tween the agent and the environment. In Solomonoff’s
case, there is (figuratively speaking) a small slit through
which the environment feeds sensory information to the
agent. Hutter adds a second slit, through which the
agent outputs motor signals to the environment. How-
ever, the separation remains otherwise complete. Thus,
the questions of naturalized induction remain unan-
swered, and Hutter’s interaction problem yields little
new insight there.

For this reason, Hutter’s interaction problem can-
not capture certain realistic scenarios that intelligent
agents may actually face: the Legg-Hutter measure of
intelligence is ill-defined in any situation where the uni-
verse cannot crisply be divided into “agent” and “envi-
ronment,” when interactions cannot be crisply divided
into “input” and “output.” For example, consider the
following simple setting in which it matters that the
agent is embedded within its environment:

The Heating Up game. An agent A faces
a box containing prizes. The box is designed
to allow only one prize per agent, and A may
execute the action P to take a single prize.
However, there is a way to exploit the box,
cracking it open and allowing A to take all

disconcerting: for any time horizon h, consider an environ-
ment with a button that gives −1 when pressed, pays +10 h
steps thereafter, and pays out −100 on the step after that.
AIXI with time horizon h, after learning that this is the
environment, presses the button indefinitely.

ten prizes. A can attempt to do this by ex-
ecuting the action X. However, this proce-
dure is computationally very expensive: it
requires reversing a hash. The box has a
simple mechanism to prevent this exploita-
tion: it has a thermometer, and if it detects
too much heat emanating from the agent, it
self-destructs, destroying all its prizes.

If the agent heats up too much, it gets reward 0, no
matter what action it takes. If it does not heat up too
much, then it gets reward 1 for action P or reward 10
for action X. But the amount of heat generated by the
agent, of course, is dependent upon which action the
agent chooses.

This scenario captures an important aspect of real-
ity: a generally intelligent agent must be able to con-
sider the consequences of overheating (along with many
other consequences of being embedded within a uni-
verse). However, this scenario can’t be modeled as an
interaction problem. The Legg-Hutter measure of in-
telligence does not pit agents against scenarios such as
these; there is no combination of M ∈ Tr and A which
captures this sort of problem.

When evaluating an agent in a Heating Up game,
the agent cannot be treated as separate from the en-
vironment. Rather, the agent must be located within
the environment, and then somehow scored according
to what it “could have done.” Is it possible for a clever
agent to compute X without ever once getting too hot?
This question depends upon the specific environment
and upon the agent’s specific hardware.

This highlights a host of new “naturalized” ques-
tions: Given an environment that embeds an agent,
how is the agent located in that environment? How are
the actions that it “could have taken” identified? In
Hutter’s interaction problem, these questions are sim-
plified away: the input and output channels are clearly
demarcated; the environment is defined in terms of the
agent’s actions. AIXI, when considering the effects of
various sequences of actions, can simply run a Turing
machine on the considered action sequence; the behav-
ior of the environment on that sequence of actions is
well-defined. When an agent is embedded within an
environment, the question is more difficult. For sim-
plicity, consider a deterministic agent embedded in a
deterministic environment. What does it mean to ask
what “would happen” if the part of the environment
labeled “agent” outputs something it doesn’t? How is
the counterfactual defined? Counterfactual reasoning is
not yet well understood (Soares and Fallenstein 2014b).

Hutter’s interaction problem extends Solomonoff’s
induction problem to capture a critical aspect of the
problem faced by intelligent agents: environments that
can be altered by agent decisions. This yields many
insights, but moving forward, a naturalized interaction
problem is necessary: how can an agent learn and ma-
nipulate the environment in which it is embedded, to
achieve some set of goals? It is this problem which
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would fully characterize the problem faced by intelli-
gent systems acting in the real world.

