Vingean reflection: Reliable reasoning for self-improving agents

Benja Fallenstein

Machine Intelligence Research Institute

May 16, 2015

・ロト ・ 同ト ・ ヨト ・

Motivation

- Smarter-than-human intelligence isn't around the corner
 - but it'll (probably) be developed eventually.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

- Smarter-than-human intelligence isn't around the corner
 - but it'll (probably) be developed eventually.
- Important to ensure it's aligned with our interests

(日) (同) (三) (1)

Motivation

- Smarter-than-human intelligence isn't around the corner
 - but it'll (probably) be developed eventually.
- Important to ensure it's aligned with our interests
 - But how do we specify beneficial goals?

(日) (同) (三) (

Motivation

- Smarter-than-human intelligence isn't around the corner
 - but it'll (probably) be developed eventually.
- Important to ensure it's aligned with our interests
 - But how do we specify beneficial goals?
 - How do we make sure system actually pursues them?

Motivation

- Smarter-than-human intelligence isn't around the corner
 - but it'll (probably) be developed eventually.
- Important to ensure it's aligned with our interests
 - But how do we specify beneficial goals?
 - How do we make sure system actually pursues them?
 - How do we *correct* the system if we get it wrong?

Motivation

- Smarter-than-human intelligence isn't around the corner
 - but it'll (probably) be developed eventually.
- Important to ensure it's aligned with our interests
 - But how do we specify beneficial goals?
 - How do we make sure system actually pursues them?
 - How do we *correct* the system if we get it wrong?

Motivation

- Smarter-than-human intelligence isn't around the corner
 - but it'll (probably) be developed eventually.
- Important to ensure it's aligned with our interests
 - But how do we specify beneficial goals?
 - How do we make sure system actually pursues them?
 - How do we *correct* the system if we get it wrong?
- Want solid theoretical understanding of problem & solution
 - What is correct reasoning and decision making?

- 4 同 2 4 日 2 4 日 2

Motivation

- Smarter-than-human intelligence isn't around the corner
 - but it'll (probably) be developed eventually.
- Important to ensure it's aligned with our interests
 - But how do we specify beneficial goals?
 - How do we make sure system actually pursues them?
 - How do we *correct* the system if we get it wrong?
- Want solid theoretical understanding of problem & solution
 - What is correct reasoning and decision making?
 - Probability theory, decision theory, game theory, statistical learning theory, Bayesian networks, formal verification,

Motivation

- Smarter-than-human intelligence isn't around the corner
 - but it'll (probably) be developed eventually.
- Important to ensure it's aligned with our interests
 - But how do we specify beneficial goals?
 - How do we make sure system actually pursues them?
 - How do we *correct* the system if we get it wrong?
- Want solid theoretical understanding of problem & solution
 - What is correct reasoning and decision making?
 - Probability theory, decision theory, game theory, statistical learning theory, Bayesian networks, formal verification,
 - ... go in the right direction, but *are not enough*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

- Smarter-than-human intelligence isn't around the corner
 - but it'll (probably) be developed eventually.
- Important to ensure it's aligned with our interests
 - But how do we specify beneficial goals?
 - How do we make sure system actually pursues them?
 - How do we *correct* the system if we get it wrong?

• Want solid theoretical understanding of problem & solution

- What is correct reasoning and decision making?
- Probability theory, decision theory, game theory, statistical learning theory, Bayesian networks, formal verification,
- ... go in the right direction, but are not enough.
- Need for foundational research—which can be done today.

・ロト ・同ト ・ヨト ・ヨト - ヨ

Vingean reflection

- Can we create a **self-modifying** system...
 - ... that goes through a billion modifications...
 - ... without ever going wrong?

・ロト ・ 同ト ・ ヨト ・

Vingean reflection

- Can we create a **self-modifying** system...
 - ... that goes through a billion modifications...
 - ... without ever going wrong?
 - Need *extremely reliable* way for an AI to reason about agents **smarter than itself** much more reliable than a human!

