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Abstract

A theorem by Marcello Herreshoff, Benja Fallenstein, and Stuart Arm-
strong shows that if there exists an infinite series of theories Ti extending
PA where each Ti proves the soundness of Ti+1, then all the Ti must have
only nonstandard models. We call this the Procrastination Theorem for
reasons which will become apparent.

1 Review: Hierarchies of trust.

(This section primarily reviews material found in the paper “Tiling Agents for
Self-Modifying AI, and the Löbian obstacle.”1)

Notation:
T is an axiomatic system in classical logic whose consequences are recursively

enumerable.
T ` φ : φ is a syntactic consequence of the theory T .
T ` ⊥ : T is inconsistent, i.e. proves some instance of P ∧ ¬P .
PrvT (p, pφq) : p is the Gödel number of a proof from the axioms of T whose

conclusion is the theorem φ.
�T pφq ≡ ∃p : PrvT (p, pφq)
E.g. T ` φ =⇒ PA ` �T pφq states that whenever T asserts φ, first-order

Peano arithmetic (PA) proves that there exists a T-proof of φ. (This follows
from T being recursively enumerable and is true even if T is a more powerful
system than PA.)

1. Trust. We say that T1 trusts T2 iff, for every formula φ with zero or one
variables free, T1 asserts the uniform reflection principle:

∀
φ

: T1 ` ∀x : ( �T2pφ(x)q→ φ(x) )

Thus for every formula φ, T1 proves that for every x, if T2 proves φ(x) then
φ(x). We can also say that T1 verifies T2, or that T1 proves T2 sound.

Trust is transitive: if Ti trusts Tj and Tj trusts Tk then Ti trusts Tk.

1http://intelligence.org/files/TilingAgents.pdf
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Löb’s Theorem states that in r.e. systems T which are at least as powerful
as PA:

T ` �T pφq→ φ =⇒ T ` φ

Löb’s Theorem implies that no consistent T can trust itself, since then T
would prove T ` �T p⊥q→ ⊥, which by Löb’s Theorem would imply T ` ⊥.

2. Finite waterfalls. For any ordinal α, including limit ordinals γ of a
sequence βi < γ, we can define a hierarchy of theories which trust all lower
theories and base-T :

T +0 ≡ T
T +(α+1) ≡ T ∪ ∀

φ
: ∀x : ( �T +αpφ(x)q→ φ(x) )

T +γ ≡ T ∪ ∀
φ

: ∀i : ∀x : ( �T +βi
pφ(x)q→ φ(x) )

3. Naive infinite waterfall. Let T be an r.e. theory at least as powerful as
first-order Peano arithmetic. Gödel’s diagonalization lemma states that for any
formula Γ free in one variable, there exists a fixpoint formula φ such that

T ` φ↔ Γ(pφq)

E.g. diagonalizing Γ(x) ≡ ¬�PApxq yields the Godel statement G with PA `
G↔ ¬�PApGq.

By a similar fixed-point construction we might attempt to build an infinite
series of theories T̃ –n with each T̃ –n trusting T̃ –n+1:

T̃ –n ≡ T ∪ ∀
φ

: ∀x : ( �T̃ –n+1pφ(x)q→ φ(x) )

Theorem. Every T̃ –n is inconsistent.
Proof. For every n, if PA proves that T̃ –n+1 is inconsistent we have:

PA ` �T̃ –n+1p⊥q =⇒ T̃ –n ` �T̃ –n+1p⊥q =⇒ T̃ –n ` ⊥

Löb’s Theorem allows us to assume that a theorem is provable in order to prove
it. Reasoning in PA, suppose it were provable that all T̃ –n are inconsistent.
Then all T̃ –n would be inconsistent. Therefore all T̃ –n are inconsistent.2 �

4. Sophisticated waterfall. (Herreshoff, previous research.) Let T be a the-
ory significantly weaker than Zermelo-Fraenkel set theory (e.g. T ≡ PA), and

2When reasoning within a system S subject to Löb’s Theorem, we can freely assume �Spφq
whenever attempting to prove φ. To expand the proof:

(Assume) PA ∪ χ ` �PAp∀m : �T̃ –mp⊥qq
PA ∪ χ ` �PAp∀m : �T̃ –m+1p⊥qq

PA ∪ χ ` ∀n : �T̃ –np∀m : �T̃ –m+1p⊥qq

PA ∪ χ ` ∀n : �T̃ –np�T̃ –n+1p⊥qq

PA ∪ χ ` ∀n : �T̃ –np⊥q
(Deduction Theorem) PA ` �PAp∀m : �T̃ –mp⊥qq→ (∀m : �T̃ –mp⊥q)

(Löb) PA ` ∀m : �T̃ –mp⊥q

To constructively obtain the desired result ∀n : T̃ –n ` ⊥, just repeat the above reasoning
from your own vantage point rather than within PA.
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let ψ(n) be the statement that n does not Gödel-encode a proof of inconsistency
in Zermelo-Fraenkel set theory. We will then have:

ψ(n) ≡ ¬PrvZF (n, p⊥q)
∀n : T ` ψ(n)

T 0 ∀n : ψ(n)

Let each T –n only trust T –n+1 if ψ(n) is true:

T –n ≡ T ∪ ∀
φ

: ψ(n)→ ( ∀x : ( �T –n+1pφ(x)q→ φ(x) ) )

Theorem. If ZF proves the consistency of every T +n, then ZF proves T –0
consistent.

Intuition. Suppose that ZF were actually inconsistent, i.e. ¬Con(ZF) =⇒
∃k : PrvZF (k, p⊥q) =⇒ ∃k : ¬ψ(k). Then T –0 would be equivalent to the
finite waterfall T +k for the smallest such k. We could translate any proof
of ⊥ in T –0 into a proof in T +k (by translating invocations of T –0’s axioms
trusting T –1 into invocations of T +k’s trust in T +k−1, and so on by induction
grounding in T –k ≡ T +0 ≡ T ). E.g. if T ≡ PA then ¬Con(ZF) =⇒ T –0 ∼=
PA+k for some k. We think every PA+k is consistent. Then if we exhibit a
proof of inconsistency in T –0, we prove Zermelo-Fraenkel set theory consistent
and win eternal fame and fortune. It couldn’t possibly be that easy to prove
ZF consistent, therefore T –0 is consistent.

In fact, exhibiting an inconsistency in T –0 is such a cheap way of proving
ZF consistent that, if it worked, we could probably prove ZF consistent from
within ZF , meaning that ZF would prove its own consistency, implying that
ZF would be inconsistent due to Gödel’s 2nd Incompleteness Theorem, implying
that T –0 would be consistent.

Proof. Carry out the above reasoning within ZF .

ZF ` ¬Con(ZF)→ (∃k ∈ N : (�T –0p⊥q↔ �PA+kp⊥q)
ZF ` ¬Con(ZF)→ ¬�T –0p⊥q
ZF ` �T –0p⊥q→ Con(ZF)

ZF ` �T –0p⊥q→ �ZFp�T –0p⊥qq
ZF ` �T –0p⊥q→ �ZFpCon(ZF)q

(Gödel) ZF ` �ZFpCon(ZF)q↔ ¬Con(ZF)

ZF ` �T –0p⊥q→ ¬Con(ZF)

ZF ` �T –0p⊥q→ ¬�T –0p⊥q
ZF ` ¬�T –0p⊥q

(The above proof is an improved version produced by Jacob Hilton at the
Nov 2013 MIRI Workshop. To summarize the proof within ZF : ZF shows
that if ZF is inconsistent then T –0 is consistent, so if T –0 is inconsistent then
ZF proves its own consistency and therefore is inconsistent, implying T –0’s
consistency; thus ZF proves T –0 consistent.)

Herreshoff argued that T –0 would prove ∃k : ¬ψ(k), and therefore have no
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standard models, via the following route:

T –0 ` (∀n : ψ(n))→ �T –0p(∀n : ψ(n))→ ⊥q→ �T –1p(∀n : ψ(n))→ ⊥q
T –0 ` (∀n : ψ(n))→ �T –0p(∀n : ψ(n))→ ⊥q→ ((∀n : ψ(n))→ ⊥)

T –0 ` �T –0p(∀n : ψ(n))→ ⊥q→ ((∀n : ψ(n))→ ⊥)

T –0 ` (∀n : ψ(n))→ ⊥

However the initial premise was questioned: given ∀n : ψ(n), can we in fact
show within PA that every proof in T –0 maps to a proof of a corresponding
theorem in T –1?