4.2 Goals Cannot Be Specified in Terms of
Observation

Ignoring the need for a naturalized interaction problem,
Hutter’s interaction problem still does not quite cap-
ture the problem faced by an agent which must learn
and manipulate an environment to achieve some set of
goals. Rather, it characterizes the problem faced by an
agent which must maximize rewards, specified in terms
of observations. But most sets of goals cannot be char-
acterized in terms of the agent’s observations!

Consider an interaction problem in some approxima-
tion of reality where there is a crisp separation between
“agent” and “environment,” where the input and out-
put channels are clearly demarcated. The agent’s input
is a video stream, and rewards are only nonzero when
there are smiling human faces on the video screen. This
agent, if possessing of a high LH(·) score, will very likely
gain control of its input stream, such as by placing a
photo with many smiling faces in front of the camera
and then acting to ensure that it the photo stays there.

Agents with high LH(·) scores are extremely effec-
tive at optimizing the extent to which their observations
contain rewards; these are not likely to be agents which
optimize the desirable feature of the world that the re-
wards are meant to serve as a proxy for. Rather, they
are likely to be agents which are very good at taking
over their input channels.

Reinforcement learning techniques, such as having
the humans dole out rewards via some reward chan-
nel, would not solve the problem. Humans could at-
tempt to prevent the agent from taking over its reward
channel by penalizing the agent whenever they notice
it performing actions that would give it control over re-
wards, and this may prevent the agent from executing
those plans for a time. However, if the agent scores suf-
ficiently high by LH(·), then once its dominant hypothe-
ses about the environment agree that the humans are
controlling the reward channel, it would act to mollify
the programmers while searching for ways to gain a de-
cisive advantage over them. If the agent is a sufficiently
intelligent problem-solver, it may eventually find a way
to wrest control of the reward channel away from the
programmers and maintain it permanently (Bostrom
2014, chap. 8).

Even faced with incredibly high-fidelity input chan-
nels designed to be expensive to deceive, LH(·) rewards
agents that set up Potemkin villages7 which trigger the
reward using minimum resources. An agent optimiz-
ing a reward function only optimizes the actual goals if
achieving the goals is the cheapest possible way to get
the reward inputs. Guaranteeing such a thing is nigh
impossible: consider the genetic search process of Bird

7. A common idiom named after Gregory Potemkin, who
set up fake villages to impress Empress Catherine II.

and Layzell (2002), which, tasked with designing an os-
cillating circuit, re-purposed the circuit tracks on its
motherboard to use as a radio which amplified oscillat-
ing signals from nearby computers. Highly intelligent
systems might well find ways to maximize rewards us-
ing clever strategies that the designers assumed were
impossible, or that they never considered in the first
case.

A high LH(·) score indicates that an agent is ex-
tremely proficient at commandeering its reward chan-
nel. Therefore, this intelligence metric does not quite
capture the intuitive notion of how well an agent would
fulfill a given set of goals.

There is no all-purposes patch for this problem
within a sensory rewards framework. We do not care
about what the agent observes; rather, we care about
what actually happens. To evaluate the performance of
an agent, it is not sufficient to look only at the inputs
which the agent has received: one must also look at the
outcomes which the agent achieves.

5 Ontology Identification

To evaluate how well an agent achieves some set of
goals, it is important to measure the resulting environ-
ment history, not just the agent’s observation history.
In Hutter’s interaction problem, an “environment his-
tory” is the combination of a Turing machine along with
an observation/action history. But goals are not defined
in terms of Turing machines and O/A histories; goals
are defined in terms of things like money, or efficient
airplane flight patterns, or flourishing humans. How do
you measure those things, given a Turing machine and
an O/A history?

As a matter of fact, it is quite difficult to say what
terms our goals are specified in. To leave aside problems
of philosophy, and highlight the problem as it pertains
to world models, let us imagine that our goals are sim-
ple and can be specified according to a structure that
seems fairly objective in our environment: assume that
agents will be evaluated by how much diamond they
create in their environment, where “diamond” is spec-
ified concretely in terms of a specific atomic structure.
That is, the score of an agent is the count of carbon
atoms covalently bound to four other carbon atoms, in-
tegrated over time.