Vingean reflection

- Can we create a self-modifying system...
 - ... that goes through a billion modifications...
 - ... without ever going wrong?
 - Need *extremely reliable* way for an AI to reason about agents **smarter than itself** much more reliable than a human!
- Need to use abstract reasoning
 - Vinge: Can't know exactly what a smarter successor will do
 - Instead, have abstract reasons to think its choices are good

▲□► ▲ □► ▲

Vingean reflection

- Can we create a self-modifying system...
 - ... that goes through a billion modifications...
 - ... without ever going wrong?
 - Need *extremely reliable* way for an AI to reason about agents **smarter than itself** much more reliable than a human!
- Need to use abstract reasoning
 - Vinge: Can't know exactly what a smarter successor will do
 - Instead, have abstract reasons to think its choices are good
 - Standard decision theory doesn't model this

イロト イポト イラト イラト

Vingean reflection

- Can we create a **self-modifying** system...
 - ... that goes through a billion modifications...
 - ... without ever going wrong?
 - Need *extremely reliable* way for an AI to reason about agents **smarter than itself** much more reliable than a human!
- Need to use *abstract reasoning*
 - Vinge: Can't know exactly what a smarter successor will do
 - Instead, have abstract reasons to think its choices are good
 - Standard decision theory doesn't model this
- Formal logic as a model of abstract reasoning

The "procrastination paradox"

- 2 A formal toy model
- 3 Partial solutions
- 4 Logical uncertainty
- 5 Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The "procrastination paradox"

- Agent in a deterministic, known world; discrete timesteps.
- In each timestep, the agent chooses whether to press a button:
 - $\bullet~\mbox{If pressed in 1^{st} round: Utility} = 1/2$
 - If pressed in 2^{nd} round (and not before): Utility = 2/3
 - If pressed in 3^{rd} round (and not before): Utility = 3/4
 - ...

The "procrastination paradox"

- Agent in a deterministic, known world; discrete timesteps.
- In each timestep, the agent chooses whether to press a button:
 - $\bullet~\mbox{If pressed in 1^{st} round: Utility} = 1/2$
 - If pressed in 2^{nd} round (and not before): Utility = 2/3
 - If pressed in 3^{rd} round (and not before): Utility = 3/4
 - ...
 - If never pressed: Utility = 0

The "procrastination paradox"

- Agent in a deterministic, known world; discrete timesteps.
- In each timestep, the agent chooses whether to press a button:
 - $\bullet~\mbox{If pressed in 1^{st} round: Utility} = 1/2$
 - If pressed in 2^{nd} round (and not before): Utility = 2/3
 - If pressed in 3^{rd} round (and not before): Utility = 3/4
 - . . .
 - If never pressed: Utility = 0
- (No optimal strategy, but sure can beat 0!)

The "procrastination paradox"

- Agent in a deterministic, known world; discrete timesteps.
- In each timestep, the agent chooses whether to press a button:
 - $\bullet~$ If pressed in 1^{st} round: Utility =1/2
 - If pressed in 2^{nd} round (and not before): Utility = 2/3
 - If pressed in 3^{rd} round (and not before): Utility = 3/4
 - . . .

• If never pressed: Utility = 0

- (No optimal strategy, but sure can beat 0!)
- The agent is programmed to press the button immediately...
 - ... *unless* it finds a "good argument" that the button will get pressed *later*.

The agent reasons:

- Suppose I don't press the button now.
- Either I press the button in the next step, or I don't.

・ロト ・ 同ト ・ ヨト ・

The agent reasons:

- Suppose I don't press the button now.
- Either I press the button in the next step, or I don't.
 - If I do, the button gets pressed, good.

・ロト ・ 同ト ・ ヨト ・

The agent reasons:

- Suppose I don't press the button now.
- Either I press the button in the next step, or I don't.
 - If I do, the button gets pressed, good.
 - If I *don't*, I must have found a good argument that the button gets pressed later. So the button gets pressed, good!

• □ ▶ • □ ▶ • □ ▶ • •

The agent reasons:

- Suppose I don't press the button now.
- Either I press the button in the next step, or I don't.
 - If I do, the button gets pressed, good.
 - If I *don't*, I must have found a good argument that the button gets pressed later. So the button gets pressed, good!
 - Either way, the button gets pressed.

(日) (同) (三) (1)

The agent reasons:

- Suppose I don't press the button now.
- Either I press the button in the next step, or I don't.
 - If I do, the button gets pressed, good.
 - If I *don't*, I must have found a good argument that the button gets pressed later. So the button gets pressed, good!
 - Either way, the button gets pressed.

So the agent can always find a "good argument" that the button will get pressed later...