An alternate argument (by Armstrong and Fallenstein) then showed a more
general result:

2 New result: All infinite sequences of trusted
theories have only nonstandard models.

Theorem. For any infinite series of theories Ti with

∀
φ

: Ti ` �Ti+1pφq→ φ

all the Ti have only nonstandard models (are not sound on N).
Intuition. The theorem was inspired by considering agents which can poten-

tially construct successor agents, and which have a goal of pressing a button at
least once over the course of unbounded time. Each agent Ai attempts to prove
that constructing its successor Ai+1 will lead to the button eventually being
pressed, via a theorem showing that its successor Ai+1 will either immediately
press the button, or else prove that constructing its own successor Ai+2 leads
to the button eventually being pressed.

If A0 initially uses a proof system PA + α for some computable ordinal α,
then PA+α only trusts theories PA+β with β < α, and A0 will only be able to
carry out its proof if A1 uses a theory PA+ β, β < α. Thus the chain of agents
constructing agents can only descend finitely, and the button will eventually
end up being pressed.

But if A0 begins by trusting T –0, then it may construct an infinite series
of successors, each of which proves that the button eventually ends up being
pressed. Yet the button never gets pressed after any finite time. If the agents
Ai are consistent, their theories must have only nonstandard models in which
the button is pressed at a nonstandard time. Hence they are not sound on N.

(Or: Suppose that you and all your future selves believe their later self’s
promise to finish your paper. Then you just refer the paper to your future self,
who refers it to their future self, and so on indefinitely. All of you believe the
paper will eventually get done, but there is no finite time at which the paper
gets written. We call this the Procrastination Paradox.)

Proof. By diagonalization, let Pi ≡ Ti ` ∃k > i : ¬Pk so that:

PA ` Pi ↔ �Ti
p∃k > i : ¬Pkq

Intuitively we could consider Pi a procrastination sentence since it asserts that
it is fine to procrastinate at time i, because there is some future date k > i
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when the theory Tk won’t be able to prove Pk and will therefore have to stop
procrastinating and start getting some work done. Then:

∀n : Tn ` ¬Pn+1 ∨ Pn+1

∀n : Tn ` ¬Pn+1 → (∃k > n : ¬Pk)

(Diagonalization) ∀n : Tn ` Pn+1 ↔ �Tn+1
p∃k > n+ 1 : ¬Pkq

(Trust) ∀n : Tn ` �Tn+1
p∃k > n+ 1 : ¬Pkq→ (∃k > n+ 1 : ¬Pk)

∀n : Tn ` Pn+1 → ∃k > n : ¬Pk
∀n : Tn ` ∃k > n : ¬Pk
∀n : Pn

Thus any infinite series of theories Ti trusting Ti+1 will all prove their pro-
crastination sentences Pi and also all prove the sentence ∃k : ¬Pk.3 Thus the
Ti must have only nonstandard models.4 �

Corollary: No theory sound on N can verify any theory which trusts an
infinitely descending sequence of theories.5

We refer to this result as the Procrastination Theorem.

3If the base T proves that every Ti trusts Ti+1, the theorem above becomes provable within
T , so T ` ∀n : Pn =⇒ Ti ` ⊥. The waterfall theories T –n can be consistent only because
the T –n cannot prove the waterfall is infinite; indeed, they each prove that the waterfall halts
at some (actually nonstandard) k.

4However, consistent Ti extending PA are sound for Π1 sentences on N, since Π1 sentences
with counterexamples can be proven false in PA. Thus an assertion in T –0 of a Π1 sentence,
regardless of how proven, remains trustworthy. A statement that a button is ‘eventually’
pressed is within Σ1, hence potentially unsound. But an infinite series of agents proving that
a button is pressed on every round can be trustworthy.

5Thus, despite the apparent ease of constructing infinite descents from base systems far
weaker than ZF , an agent using ZF would not be able to trust a successor agent using any
such theory.
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