
Problems of self-reference in self-improving
space-time embedded intelligence

Benja Fallenstein and Nate Soares

Machine Intelligence Research Institute
2030 Addison St. #300, Berkeley, CA 94704, USA

{benja,nate}@intelligence.org

Abstract. By considering agents to be a part of their environment,
Orseau and Ring’s space-time embedded intelligence [9] is a better fit for
the real world than the traditional agent framework. However, a self-
modifying AGI that sees future versions of itself as an ordinary part of
the environment may run into problems of self-reference. We show that in
one particular model based on formal logic, naive approaches either lead
to incorrect reasoning that allows an agent to put off an important task
forever (the procrastination paradox ), or fail to allow the agent to justify
even obviously safe rewrites (the Löbian obstacle). We argue that these
problems have relevance beyond our particular formalism, and discuss
partial solutions.

1 Introduction

Most formal models of artificial general intelligence (such as Hutter’s AIXI [5]
and Legg’s formal measure of intelligence [6]) are based on the traditional agent
framework, in which the agent interacts with an environment, but is not part
of this environment. As Orseau and Ring [9] point out, this is reminiscent of
Cartesian dualism, the idea that the human mind is a non-physical substance
external to the body [10]. A real-world AGI, on the other hand, will be part of
the physical universe, and will need to deal with the possibility that external
forces might observe or interfere with its internal operations. Moreover, a self-
improving AGI may eventually want to adopt an architecture very different from
its initial one, such as one distributed over many different computers, where no
single entity fulfills the agent’s role from the traditional framework [8]. A formal
model that requires the agent to always stick with a particular architecture
cannot capture this.

How can we reason about such an agent, and how can such an agent reason
about future versions of itself? Orseau and Ring [9] have proposed a formal
model of space-time embedded intelligence to deal with this complexity. Their
model consists of a set Π of policies, describing the state of the agent at a given
point in time; an environment ρ(πt+1 | π1:t), giving the probability that the
policy at time (t+ 1) will be πt+1, if the policies in the previous timesteps were
given by π1:t; a utility function u(π1:t) ∈ [0, 1], giving the “reward” at time t;



discount factors γt such that
∑∞

t=1 γt < ∞; and a subset Π l̃ ⊆ Π of policies
of length ≤ l, which describes the policies that can be run on the machine
initially used to implement the AGI. They then define the optimal policy as the

policy π∗ ∈ Π l̃ which maximizes the expectation of the total discounted reward∑∞
t=1 γt u(π1:t), subject to π1 = π∗ and the transition probabilities ρ(· | ·).
Orseau and Ring argue that to choose such an optimal π∗ “precisely repre-

sents the goal of those attempting to build an Artificial General Intelligence in
our world”. By a similar argument, it also represents the goal of a self-improving
AGI that is deciding what its next version should be. Unlike agents such as Hut-
ter’s AIXI, which takes as given that future versions of itself will choose actions
that maximize expected utility, an agent using Orseau and Ring’s framework
would see future versions of itself simply as another part of the environment,
and would have to convince itself that these future versions behave in desirable
ways. This would allow the agent to consider radical changes to its architecture
on equal footing with actions that leave its code completely unchanged, and to
use the same tools to reason about both.

However, in such a framework our agent must be able to reason about its
own behavior or about the behavior of an even more powerful variant, and this
may introduce new difficulties. From the halting problem to Russell’s paradox
to Gödel’s incompleteness theorems to Tarski’s undefinability of truth (a for-
mal version of the liar paradox), logic and computer science are replete with
examples showing that the ability of a formal system reason about itself is often
limited by diagonalization arguments, with too much power quickly leading to
inconsistency. Thus, we need to be very careful when specifying the mechanism
by which our agent reasons about its potential successors, or we might end up
with a system that is either too powerful (leading to inconsistencies, so that our
agent may end up self-modifying in ways that are obviously bad), or not power-
ful enough (so that our agent isn’t able to make even self-modifications that are
obviously good).