Now the goals are given in terms of atomic struc-
tures, and the environment-history is given in terms of
a Turing machine paired with an O/A history. How
is the Turing machine’s representation of atoms identi-
fied?

This is the ontological identification problem.
Whatever set is used for the set of all environments
against which the agent is measured, it must be possible
to inspect elements of that set and rate them according
to our goals, and for that it is necessary to interpret the
environment’s representation of reality in terms of the
ontology of the goals.
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Whatever set of possible environments an agent is
rated against in the naturalized interaction problem, it
must be possible to inspect the structure of that envi-
ronment and identify the ontology of the goals within.
This is an aspect of the naturalized interaction problem
where Hutter’s interaction problem sheds little insight.

It seems intuitively plausible that any detailed
model of reality, in an environment such as the real
world where diamond actually exists, must have some
part of its internal structure which roughly corresponds
to “atoms.” However, the problem is made more diffi-
cult by the fact that the ontology of the goals will not
actually perfectly match the ontology of reality: how
are the atoms identified in a model of reality which
runs on quantum mechanics? The model (if accurate)
will still have systems that correspond, in some fash-
ion, to the objects we call “atoms,” much as the atomic
model has systems corresponding to what we call “wa-
ter.” However, the correspondence may be convoluted
and full of edge cases. How can the ontology of the goals
be reliably mapped onto the ontology of the model?
de Blanc (2011) provides a preliminary examination of
these questions, but the problem remains open.

Ontology identification is the final step in the for-
mal specification of the problem which is actually faced
by an intelligent agent acting in the real world and at-
tempting to fulfill some set of goals. To specify a mea-
sure of how well an agent would achieve the intended
goals from within a universe, it must be possible to eval-
uate a model of the universe in terms of the goals. This
requires the ability to take a model of reality, running
on unknown and potentially surprising physics, and find
within it the flawed and leaky abstractions with respect
to which our goals are defined.

6 Discussion

The development of smarter-than-human machines
could have a large impact upon humanity (Bostrom
2014), and if those systems are not aligned with human
interests, the result could be catastrophic (Yudkowsky
2008). Highly reliable agent designs are crucial, and
when constructing smarter-than-human systems, test-
ing alone is not enough to guarantee high reliability
(Soares and Fallenstein 2014a).

In order to justify high confidence that a practical
smarter-than-human system will perform well in appli-
cation, it is important to have a theoretical understand-
ing of the formal problem that the practical system is
intended to solve. The problems faced by smarter-than-
human systems reasoning within reality are inherently
naturalized problems: real systems must reason about
a universe which computes the system, a universe that
the system is built from.

The formalization of Solomonoff’s induction prob-
lem yielded conceptual tools, such as the universal prior
and Kolmogorov complexity, which are useful for rea-
soning about programs which predict computable se-

quences. It would be difficult indeed to construct highly
reliable practical heuristics that predict computable se-
quences without understanding concepts such as sim-
plicity priors.

We expect that naturalized analogs of the induction
problem of Solomonoff and the interaction problem of
Hutter will yield analogous conceptual tools useful for
constructing systems that reason reliably about the uni-
verse in which they are embedded. Just as the intelli-
gence metric of Legg and Hutter (2007) fully character-
izes the problem of an agent interacting with a separate
computable environment to maximize rewards, a corre-
sponding metric derived from a naturalized interaction
problem would fully characterize the problem faced by
an intelligent agent achieving goals from within a uni-
verse.

It is not yet clear, in principle, what sort of reasoners
perform well when tasked with acting upon their envi-
ronment from within. Without a formal understanding
of the problem, it would be difficult to justify high con-
fidence in a system intended to face a naturalized inter-
action problem in reality. It is our hope that gaining a
better understanding of these problems today will make
it easier to design highly reliable smarter-than-human
systems in the future.
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