• ... and therefore never presses the button!

The agent reasons:

- Suppose I don't press the button now.
- Either I press the button in the next step, or I don't.
 - If I do, the button gets pressed, good.
 - If I *don't*, I must have found a good argument that the button gets pressed later. So the button gets pressed, good!
 - Either way, the button gets pressed.

So the agent can always find a "good argument" that the button will get pressed later...

• ... and therefore never presses the button!

If we want to have reliable self-referential reasoning, we must understand how to avoid this paradox (and others like it).

So what went wrong? (And how do we fix it?)

・ロト ・聞ト ・ヨト ・ヨト

э

- The paradox doesn't go through with finite time horizons-
 - —or with temporal discounting:
 - Utility = $\sum_{t=0}^{\infty} \gamma_t \cdot R_t$, where $\sum_{t=0}^{\infty} \gamma_t < \infty$ and $R_t \in [0, 1]$.

- The paradox doesn't go through with finite time horizons-
 - —or with temporal discounting:
 - Utility = $\sum_{t=0}^{\infty} \gamma_t \cdot R_t$, where $\sum_{t=0}^{\infty} \gamma_t < \infty$ and $R_t \in [0, 1]$.
- Does using temporal discounting fix all such problems?

- The paradox doesn't go through with finite time horizons-
 - —or with temporal discounting:
 - Utility = $\sum_{t=0}^{\infty} \gamma_t \cdot R_t$, where $\sum_{t=0}^{\infty} \gamma_t < \infty$ and $R_t \in [0, 1]$.
- Does using temporal discounting fix all such problems?
- In our toy model:
 - No, not by itself.
 - Still get (more technical) paradoxes of self-reference.

- The paradox doesn't go through with finite time horizons-
 - —or with temporal discounting:
 - Utility = $\sum_{t=0}^{\infty} \gamma_t \cdot R_t$, where $\sum_{t=0}^{\infty} \gamma_t < \infty$ and $R_t \in [0, 1]$.
- Does using temporal discounting fix all such problems?
- In our toy model:
 - No, not by itself.
 - Still get (more technical) paradoxes of self-reference.
 - But: there are ways to fix these problems...
 - $\bullet \ \ldots$ which work if we use finite horizons or discounting.
 - (Suggests this is key to avoiding the problem.)

The "procrastination paradox"

- 2 A formal toy model
- 3 Partial solutions
- 4 Logical uncertainty
- 5 Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For our toy model, use formal logic.
- But *not* because we think realistic smarter-than-human agents work like this.
 - The **problem** seems to be much more general.
 - Any scheme for highly reliable self-referential reasoning will need to deal with it somehow.

(日) (同) (日) (日) (日)

- For our toy model, use formal logic.
- But *not* because we think realistic smarter-than-human agents work like this.
 - The **problem** seems to be much more general.
 - Any scheme for highly reliable self-referential reasoning will need to deal with it somehow.
- Rather: because we can prove theorems about it—
 - and then see what this tells us about the real problem.

- Write P(n) for "the button is pressed in the n^{th} timestep".
- Define computable function f(n):
 - f(n) searches for proofs
 - in Peano Arithmetic (PA)
 - of length $\leq 10^{100+n}$
 - of " $\exists k > n$. P(k)" i.e., "button pressed later".
 - If proof found \implies returns 0 ("don't press button").
 - Else \implies returns 1 ("press button").
- PA \vdash $P(n) \leftrightarrow [f(n) = 1].$
 - (Self-referential definition by Kleene's second recursion thm.)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

• By looking at f(n+1), can prove (in $\ll 10^{100+n}$ symbols):

- By looking at f(n+1), can prove (in $\ll 10^{100+n}$ symbols):
 - "Either the button will be pressed in the next timestep or not": PA $\vdash P(n+1) \lor \neg P(n+1)$

¹Notation: $\square_{\mathsf{PA}} \ulcorner \varphi \urcorner$ means " φ is provable in PA ". $\square \triangleright \land (\bigcirc \triangleright \land (\supseteq \triangleright \land (\supseteq \triangleright \land (\supseteq \circ \land (\square \circ) (\square \circ) (\square \circ \cap (\square \circ) (\square$

- By looking at f(n+1), can prove (in $\ll 10^{100+n}$ symbols):
 - "Either the button will be pressed in the next timestep or not": PA $\vdash P(n+1) \lor \neg P(n+1)$
 - "If button not pressed in next step, must have found proof it will be pressed later":¹