With that in mind, we will investigate in detail how a self-improving AGI can
use a model similar to Orseau and Ring’s to reason about its own future behavior.
In particular, we consider agents that will only approve a self-modification if they
can find a proof that this modification is, in a certain sense, safe, an architecture
very similar to that of Schmidthuber’s Gödel machines [11]. This is one way
to approach the problem of creating an AGI that is, as Goertzel [4] puts it,
probably beneficial and almost certainly not destructive. Intuitively, we expect
that an AGI will regularly want to modify itself, but that it will want to leave
most of its architecture intact most of the time. We use our abstract model to
show that under certain assumptions about the external world, our agent will
be able to justify such minor modifications.

In the course of the proof, we run into the Löbian obstacle to self-modifying AI
described by Yudkowsky and Herreshoff [13], and see both sides of the diagonal-
ization coin: First, we will allow our agents to use an axiom saying that they can
trust the reasoning of future versions of themselves if these future versions use
the same formal proof system. We then show that while this seems reasonable, it



is too powerful, for reasons closely related to Gödel’s incompleteness theorems.
We also give a simple intuitive example showing how this assumption can be
used to justify blatantly terrible decisions, a version of what we call the “pro-
crastination paradox” [12]. On the other side of the coin, if we base our agents
on a standard, trusted theory like ZFC, our proof simply does not go through
at all, and our agents aren’t able to justify obviously correct self-modifications.

Despite these setbacks, there is some cause for optimism: we consider partial
solutions to this problem, which give some hope that a satisfactory solution can
be found. Even so, these hurdles should make us wary of accepting intuitively
plausible reasoning before seeing a formal version that provably works.

In this work, we consider agents that reason about their environment through
formal logic (although we allow uncertainty in the form of a probability distri-
bution over different environments). This is not a realistic assumption. However,
there are two reasons why we think it is still a reasonable starting point: First,
although formal logic is not a good tool to reason about the physical environ-
ment, it is a natural tool for reasoning about the source code of future versions
of our agent, and we think it is likely that self-improving AGIs will use some
form of formal logic whenever they want to achieve very high confidence in a
formal property of a future version’s source code; and second, it seems likely that
many features of our analysis will have analogs even in frameworks not based
on formal proofs. For example, a system due to Christiano et al. [1], which uses
probabilities instead of proofs in an attempt to circumvent the Löbian obstacle,
turns out to be subject to the “procrastination paradox” in almost the same
form as proof-based systems [3].

Thus, we think it likely that diagonalization problems of the type discussed
here will in some form be relevant to future AGIs, and find it plausible that
examining partial solutions in proof-based systems can lead to insights that will
help address these problems, whatever exact form they end up taking.

2 A myopic view of space-time embedded intelligence

In this section, we introduce the formal model of space-time embedded in-
telligence we will use in this paper. As in the traditional agent framework, we
assume that there are finite sets A and O of actions and observations. However,
instead of considering sequences of actions and observations, we take a “myopic”
view that focuses even more on the initial choice of the AGI or of its program-
mers than Orseau and Ring’s framework does, and assume that the agent makes
only a single observation o ∈ O and chooses a single action a ∈ A. A policy is
thus a function π ∈ Π := AO. The action a specifies both external activities
(such as a command to move a robot’s arm) and the internal state of the agent
after making the choice; thus, a choice to self-modify is treated no differently
from a choice take some external action, and even a choice not to self-modify is
conceptually no different from a choice to self-modify.

We further assume that there is a function EU : O × A → [0, 1], such that
EU(o, a) specifies the expected utility when choosing action a after making ob-



servation o. This function contains essentially all of our agent’s model of the
environment. We do not suppose that it is ever evaluated for particular o and a;
rather, we merely assume that our agent has access to a definition of this function
in the language of set theory.

The suggester-verifier architecture. We consider agents with a policy πfb ∈ Π,
the fallback policy, which specifies a default action πfb(o) to take when making ob-
servation o, and an intelligent but not fully trusted component, the suggester σ,
which tries to improve on this default action.

