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Abstract
International agreements about AI development may be required to reduce catastrophic risks from
advanced AI systems. However, agreements about such a high-stakes technology must be backed
by verification mechanisms—processes or tools that give one party greater confidence that another
is following the agreed-upon rules, typically by detecting violations. This report gives an overview of
potential verification approaches for three example policy goals, aiming to demonstrate how
countries could practically verify claims about each other’s AI development and deployment. The
focus is on international agreements and state-involved AI development, but these approaches
could also be applied to domestic regulation of companies. While many of the ideal solutions for
verification are not yet technologically feasible, we emphasize that increased access (e.g., physical
inspections of data centers) can often substitute for these technical approaches. Therefore, we
remain hopeful that significant political will could enable ambitious international coordination, with
strong verification mechanisms, to reduce catastrophic AI risks.

Correspondence to: aaron.scher@intelligence.org, lisa@intelligence.org

Executive Summary
About this Report

This report provides an overview of mechanisms and approaches that could be used to verify
compliance with future international agreements about AI development. Drawing on a review of the
literature and discussions with relevant experts, this report includes rough feasibility estimates and
R&D timelines for various mechanisms, with in-depth discussion of some mechanisms that are
underexplored or particularly promising: AI-enabled approaches, model behavior specifications,
interconnect bandwidth limits, and more. Given the nascent state of AI verification research and the
rapidly evolving landscape of AI development, this analysis serves as a foundation for further work.

Most readers will benefit from reading the executive summary. Those working on international or
domestic verification around AI will benefit from reading the entire report and appendix. The
perspectives shared in this report are those of the authors and are not intended to represent the
views of their organization.

Background and Motivation

A growing number of experts believe the development of advanced AI systems could cause
catastrophic harm, such as human extinction (Bengio et al., 2024; Carlsmith, 2024; Grace et al.,
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2024; Hendrycks et al., 2023). If such risks become more apparent, governments may wish to
create international agreements to govern AI development or deployment. However, some actors
may perceive a strategic benefit in violating such an agreement, so there is a substantial risk of
defection. Therefore, these agreements will benefit from governments being able to verify the
compliance of foreign (and domestic) actors rather than relying on goodwill. This report provides an
overview of approaches and mechanisms that could be used for such verification.

This report makes a few scope and framing choices: it focuses on verification and accompanying
self-reporting measures, rather than other aspects of international agreements (such as benefit
sharing, enforcement, scientific collaboration, etc.), and it focuses on international rather than
domestic regulation. Conveniently, many of the mechanisms discussed are also applicable
to verification of domestic regulations. Additionally, this report assumes substantial political will
(i.e., committed support from key decision-makers) for international cooperation to prevent major
risks from general-purpose, advanced AI systems. We focus on a situation where governments are
playing a major role in AI development, and attempts to subvert verification regimes are
coming from well-resourced state actors. We note that international cooperation in AI
development may not be necessary if, for instance, the United States’ lead in AI is upheld via
strong export controls for AI chips and very strong cybersecurity around AI model weights (Nevo et
al., 2024). In that case, the U.S. federal government could control frontier AI development via
domestic regulation, without the fear of frontier AI development happening elsewhere—at least in
the short term. This report investigates the mechanisms available for verification, if international
cooperation is needed. Verification mechanisms are processes or tools that give one party greater
confidence that the other is following the agreed-upon rules, typically by detecting violations.

Given the potential for existential risks and the complexity of fully addressing them, this report
examines selected policy goals as a means to illustrate the broader challenge of verification. These
goals, while not necessarily optimal, are used to highlight the kinds of technical and institutional
measures that could enhance compliance with a variety of policy goals. This report examines three
policy goals: locating AI compute (the physical computers used for AI activities), verifying
that some known compute is not being used for a large training run, and verifying the
authenticity of model evaluations. These goals are primarily chosen because they help highlight
the space of verification methods available, rather than because they are the most desirable goals.
For instance, ideal international coordination might restrict dangerous AI development and
deployment, perhaps based on international approval of a safety case (Clymer et al., 2024), but this
is a difficult goal to discuss with the field’s current, underdeveloped understanding of AI safety, so
we use the proxy of pre-training compute thresholds (we briefly discuss verifying that a safety case
is followed in the appendix). For each goal, we describe multiple verification approaches, often
relying on particular technical mechanisms, and provide analysis of the technical and operational
feasibility of these approaches.
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Verifying the location of AI compute