 $\mathsf{PA} \vdash \neg P(n+1) \rightarrow \Box_{\mathsf{PA}} \exists k > n+1. \ P(k) \urcorner$

- By looking at f(n+1), can prove (in $\ll 10^{100+n}$ symbols):
 - "Either the button will be pressed in the next timestep or not": PA $\vdash P(n+1) \lor \neg P(n+1)$
 - "If button not pressed in next step, must have found proof it will be pressed later":¹
 PA ⊢ ¬P(n+1) → □_{PA}¬∃k > n+1. P(k)¬
 - (???) "If there's a proof that the button will be pressed, then it will indeed be pressed."

 $\mathsf{PA} \vdash \Box_{\mathsf{PA}} \exists k > n+1. \ \mathsf{P}(k)^{\neg} \rightarrow \exists k > n+1. \ \mathsf{P}(k)$

- By looking at f(n+1), can prove (in $\ll 10^{100+n}$ symbols):
 - "Either the button will be pressed in the next timestep or not": PA $\vdash P(n+1) \lor \neg P(n+1)$
 - "If button not pressed in next step, must have found proof it will be pressed later":¹
 PA ⊢ ¬P(n+1) → □_{PA}¬∃k > n+1. P(k)¬
 - (???) "If there's a proof that the button will be pressed, then it will indeed be pressed."
 PA ⊢ □_{PA}¬∃k > n + 1. P(k)¬ → ∃k > n + 1. P(k)
 - "Hence, either way, the button is pressed." $PA \vdash P(n+1) \lor \exists k > n+1. P(k)$ $PA \vdash \exists k > n. P(k)$

¹Notation: $\Box_{PA} [\varphi]$ means " φ is provable in PA" $\triangleleft \Box \flat \triangleleft \Box \flat \triangleleft \Xi \flat \triangleleft \Xi \flat \triangleleft \Box$

- By looking at f(n+1), can prove (in $\ll 10^{100+n}$ symbols):
 - "Either the button will be pressed in the next timestep or not": PA $\vdash P(n+1) \lor \neg P(n+1)$
 - "If button not pressed in next step, must have found proof it will be pressed later":¹
 PA ⊢ ¬P(n+1) → □_{PA}¬∃k > n+1. P(k)¬
 - (???) "If there's a proof that the button will be pressed, then it will indeed be pressed."
 PA ⊢ □_{PA}¬∃k > n + 1. P(k)¬ → ∃k > n + 1. P(k)
 - "Hence, either way, the button is pressed." $PA \vdash P(n+1) \lor \exists k > n+1. P(k)$ $PA \vdash \exists k > n. P(k)$

• Hence, f(n) = 0 (for all $n \in \mathbb{N}$)... button never pressed.

¹Notation: $\Box_{\mathsf{PA}} \ulcorner \varphi \urcorner$ means " φ is provable in PA". $\Box \rightarrow \langle \Box \rangle \land \exists \rightarrow \langle \exists \rangle \land \exists \rightarrow \exists \neg \land \Diamond \land \Diamond \land \Box \rangle$

- By looking at f(n+1), can prove (in $\ll 10^{100+n}$ symbols):
 - "Either the button will be pressed in the next timestep or not": PA $\vdash P(n+1) \lor \neg P(n+1)$
 - "If button not pressed in next step, must have found proof it will be pressed later":¹
 PA ⊢ ¬P(n+1) → □_{PA}¬∃k > n+1. P(k)¬
 - (???) "If there's a proof that the button will be pressed, then it will indeed be pressed."
 PA ⊢ □_{PA}¬∃k > n + 1. P(k)¬ → ∃k > n + 1. P(k)
 - "Hence, either way, the button is pressed." $PA \vdash P(n+1) \lor \exists k > n+1. P(k)$ $PA \vdash \exists k > n. P(k)$
- Hence, f(n) = 0 (for all n ∈ ℕ)... button never pressed.
 ⇒ So PA ⊭ □_{PA}[¬]φ[¬] → φ.