In this paper, for consistency, we will always enclose formulas of first-order
logic in quotes, p·q (even on the right-hand side of a turnstile, writing, for ex-
ample, ZFC ` pô /∈ ôq), and we will use overbars to denote an expression in the
language of set theory denoting the value of a metalanguage variable: For exam-
ple, if m = 2 and n = 1, then pm > nq denotes the formula pS(S(0)) > S(0)q,
where S(·) is the successor function.1 With this convention, a suggester is a
deterministic algorithm taking an observation o ∈ O and returning either an
error value or an action a ∈ A together with a formal proof of the sentence
pEU(o, a) ≥ EU(o, πfb(o))q, in some formal theory T , such as T = ZFC. The
agent checks this proof and, if it is valid, takes action a. Following Schmidthu-
ber [11], we call a sentence of the form pEU(o, a) ≥ EU(o, πfb(o))q a target
theorem.

If the suggester returns the error value, or if it returns an invalid proof, the
agent executes action πfb(o). We write svT (EU, σ, πfb) ∈ Π for the policy defined
by this suggester-verifier architecture, although again, EU only needs to be given
in the form of a definition in the language of set theory, whereas σ and πfb need
to be executable programs.

Intuitively, we have EU
(
o, svT (EU, σ, πfb)(o)

)
≥ EU(o, πfb(o)), since either

svT (EU, σ, πfb)(o) = πfb(o) or T proves EU(o, a) ≥ EU(o, πfb(o)), where a is
the literal denoting the value of svT (EU, σ, πfb)(o); thus, as long as we believe
that the theorems of T are actually true, we believe that the suggester-verifier
architecture does at least as well as the fallback policy.

We can see this as the “almost certainly not destructive” part of Goertzel’s
phrasing of the AGI safety problem: We may not be able to write down an
object-level fallback policy that solves the world’s most pressing problems, but
we can start with “do nothing”, which is at least unlikely to destroy the world.
Goertzel’s “probably beneficial”, on the other hand, is the suggester’s job; we
choose a suggester that we have reason to hope will come up with a better policy,
but that we don’t necessarily fully trust.

This architecture is very similar to that of a Gödel machine [11]; it becomes
essentially the same if the fallback policy πfb uses the suggester-verifier archi-
tecture to choose what actions to take in future timesteps. However, we will
see below that this will make it very difficult for the suggester to ever prove its
target.

1 Technically, the language of set theory does of course not contain a symbol for the
successor function, but this can be eliminated in the usual manner.



3 Self-modification

In order to model self-modification, we assume that our agent has made a
specific observation o ∈ O and is considering taking a specific action a ∈ A,
which will (among other things) have the effect of leaving the agent in a state in
which it will use policy π′ ∈ Π after making its next observation. To formalize
this, we assume that there is a probability distribution P ′ over O ∪ {∗}, where
∗ /∈ O is a special error value. Here, P ′(o′) is the probability that the agent
will make observation o′ next, and P ′(∗) is the probability that the Cartesian
boundary between agent and environment is about to break down, so that its
behavior in the next timestep is not described by making an observation and
executing the corresponding action. Moreover, we assume that there is a function
EU′ : O ×A → [0, 1] and a value EU′∗ ∈ [0, 1] such that

T ` pEU (o, a) = P ′(∗) · EU′∗ +
∑
o′∈O

P ′(o′) · EU′(o′, π′(o′))q; (1)

intuitively, this equation states that if our agent takes action a and the Cartesian
boundary breaks down, then its utility is given by EU′∗, whereas if the agent
makes observation o′ next, then it will take action π′(o′), and its expected utility
will be given by EU′(o′, π′(o′)).