Tracking AI-relevant compute is crucial for AI governance, as chips are the fundamental substrate
of AI development. We discuss two potential approaches: 1) Low-tech physical inspections, 2)
High-tech on-chip mechanisms for remote location attestation. Physical inspections could
be implemented immediately but require physical access to data centers, i.e., international
inspectors visiting data centers, counting existing chips, and setting up security cameras, with the
primary goal of ensuring declared chips do not leave their data centers. On-chip mechanisms
would involve newly manufactured AI chips, or a secondary processor added alongside existing
chips, remotely attesting to their location (e.g., via measuring the response time to a series of
servers located throughout the world), but they likely require improved chip security to prevent
tampering (Aarne et al., 2024; Brass & Aarne, 2024; Kulp et al., 2024; Petrie et al., 2024). In
particular, the main security issue is protecting a chip’s private key, which it uses for this location
attestation: if the key were extracted, the chip’s location could be spoofed. On-chip location
attestation has the benefits of not requiring physical access to chips and potentially revealing only a
chip’s general location.

In both approaches, locating AI compute is primarily being done by tracking AI chips and their
supply chain rather than hoping to detect secret data centers, a choice we discuss in the
appendix. Tracking chips appears more promising because advances in distributed training will
allow many data centers to effectively act as one, detecting covert data centers may be difficult, AI
chips are closer to the target of regulation (AI activities), and the chip supply chain is narrow and
amenable to monitoring. In practice, monitoring should focus both on tracking AI chips and data
centers, but we expect focusing on AI chips to be more reliable.

Both approaches rely on securing the AI chip supply chain. The first requires preventing chip
smuggling, and the second requires that manufactured chips have the correct on-chip
mechanisms and are sufficiently tamper-proofed. The high-level approach to verifying the location
of AI compute is to locate AI chips at an initial point in time (e.g., self-report and physical
inspections or by monitoring fabrication plants) and then ensure they remain monitored (e.g.,
security cameras or on-chip mechanisms with strong security). Compute monitoring may be
politically difficult, given the access requirements. This challenging task is made easier by
centralizing AI compute—e.g., via export controls—because it reduces the number of governments
whose participation is crucial to the success of such a verification regime.

Verifying that known compute is not being used for a large training run

This section addresses the policy goal of verifying that data centers are not conducting large AI
training runs, i.e., total training compute does not exceed some agreed-upon threshold. This policy
goal is included because the size of a pre-training run is sometimes a proxy for risk from AI systems
(Heim & Koessler, 2024), it is a major focus in AI governance research and policy (EU AI Act, 2024;
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Executive Order 14110, 2023), and it allows for a clear decomposition of the space of verification
mechanisms. While this report focuses on pre-training, it may be necessary in the future for
international coordination to focus on inference or post-training. The verification approach is as
follows: locate AI compute via the first policy goal, exclude compute facilities incapable of
supporting large training runs, and verify that capable facilities are not engaging in such
activities.

Exclusion of data centers will likely involve identifying certain chips as “AI chips” and excluding
other chips—as is done in current U.S. export controls (Dohmen & Feldgoise, 2023). Data centers
could also potentially be excluded based on having only a small number of AI chips. This approach
would involve self-reporting and physical inspections to confirm these accounts. However,
distributed training likely poses significant issues for compute exclusion because it could
enable multiple small-to-medium amounts of compute (e.g., 5,000 chips) to collectively
carry out a large training run. If there are no restrictions on frontier AI development, large
training runs are likely to occur in a few large data centers, but if there are international agreements
to prohibit large training runs, subversion attempts will likely be covert, for instance, doing highly
distributed training. Given this consideration and the threat model of well-resourced state actors, it
may be necessary to monitor even relatively small data centers.