¹Notation: $\Box_{\mathsf{PA}} [\varphi]$ means " φ is provable in PA ". $\Box \mapsto \langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \Xi \land \langle \Box \rangle$

- PA avoids the paradox since $\mathsf{PA} \nvDash \Box_{\mathsf{PA}} \ulcorner \varphi \urcorner \to \varphi$.
 - $\bullet \ \rightarrow \$ Generalize this beyond our logic-based toy example?

< D > < B > < E > < E >

-

- PA avoids the paradox since $\mathsf{PA} \nvDash \Box_{\mathsf{PA}} \ulcorner \varphi \urcorner \to \varphi$.
 - $\bullet~\rightarrow~$ Generalize this beyond our logic-based toy example?
- Why do we think our agent will work correctly?
 - We reason: "It will take only actions if it has very good reason to believe these actions will be safe —

(日) (同) (三) (三)

- PA avoids the paradox since $PA \nvDash \Box_{PA} \ulcorner \varphi \urcorner \rightarrow \varphi$.
 - $\bullet~\rightarrow~$ Generalize this beyond our logic-based toy example?
- Why do we think our agent will work correctly?
 - We reason: "It will take only actions if it has very good reason to believe these actions will be safe — therefore, any actions it will take will be almost certainly safe."

・ロト ・同ト ・ヨト ・ヨト

- PA avoids the paradox since $PA \nvDash \Box_{PA} \ulcorner \varphi \urcorner \rightarrow \varphi$.
 - $\bullet~\rightarrow~$ Generalize this beyond our logic-based toy example?
- Why do we think our agent will work correctly?
 - We reason: "It will take only actions if it has very good reason to believe these actions will be safe — therefore, any actions it will take will be almost certainly safe."
 - An agent should be able to use the same argument when reasoning about rewriting itself!

(日) (同) (三) (三)

- PA avoids the paradox since $PA \nvDash \Box_{PA} \ulcorner \varphi \urcorner \rightarrow \varphi$.
 - $\bullet~\rightarrow~$ Generalize this beyond our logic-based toy example?
- Why do we think our agent will work correctly?
 - We reason: "It will take only actions if it has very good reason to believe these actions will be safe — therefore, any actions it will take will be almost certainly safe."
 - An agent should be able to use the same argument when reasoning about rewriting itself!
- Need something like $T \vdash \Box_T \ulcorner \varphi \urcorner \rightarrow \varphi ...$

- PA avoids the paradox since $\mathsf{PA} \nvDash \Box_{\mathsf{PA}} \ulcorner \varphi \urcorner \to \varphi$.
 - $\bullet~\rightarrow~$ Generalize this beyond our logic-based toy example?
- Why do we think our agent will work correctly?
 - We reason: "It will take only actions if it has very good reason to believe these actions will be safe — therefore, any actions it will take will be almost certainly safe."
 - An agent should be able to use the same argument when reasoning about rewriting itself!
- Need something like $T \vdash \Box_T \ulcorner \varphi \urcorner \rightarrow \varphi ...$
 - Gödel/Löb: But that's inconsistent, finite time horizons or not!

The "procrastination paradox"

- 2 A formal toy model
- 3 Partial solutions
- 4 Logical uncertainty

5 Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Partial solutions

1 Can have theories T_0, T_1, T_2, \ldots s.t. $T_{n+1} \vdash \Box_{T_n} \ulcorner \varphi \urcorner \rightarrow \varphi$.

- Agent using T_{n+1} can rewrite into agent using T_n .
- Stops working when we reach T_0 .
- Works for finite time horizons.

(a)

Partial solutions

Q Can have theories T_0, T_1, T_2, \ldots s.t. $T_{n+1} \vdash \Box_{T_n} \varphi^{\neg} \rightarrow \varphi$.

- Agent using T_{n+1} can rewrite into agent using T_n .
- Stops working when we reach T_0 .
- Works for finite time horizons.
- **2** Can have theories s.t. $T_n \vdash \Box_{T_{n+1}} \ulcorner \varphi \urcorner \rightarrow \varphi$ for all $\varphi \in \Pi_1$.
 - Agent using T_n can rewrite into agent using T_{n+1} .
 - Can rewrite forever!
 - (But: Agent doesn't know this! :-()
 - Works with temporal discounting (Fallenstein & Soares, 2014).

・ロト ・同ト ・ヨト ・ヨト

Partial solutions

() Can have theories T_0, T_1, T_2, \ldots s.t. $T_{n+1} \vdash \Box_{T_n} \ulcorner \varphi \urcorner \rightarrow \varphi$.