We are particularly interested in the case where π′ again uses the suggester-
verifier architecture: π′ = svT ′(EU′, σ′, π′fb) for some theory T ′, suggester σ′, and
fallback policy π′fb. We assume that

T ` pP ′(∗) · EU′∗ +
∑
o′∈O

P ′(o′) · EU′(o′, π′fb(o′)) ≥ EU(o, πfb(o))q. (2)

This condition says that, if we take action a, adopting policy π′, but then coun-
terfactually assume that we next take the action π′fb(o′) that our new fallback
policy would choose (whether or not this is equal to the actual action π′(o′)),
then our expected utility is at least that obtained by our old fallback policy πfb.
If, in addition,

T ` p∀o′ ∈ O: EU′(o′, π′(o′)) ≥ EU′(o′, π′fb(o′))q, (3)

then (1) and (2) together imply that T proves the target theorem pEU(o, a) ≥
EU(o, πfb(o))q, allowing our initial suggester σ to justify choosing the action a,
as desired.

But can we show in T that EU′(o′, π′(o′)) ≥ EU′(o′, π′fb(o′))? When justifying
our initial choice of the suggester-verifier architecture, we proved in our informal
metalanguage that EU

(
o, svT (EU, σ, πfb)(o)

)
≥ EU(o, πfb(o)) by arguing that

the suggester-verifier either returns the same action as πfb, or the suggester has
found a proof in T that the action chosen is at least as good as that chosen
by πfb. We would like our AGI to be able to justify creating a successor of the
same architecture by the same argument that we used to justify this architecture
in the first place.



Here we run into the “Löbian obstacle” [13]. Our argument in the metalan-
guage required the fact that we believe that T is sound : if there is a proof in T
that pEU(o, a) ≥ EU(o, πfb(o))q, then we believe that this inequality is in fact
true. Write �T ′pϕq for the proposition in the language of set theory that states
that ϕ is provable in T ′. In order to carry out the intended proof in T , we assume
that for every predicate pϕ(n)q in the language of set theory,

T ` p∀n ∈ N: �T ′pϕ(n)q → ϕ(n)q (4)

Since O and A are finite sets, we can identify them with subsets of N, and
conclude that for every predicate pϕ(o′, a′)q,

T ` p∀o′ ∈ O, a′ ∈ A: �T ′pϕ(o′, a′)q → ϕ(o′, a′)q. (5)

Specifically, we apply this to ϕ(o′, a′) ≡ EU′(o′, a′) ≥ EU′(o′, π′fb(o′)); in other
words, if the inequality is provable, it is true.

Now, we can formally carry out the argument that we earlier gave in the
metalanguage: by inspecting the source code of the new suggester-verifier π′, it
can be shown that

T ` p∀o′ ∈ O: �T ′pϕ(o′, π′(o′))q ∨ (π′(o′) = π′fb(o′))q, (6)

since either the new suggester σ′ returns a proof of a target theorem pϕ(o′, a′)q,
in which case π′(o′) = a′ and thus pϕ(o′, π′(o′))q is provable, or else σ′ fails, in
which case π′(o′) equals the fallback action π′fb(o′).

Together, (5) and (6) imply

T ` p∀o′ ∈ O: EU′(o′, π′(o′)) ≥ EU′(o′, π′fb(o′))q (7)

(since π′(o′) = π′fb(o′) clearly implies EU′(o′, π′(o′)) = EU′(o′, π′fb(o′)), and
hence also the inequality). Finally, (1), (2) and (7) together imply that T proves
the target theorem pEU(o, a) ≥ EU(o, πfb(o))q.

4 The Löbian obstacle and the procrastination paradox

The proof in the previous section shows that it’s possible to prove the target
theorem pEU(o, a) ≥ EU(o, πfb(o))q in T if assumptions (1), (2) and (4) are
satisfied. Assumptions (1) and (2) are about the environment, essentially stating
that the action a executes a self-modification and that the new fallback policy
does at least as well as the old fallback policy, respectively. Assumption (4), on
the other hand, is an assumption about the first-order theories T and T ′.