Multiple verification approaches can build confidence that some data center that could be used for
a large training run is not being used for that purpose. Data centers can engage in “compute
accounting” by keeping a registry of their chip activities, allowing verification that these
registries are correct, and then demonstrating there are not enough chip-hours left for a
violation. This verification could include partial re-running of declared workloads by a verifier
in a mutually trusted data center (i.e., one which all parties are confident is secure enough to not
leak sensitive information about the workloads being re-run) (Baker et al., Forthcoming; Shavit,
2023). It could also include classifying workloads based on high-level measures of AI chips.
Classifying chip activities on the basis of non-invasive measures such as power consumption is
likely difficult, given our threat model, but it could be feasible, especially if temporary code access is
granted (this would provide in-distribution, correctly labeled data). One classification method that
appears especially promising is interconnect bandwidth limits—substantially reducing the
amount of data that can flow in and out of a set of chips in order to prevent these chips from
efficiently participating in a distributed training run while still allowing efficient text inference. For
example, 128 chips with high bandwidth interconnect to each other but very low external
bandwidth, enough for inference tokens but not training gradients. This is likely implementable with
minor modifications to existing technology, physical access and monitoring of compute, but
without any code access; this approach is discussed in the appendix.

Workload classification could also involve access to chip activities in a zero-knowledge manner
(e.g., sensitive information is not leaked), such as by using Flexible Hardware-Enabled
Guarantee, FlexHEG, mechanisms (Petrie et al., 2024). The general FlexHEG approach is to

Mechanisms to Verify International Agreements About AI Development | 5



have a secure processor that interacts with an AI chip and carries out governance operations, such
as saving snapshots of the chip’s memory or controlling which other chips the chip can interact
with, which is secure against tampering (e.g., with an enclosure which destroys the chip if it detects
tampering). One particular implementation of FlexHEG mechanisms could likely be designed and
tested in less than two years and then retrofitted to existing chips, making it especially promising.
FlexHEG mechanisms could aid with workload classification in numerous ways, e.g., by comparing
a chip’s memory contents to a declared workload and showing the chip is doing what it should be.

After verifying its chips’ activities using a combination of the above methods, a data center would
make the argument that there are not enough unverified chip hours remaining to carry out a
violation; this is a non-trivial argument for most classification methods, and forthcoming work from
Baker and colleagues makes progress on it. Overall, verification of this policy goal appears difficult:
partial re-running of workloads requires mutually trusted computing infrastructure, a tall order;
many other approaches will be difficult to make adversarially robust, especially given likely
advances in algorithmic efficiency and distributed training.

Verifying the authenticity of model evaluations

Countries may want to evaluate each other’s AI models for various reasons, such as ensuring AI
capabilities progress is moving slowly or asserting some quality about a model. The main difficulties
in doing this are ensuring the correct model is evaluated, ensuring the evaluation process
is secure for both parties, and ensuring evaluations are effective. One technical mechanism
that can assist with security is Trusted Execution Environments (TEEs)—enabled via
“Confidential Computing” on NVIDIA GPUs—which could allow only mutually approved code to
run, but without giving either party access to sensitive data. Model authenticity could be
established by ensuring the model code and weights run in a TEE are the same during
evaluation as deployment or training. While minimal versions of these techniques will likely be
available soon, existing AI chips may not be sufficiently secure against well-resourced nation-state
actors. Unfortunately, the science of evaluations is still in its early stages, so effectively verifying
many important properties of AI systems may remain elusive even if these technical challenges in
security and model authenticity are solved.

Verifying various policy goals

A few verification mechanisms will be useful for a wide range of policy goals.Whistleblower
programs and interviews are likely to be effective, they have strong precedent, and they can
verify a wide range of claims, e.g., claims about AI models, development practices, and AI chip
production. AI-enabled verification approaches (such as a mutually trusted AI system conducting
model evaluations) could allow zero-knowledge verification of complex properties, which would be
very useful, but these require favorable developments in AI technology.
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Monitoring AI inference (i.e., all copies of a deployed model) is critical to many policy goals, such as
AI deployment following a safety case. This is a difficult task due to the requirement that all
inference be known and monitored. One promising approach is using strong security to prevent
model weights from leaving a data center, and then monitoring the data center closely.

Model behavior specifications could also contribute to verification. If AI systems are doing a
substantial amount of intellectual labor, it may be desirable to design AI systems that follow a
general set of agreed-upon principles, such as refusing to violate international
agreements. The technical feasibility of such an approach likely varies significantly with AI
capability level: we expect it is probably feasible for current AI systems given a few years of R&D
(and given substantial effort), but it may be extremely difficult for future AI systems, akin to the
general AI alignment problem (Ngo et al., 2024).