- Agent using T_{n+1} can rewrite into agent using T_n .
- Stops working when we reach T_0 .
- Works for finite time horizons.
- **2** Can have theories s.t. $T_n \vdash \Box_{T_{n+1}} \ulcorner \varphi \urcorner \to \varphi$ for all $\varphi \in \Pi_1$.
 - Agent using T_n can rewrite into agent using T_{n+1} .
 - Can rewrite forever!
 - (But: Agent doesn't know this! :-()
 - Works with temporal discounting (Fallenstein & Soares, 2014).

Do these approaches generalize beyond formal logic?

- The "procrastination paradox"
- 2 A formal toy model
- 3 Partial solutions
- 4 Logical uncertainty

5 Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Logical uncertainty

- Standard probability theory = *environmental* uncertainty.
 - Agents are assumed to be *logically omniscient*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Standard probability theory = *environmental* uncertainty.
 - Agents are assumed to be *logically omniscient*.
 - No theoretical understanding of mathematical uncertainty!

(日) (同) (三) (1)

B b

- Standard probability theory = *environmental* uncertainty.
 - Agents are assumed to be *logically omniscient*.
 - No theoretical understanding of mathematical uncertainty!
- Example: Choose between $O(n^2)$ and $O(n \log n)$ algorithm

• □ ▶ • □ ▶ • □ ▶ • •

- Standard probability theory = *environmental* uncertainty.
 - Agents are assumed to be *logically omniscient*.
 - No theoretical understanding of mathematical uncertainty!
- Example: Choose between $O(n^2)$ and $O(n \log n)$ algorithm
- Realistic Vingean reflection needs logical uncertainty.

- Standard probability theory = *environmental* uncertainty.
 - Agents are assumed to be *logically omniscient*.
 - No theoretical understanding of mathematical uncertainty!
- Example: Choose between $O(n^2)$ and $O(n \log n)$ algorithm
- Realistic Vingean reflection needs logical uncertainty.
- Approach for study:
 - Probability distribution over *complete theories* in some first-order language.

- Standard probability theory = *environmental* uncertainty.
 - Agents are assumed to be *logically omniscient*.
 - No theoretical understanding of mathematical uncertainty!
- Example: Choose between $O(n^2)$ and $O(n \log n)$ algorithm
- Realistic Vingean reflection needs logical uncertainty.
- Approach for study:
 - Probability distribution over *complete theories* in some first-order language.
 - e.g. complete theories extending Peano Arithmetic (PA)
 - $\bullet \ \rightarrow$ uncertainty about whether PA is consistent

- Standard probability theory = *environmental* uncertainty.
 - Agents are assumed to be *logically omniscient*.
 - No theoretical understanding of mathematical uncertainty!
- Example: Choose between $O(n^2)$ and $O(n \log n)$ algorithm
- Realistic Vingean reflection needs logical uncertainty.
- Approach for study:
 - Probability distribution over *complete theories* in some first-order language.
 - e.g. complete theories extending Peano Arithmetic (PA)
 - $\bullet~\rightarrow$ uncertainty about whether PA is consistent
 - Reflection is still difficult

- 4 同 2 4 日 2 4 日 2

- Assign probabilities $\mathbb{P}[\varphi]$ to sentences $\varphi...$
 - ... in a language with a symbol for $\mathbb{P}[\cdot]$.
 - Require e.g.: if $\mathsf{ZFC} \vdash \varphi \to \psi$, then $\mathbb{P}[\varphi] \leq \mathbb{P}[\psi]$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Assign probabilities $\mathbb{P}[\varphi]$ to sentences $\varphi. \ldots$
 - ... in a language with a symbol for $\mathbb{P}[\cdot]$.
 - Require e.g.: if $\mathsf{ZFC} \vdash \varphi \to \psi$, then $\mathbb{P}[\varphi] \leq \mathbb{P}[\psi]$.
- Reflection: $\alpha \leq \mathbb{P}[\varphi] \leq \beta \implies \mathbb{P}[\alpha \leq \mathbb{P}[\varphi] \leq \beta] = 1.$