Naively, we might expect that we should be able to have T = T ′: that our
agent would be able to keep using the same theory when rewriting itself. By the
diagonal lemma, it is possible to construct a theory T = T ′ that extends ZFC
and satisfies (4). However, if we substitute ϕ(n) ≡ (0 = 1) in (4), we see that
this axiom is saying “if a contradiction is provable in T ′, then a contradiction
is true”, which is equivalent to “no contradiction is provable in T ′”, or simply



“T ′ is consistent”. Hence, if we set T = T ′, then (4) says that T shows its own
consistency, which by Gödel’s second incompleteness theorem implies that T
is inconsistent. Löb’s theorem [7] sharpens this by showing that whenever (4)
holds for T = T ′ and any ϕ(n), then we must already have T ` p∀n : ϕ(n)q. We
certainly don’t want T to prove p∀o′ ∈ O, a′ ∈ A: EU′(o′, a′) ≥ EU′(o′, π′fb(o′))q,
which would say that the new fallback policy is the worst of all possible policies!

Gödel’s and Löb’s theorems make use of much of the structure of proofs in
first-order logic, and one might wonder whether these problems are mere artifacts
of our use of formal proofs in the suggester-verifier architecture. The following
version of the argument, however, suggests that the problem extends beyond
this context: Suppose that our agent’s goal is that a certain button get pressed,
but the agent does not care when this button is pressed. The agent must choose
between two possible actions: Either press the button now, or do nothing, in
which case its source code remains unchanged and it will find itself in exactly
the same situation in the next timestep. Our agent reasons as follows: “Suppose
that I don’t press the button now. Then either I press the button in the next
timestep, or I must have found an argument showing that even if I do not press
the button in the next round, it will still get pressed eventually. Either way, the
button will get pressed. Therefore, it is fine not to press the button now.” Thus,
our agent does not press the button in the current timestep; and all subsequent
timesteps are exactly the same, implying that the button is never pressed. We
call this the procrastination paradox by analogy to a human who is perenially
planning to get around to doing a certain piece of work “later”.

Given (4) and T = T ′, it is not difficult to formalize this reasoning using the
proof from the previous section (we set O := {ô}; A := {1, 0} for pressing and
not pressing the button; EU(ô, 1) := 1; and EU(ô, 0) := EU(ô, svT (EU, σ, πfb)),
with πfb(ô) = 1). But at the same time, the informal reasoning does not depend
on details of how our AGI works; it merely requires a sufficient amount of trust
in the reasoning of the agent’s successor. In fact, different formal versions of the
same intuitive argument have been used in [12] and [3] to show problems with
two distinct attempts at avoiding the Löbian obstacle.

What happens if we set T = T ′ = ZFC, which is generally assumed to be
consistent? In this case, (4) fails to hold, our proof does not go through, and we
have run into the Löbian obstacle: our agent is not able to rewrite itself. But if we
consider the situation of the procrastination paradox, it becomes apparent that
there is an upside to this shortcoming, in that failure to choose the rewriting
action 0 in this case means choosing the action 1 and actually pressing the
button. Thus, we can see the Löbian obstacle as the way that ZFC solves the
procrastination paradox. A good solution to the Löbian obstacle must take care
not to reintroduce this paradox.

5 Partial solutions

Because of Löb’s theorem, we cannot hope to have T = T ′ if our proof is to
go through; our agents cannot keep using the same theory. The simplest way to



push our proof through, then, is one discussed in [13]: Let T0 := ZFC and let
Tn+1 be the extension of Tn by the axiom schema p∀n ∈ N: �Tn

pϕ(n)q→ ϕ(n)q,
for every formula ϕ(n). One can easily show that Tn is consistent for every n if
one assumes ZFC + the existence of a strongly inaccessible cardinal, the same
assumption usually made to show the consistency of ZFC. Then we can set,
for example, T = T7 and T ′ = T6, and use the axiom schema to conclude the
target theorem. This makes our proof go through, but it implies that our agent
can only rewrite itself seven times before we reach T0 and cannot use the same
argument to justify further rewrites. This “solution” does not seem particularly
satisfactory, but it may point the way to better insights.