Takeaways

Verifying compliance with many international agreements on AI is likely feasible, even if it is needed
very soon, but it will require substantial political will and some participation from monitored
countries. Core difficulties with verification include advancements in algorithmic progress,
advancements in distributed training, the difficulty of classifying AI chip activities in an adversarial
setting, and the novel threat landscape with highly capable AI systems. Furthermore, the vast
majority of verification approaches in this report are not ready to be implemented,
requiring years of R&D first. Some mechanisms whose development must be started early include
FlexHEGs, mutually trusted data centers and computing infrastructure, centralizing and tracking
existing AI chips, centralizing and tracking the chip supply chain, developing inference-only chips or
other chips that can only be used for selective AI activities, and securing AI model weights against
theft. Many verification mechanisms are applicable to both international and domestic
regulation, so early work could be crucial even if only domestic regulation is needed. The present
analysis points to a few high-priority areas of future work other than designing and prototyping
various verification mechanisms discussed: fostering the international political will necessary for
effective verification regimes, analyzing the verification space with a specific focus on domestic
regulation and less capable adversaries, and designing verification regimes aimed at key policy
goals such as frontier model training following a safety case (discussed briefly in the appendix).

Effective verification mechanisms could be a catalyst for international agreements, as has been the
case previously (Toivanen, 2017). Strong verification is crucial, regardless of whether the
international situation is one of “trust but verify” or "distrust and verify”.
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About This Report
The perspectives shared in this report are those of the authors and are not intended to represent
the views of their organization.

Our main contributions are as follows:

● We lay out the range of verification mechanisms that have been discussed previously,
organized around practically verifying particular policy goals. Our work is informed by
reviewing previous literature and discussion with relevant experts. Given the nascent state
of AI verification research and the rapidly evolving landscape of AI development, this
analysis serves as a foundation for further work.

● We discuss some verification mechanisms that have not received significant attention
previously: AI-enabled approaches, model behavior specifications, signatures of high-level
chip measures, inference classifiers akin to Trust and Safety filters, and more.

● We provide detailed analysis of the challenges and implementation details of interconnect
bandwidth limits, an approach discussed previously (Kulp et al., 2024), which we think is
relatively promising.

● Our description of the verification landscape indicates numerous areas for future research,
some of which require substantial serial time and thus work must begin early.

Most readers will benefit from reading the executive summary. Those working on international or
domestic verification around AI will benefit from reading the entire report and appendix.

Background and Motivation
As artificial intelligence (AI) systems become more capable and large-scale risks become more
salient, the international community may come together to regulate AI development through treaties
and other agreements. Central to the effectiveness and feasibility of such agreements is whether
compliance can be verified by other countries rather than merely being trust-backed. This report
provides an overview of verification mechanisms—processes or tools that give one party greater
confidence that the other is following the agreed-upon rules, typically by detecting violations—for
international agreements about AI development.

This report makes a handful of framing choices:

This report focuses on verifying international agreements rather than domestic regulations.
This choice is based on the requirement that effective coordination to reduce catastrophic AI risk
be global and broadly encompassing. This report also imagines the major AI development
projects of the future to be state-involved efforts, but many of the mechanisms discussed
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can also be applied to domestic regulation. While the ideas are more generally applicable, readers
could view this document as answering the question, “How would the governments of the United
States and China verify that the other is following a bilateral agreement on AI development?”

Therefore, the primary threat to violating international agreements comes from
sophisticated and well-resourced nation-state actors. When considering if a verification
mechanism, such as firmware licensing for AI chips, will stand up to circumvention efforts, readers
should imagine said efforts are carried out by the most advanced state actors, such as OC5 as
described by Nevo et al. (2024), with physical access to the AI chips. Because the relevant threat
actors are well-resourced, verification and enforcement mechanisms should aim to increase the
cost of treaty violations by multiple orders of magnitude (e.g., increase the time needed for a
prohibited AI training run by >100x). Nevertheless, verification measures that are less effective than
this could be useful, especially when stacked together. The benefits of AI development and of
violating these international agreements may appear very large, so our threat model includes
nation-states spending billions of dollars on AI projects and potentially billions of dollars to subvert
verification mechanisms (i.e., covertly violate agreements and bypass the verification mechanisms
aimed at detecting violations). It’s key to avoid conflating “current AI companies are doing method
𝑋 rather than 𝑌 because it saves some money” and “nation-states could only do method 𝑋 and not
𝑌 in the future”.