- Assign probabilities $\mathbb{P}[\varphi]$ to sentences $\varphi.\ldots$
 - ... in a language with a symbol for $\mathbb{P}[\cdot]$.
 - Require e.g.: if $\mathsf{ZFC} \vdash \varphi \to \psi$, then $\mathbb{P}[\varphi] \leq \mathbb{P}[\psi]$.
- Reflection: $\alpha \leq \mathbb{P}[\varphi] \leq \beta \implies \mathbb{P}[\alpha \leq \mathbb{P}[\varphi] \leq \beta] = 1.$
 - But let $\mathsf{ZFC} \vdash \varphi \leftrightarrow \mathbb{P}[\varphi] < 1$ (diagonal lemma).
 - Suppose $\mathbb{P}[\varphi] = 1$. Then $\mathbb{P}[\varphi] = \mathbb{P}[\mathbb{P}[\varphi] < 1] = 0$.

- Assign probabilities $\mathbb{P}[\varphi]$ to sentences $\varphi. \ldots$
 - ... in a language with a symbol for $\mathbb{P}[\cdot]$.
 - Require e.g.: if $\mathsf{ZFC} \vdash \varphi \to \psi$, then $\mathbb{P}[\varphi] \leq \mathbb{P}[\psi]$.
- Reflection: $\alpha \leq \mathbb{P}[\varphi] \leq \beta \implies \mathbb{P}[\alpha \leq \mathbb{P}[\varphi] \leq \beta] = 1.$
 - But let $\mathsf{ZFC} \vdash \varphi \leftrightarrow \mathbb{P}[\varphi] < 1$ (diagonal lemma).
 - Suppose $\mathbb{P}[\varphi] = 1$. Then $\mathbb{P}[\varphi] = \mathbb{P}[\mathbb{P}[\varphi] < 1] = 0$.
 - Suppose $\mathbb{P}[\varphi] \leq 1 \varepsilon < 1$. Then $\mathbb{P}[\varphi] = \mathbb{P}[\mathbb{P}[\varphi] < 1] \geq \mathbb{P}[\mathbb{P}[\varphi] \leq 1 - \varepsilon] = 1$.
 - Contradiction!

- Assign probabilities $\mathbb{P}[\varphi]$ to sentences $\varphi. \ldots$
 - ... in a language with a symbol for $\mathbb{P}[\cdot]$.
 - Require e.g.: if $\mathsf{ZFC} \vdash \varphi \to \psi$, then $\mathbb{P}[\varphi] \leq \mathbb{P}[\psi]$.
- Reflection: $\alpha \leq \mathbb{P}[\varphi] \leq \beta \implies \mathbb{P}[\alpha \leq \mathbb{P}[\varphi] \leq \beta] = 1.$
 - But let $\mathsf{ZFC} \vdash \varphi \leftrightarrow \mathbb{P}[\varphi] < 1$ (diagonal lemma).
 - Suppose $\mathbb{P}[\varphi] = 1$. Then $\mathbb{P}[\varphi] = \mathbb{P}[\mathbb{P}[\varphi] < 1] = 0$.
 - Suppose $\mathbb{P}[\varphi] \leq 1 \varepsilon < 1$. Then $\mathbb{P}[\varphi] = \mathbb{P}[\mathbb{P}[\varphi] < 1] \geq \mathbb{P}[\mathbb{P}[\varphi] \leq 1 - \varepsilon] = 1$.
 - Contradiction!
- Christiano (2013): consistent to have for all $\alpha, \beta \in \mathbb{Q}$, all φ : $\alpha < \mathbb{P}[\varphi] < \beta \implies \mathbb{P}[\alpha < \mathbb{P}[\varphi] < \beta] = 1$

(日) (同) (三) (三) (二)

- Christiano (2013): consistent to have for all $\alpha, \beta \in \mathbb{Q}$, all φ : $\alpha < \mathbb{P}[\varphi] < \beta \implies \mathbb{P}[\alpha < \mathbb{P}[\varphi] < \beta] = 1.$
- Let $\mathsf{ZFC} \vdash P(n) \leftrightarrow \mathbb{P}[\exists k > n. P(k)] < 1 \frac{1}{n}$
 - "Button pressed in step *n* unless very sure it's pressed later"

(日) (同) (日) (日) (日)