A more promising result is given by [2], which shows that it is possible to
have an infinite sequence of sound theories Tn (i.e., theories proving only true
things) such that we have

Tn ` p∀k ∈ N: �Tn+1pϕ(k)q → ϕ(k)q (8)

for all ϕ(k) of the form ∀` ∈ N. ψ(k, `), where ψ(k, `) is decidable, i.e., its truth
value is a computable function of k and `. This is the case, for example, if the
environment is computable and ψ(k, `) is some property of what happens in the
first ` timesteps, such as “up to time `, the AI does not destroy the world”. Since
in this case, the indices n go up rather than down, an agent using this system is
able to justify an indefinite sequence of rewrites.

We can make use of this in a variant of our formalism if we replace our
general expected utility function EU(o, a) by a discounted sum over different
timesteps, similar to Orseau and Ring’s formalism: Let EU(o, a, t) ∈ [0, 1] be the
“utility” received in the t’th future timestep if in the current timestep our agent
makes observation o and takes action a, and let γt be discount factors such that∑∞

t=0 γt < ∞; our goal is to achieve a high expected total discounted reward∑∞
t=0 γt ·EU(o, a, t). Thus, we require our suggester to prove the modified target

theorem

p
∞∑
t=0

γt · EU(o, a, t) ≥
∞∑
t=0

γt · EU(o, πfb(o), t)q, (9)

which is provably equivalent to

p∀T, T ′ ∈ N:

T∑
t=0

γt ·EU(o, a, t) +

∞∑
t=T+1

γt ≥
T ′∑
t=0

γt ·EU(o, πfb(o), t)q. (10)

(To see this, first note that (9) is the limit of the inequality in (10) for T →∞;
thus, (10) implies (9). In the other direction, note that γt ≥ γt · EU(o, a, t) ≥ 0
for all o, a, and t.) Moreover, if EU(·, ·, ·), γt and c :=

∑∞
t=0 γt are all rational-

valued and computable, (10) has the form required in (8), because the infinite

sum
∑∞

t=T+1 γt can be expressed as c−
∑T

t=0 γt. Thus, an agent using Tn is able
to show that if a later version of the agent proves (9) in Tn+1, then (9) is in fact
true. We lack the space to present all the details here, but this can be used to
prove a result analogous to the one presented in Section 3.



6 Gödel machines

Our formalism is very similar to Schmidthuber’s Gödel machine formal-
ism [11], and it is natural to wonder whether our techniques for licensing self-
modification can be adopted to Schmidthuber’s framework. Unfortunately, we
run into difficulty when attempting to do so.

While the Gödel machine is somewhat more realistic than our formalism (it
avoids our big discrete timesteps and has some other nice properties), it is simple
enough to tweak our formalism to produce something very similar to a Gödel
machine. In our terminology, a Gödel machine is a suggester-verifier agent with
a fallback policy that rewrites the agent into a suggester-verifier agent (with a
fallback policy that rewrites the agent into a suggester-verifier agent, and so on).
Note that we consider the agent taking no action to be a special case wherein
the agent rewrites itself into an identical agent.

Under this interpretation it is clear that the obstacles we have encountered
apply to Gödel machines as well. Consider, for example, a Gödel machine at-
tempting to self-rewrite into another Gödel machine using the same theory to
verify proofs. Clearly, the existing verifier will be unable to prove the consistency
of the suggested machine, as the existing theory cannot verify its own consis-
tency: Gödel machines run afoul of the Löbian obstacle. We could overcome this
obstacle by accepting that Gödel machines will only self-rewrite into systems
using weaker theories, but this seems undesirable.

We run into related obstacles when Gödel machines fail to verify proofs.
Remember that in order to self-rewrite, a Gödel machine must prove a target
theorem stating that rewriting is better than not rewriting. But if the Gödel
machine’s fallback plan is to remain the same then we run into trouble: the Gödel
machine cannot verify the consistency of its proof theory. If the fallback policy
rewrites the agent into an inconsistent Gödel machine, then that inconsistent
machine might verify any policy (if the suggester happens to spit out a proof
that uses the inconsistency), and in particular, might verify an optimal policy.
Because the verifier cannot rule out this possibility, the verifier will be unable
to prove that any given action performs strictly better than the fallback action.
Thus, our proof does not go through for Gödel machines.

7 Conclusions

In this paper, we have introduced a concrete formalism for space-time em-
bedded intelligence that a proof-based AGI can use to reason about its own
future behavior. We have shown how, under certain assumptions, an agent using
this formalism is able to justify minor self-modifications that leave its overall
architecture intact.

However, in doing so, we have seen that naive approaches run into one of two
major problems of self-reference: the procrastination paradox, which allows an
agent to put off an important task forever, or the Löbian obstacle, which prevents
an agent from justifying even clearly safe rewrites. We’ve discussed some partial



solutions, but finding a fully satisfying solution to these issues remains an open
problem.

References

1. Paul Christiano, Eliezer Yudkowsky, Marcello Herreshoff, and Mihaly Barasz. De-
finability of truth in probabilistic logic. http://intelligence.org/wp-content/

uploads/2013/03/Christiano-et-al-Naturalistic-reflection-early-draft.

pdf, 2013.
2. Benja Fallenstein. An infinitely descending sequence of sound theories each prov-

ing the next consistent. Technical Report 2013-6, Machine Intelligence Research
Institute, Berkeley, CA, 2013.

3. Benja Fallenstein. Procrastination in probabilistic logic, 2014.
4. Ben Goertzel. Golem: Toward an agi meta-architecture enabling both goal preser-

vation and radical self-improvement. http://goertzel.org/GOLEM.pdf, 2010.
5. Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions based on

Algorithmic Probability. Springer, Berlin, 2005.
6. Shane Legg and Marcus Hutter. A formal measure of machine intelligence. In

Proc. 15th Annual Machine Learning Conference of Belgium and The Netherlands
(Benelearn’06), pages 73–80, Ghent, Belgium, 2006.

7. M. H. Lob. Solution of a problem of Leon Henkin. J. Symb. Log., 20(2):115–118,
1955.

8. Luke Muehlhauser and Laurent Orseau. Laurent Orseau on Artifi-
cial General Intelligence (interview). http://intelligence.org/2013/09/06/

laurent-orseau-on-agi/, 2013.
9. Laurent Orseau and Mark B. Ring. Space-time embedded intelligence. In Joscha

Bach, Ben Goertzel, and Matthew Iklé, editors, AGI, volume 7716 of Lecture Notes
in Computer Science, pages 209–218. Springer, 2012.

10. Howard Robinson. Dualism. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Winter 2012 edition, 2012.

11. J. Schmidhuber. Ultimate cognition à la Gödel. Cognitive Computation, 1(2):177–
193, 2009.

12. Eliezer Yudkowsky. The procrastination paradox. Technical report, Machine In-
telligence Research Institute, Berkeley, CA, 2013.

13. Eliezer Yudkowsky and Marcello Herreshoff. Tiling agents for self-modifying AI,
and the Löbian obstacle. 2013.

http://intelligence.org/wp-content/uploads/2013/03/Christiano-et-al-Naturalistic-reflection-early-draft.pdf
http://intelligence.org/wp-content/uploads/2013/03/Christiano-et-al-Naturalistic-reflection-early-draft.pdf
http://intelligence.org/wp-content/uploads/2013/03/Christiano-et-al-Naturalistic-reflection-early-draft.pdf
http://goertzel.org/GOLEM.pdf
http://intelligence.org/2013/09/06/laurent-orseau-on-agi/
http://intelligence.org/2013/09/06/laurent-orseau-on-agi/

	Problems of self-reference in self-improvingspace-time embedded intelligence