- Christiano (2013): consistent to have for all $\alpha, \beta \in \mathbb{Q}$, all φ : $\alpha < \mathbb{P}[\varphi] < \beta \implies \mathbb{P}[\alpha < \mathbb{P}[\varphi] < \beta] = 1.$
- Let $\mathsf{ZFC} \vdash P(n) \leftrightarrow \mathbb{P}[\exists k > n. P(k)] < 1 \frac{1}{n}$
 - "Button pressed in step *n* unless very sure it's pressed later"
 - $\mathbb{P}[\exists n.P(n)] = 1$
 - For all n, $\mathbb{P}[P(n)] = 0$

- Christiano (2013): consistent to have for all $\alpha, \beta \in \mathbb{Q}$, all φ : $\alpha < \mathbb{P}[\varphi] < \beta \implies \mathbb{P}[\alpha < \mathbb{P}[\varphi] < \beta] = 1.$
- Let $\mathsf{ZFC} \vdash P(n) \leftrightarrow \mathbb{P}[\exists k > n. P(k)] < 1 \frac{1}{n}$
 - "Button pressed in step *n* unless very sure it's pressed later"
 - $\mathbb{P}[\exists n.P(n)] = 1$
 - For all n, $\mathbb{P}[P(n)] = 0$
- Unclear how to interpret this!
 - $\bullet~\mathbb{P}$ can't be $\sigma\text{-additive}$ probability measure on standard models

- Christiano (2013): consistent to have for all $\alpha, \beta \in \mathbb{Q}$, all φ : $\alpha < \mathbb{P}[\varphi] < \beta \implies \mathbb{P}[\alpha < \mathbb{P}[\varphi] < \beta] = 1.$
- Let $\mathsf{ZFC} \vdash P(n) \leftrightarrow \mathbb{P}[\exists k > n. P(k)] < 1 \frac{1}{n}$
 - "Button pressed in step *n* unless very sure it's pressed later"
 - $\mathbb{P}[\exists n. P(n)] = 1$
 - For all n, $\mathbb{P}[P(n)] = 0$
- Unclear how to interpret this!
 - $\bullet~\mathbb{P}$ can't be $\sigma\text{-additive}$ probability measure on standard models

• But can be finitely additive measure

- Christiano (2013): consistent to have for all $\alpha, \beta \in \mathbb{Q}$, all φ : $\alpha < \mathbb{P}[\varphi] < \beta \implies \mathbb{P}[\alpha < \mathbb{P}[\varphi] < \beta] = 1.$
- Let $\mathsf{ZFC} \vdash P(n) \leftrightarrow \mathbb{P}[\exists k > n. P(k)] < 1 \frac{1}{n}$
 - "Button pressed in step *n* unless very sure it's pressed later"
 - $\mathbb{P}[\exists n.P(n)] = 1$
 - For all n, $\mathbb{P}[P(n)] = 0$
- Unclear how to interpret this!
 - $\bullet~\mathbb{P}$ can't be $\sigma\text{-additive}$ probability measure on standard models

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

- But can be finitely additive measure
- Clearer understanding needed!

- The "procrastination paradox"
- 2 A formal toy model
- 3 Partial solutions
- 4 Logical uncertainty

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

- Gave example of self-referential reasoning gone wrong.
 - Any **reliable** system for self-referential reasoning will need to deal with this somehow.
- Analyzed the problem using a toy model,
 - and looked for solutions that generalize.
 - Can extend to utility-based agents (Fallenstein & Soares, 2014)

Conclusions

- Gave example of self-referential reasoning gone wrong.
 - Any **reliable** system for self-referential reasoning will need to deal with this somehow.
- Analyzed the problem using a toy model,
 - and looked for solutions that generalize.
 - Can extend to utility-based agents (Fallenstein & Soares, 2014)
- Looked for extensions to logical uncertainty.
 - Reflection is still difficult.
 - Still get versions of the procrastination paradox.
 - Better understanding needed.

Conclusions

- Gave example of self-referential reasoning gone wrong.
 - Any **reliable** system for self-referential reasoning will need to deal with this somehow.
- Analyzed the problem using a toy model,
 - and looked for solutions that generalize.
 - Can extend to utility-based agents (Fallenstein & Soares, 2014)
- Looked for extensions to logical uncertainty.
 - Reflection is still difficult.
 - Still get versions of the procrastination paradox.
 - Better understanding needed.
- Extremely reliable self-referential reasoning isn't trivial...
 - but we can make progress towards it! Thanks for listening!

・ロト ・同ト ・ヨト ・ヨト