This report focuses on the technical and institutional mechanisms needed to verify
compliance with policy goals rather than other aspects of international agreements. International
agreements for AI could have other components, such as benefit sharing, scientific collaborations,
withdrawal conditions, and enforcement mechanisms used in response to violations. International
agreements could also have collective decision-making procedures (Hausenloy et al., 2023), which
some verification mechanisms could facilitate, but which are out of scope for this report. Many of
the verification approaches in this report include the monitored party making some claim about
their AI activities being acceptable and granting enough access for a verifying party to confirm that
the claim is correct. For instance, verifying the location of AI chips may involve physical inspections
to count chips, and verifying that a particular workload was run on some AI chips may involve
re-running that workload to confirm it happened as stated. Some approaches require the
participation of the monitored party but do not assume the monitored party is providing truthful
information. Instead, verification mechanisms should make it difficult to lie without getting caught.
Some verification mechanisms would be effective at preventing overt violations of an international
agreement, but this report generally focuses on a situation where violations are covert, and the goal
is to detect them, while enforcement is out of scope for this report.

This report focuses on regulations pertaining to risks from frontier AI systems—highly capable,
general-purpose AI systems which could have dangerous capabilities, i.e., which pose a threat to
global security (Anderljung et al., 2023). The term “frontier” sometimes refers to the most capable
models at a given time and sometimes refers to models that could pose large-scale risks due to
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their high capabilities (i.e., which are above some capability threshold, regardless of other models’
capabilities). This work pertains to both definitions, though verification will likely be much easier if
only the most capable AI systems are of concern. While we focus on general-purpose AI systems,
international coordination on AI could have many other targets, for instance, regulating the use of
Lethal Autonomous Weapons Systems. For discussion of verification related to narrow AI systems,
see forthcoming work from Harack and colleagues.

This report assumes a future world where there is substantial political will among global
powers for coordination on AI (i.e., similar to the U.S. response to 9/11, but globally). Political will is
not sufficient for coordination, however, because of the risk that a country will break its agreements
and engage in unsafe development. There are numerous reasons a country could decide to violate
an international agreement about AI development, such as the benefits of increased AI capabilities
being concentrated to the developers while catastrophic risks are diffused across humanity. If these
risks are perceived to be fairly low, the cost-benefit trade-off could incentivize each actor,
individually, to race ahead; however, coordinating to avoid this might have been preferable.
Verification mechanisms enable meaningful coordination even when there is substantial distrust
between countries.

International AI governance is sometimes framed as a race between countries (Aschenbrenner,
2024). This report instead targets a world where there is international cooperation to reduce AI
risks. Depending on various factors, such as the cybersecurity of U.S. AI companies, the
effectiveness of U.S. chip export controls, and when particular AI capabilities are developed, such
cooperation may or may not be necessary to different degrees. This report assumes some
cooperation is desired and aims to lay out the verification approaches that could enable such
cooperation. To motivate this and the above framing choices, we sketch a few hypothetical futures
in the appendix.

In order to organize the space of verification mechanisms, this report investigates three policy goals
that international agreements may seek to accomplish. These policy goals are primarily chosen for
their relevance to previous work and the feasibility of applying verification to them rather than
because they are the most important policy goals. The policy goal of locating AI-relevant compute
is chosen because it may be a necessary requirement for many other goals (such as monitoring AI
development and deployment). The policy goal of verifying that known compute is not being used
for a large training run is chosen because it may be a rough proxy for dangerous AI development
while being more tractable to discuss, i.e., it is unclear how to classify future AI development as
dangerous or safe, but, currently, large training runs appear to be a proxy for danger (Heim &
Koessler, 2024). The policy goal of verifying the authenticity of model evaluations is chosen
because of its salience in the International Dialogues on AI Safety (“IDAIS-Venice,” 2024) and
because external evaluations are included in some AI regulations (EU AI Act, 2024; Executive Order
14110, 2023). A fourth section includes a brief discussion of various other policy goals.
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The policy goals discussed here help decompose the space of verification mechanisms, but we do
not claim these should be the primary policy goals of international coordination. More ambitious
and risk-reducing policy goals might include:

● All frontier AI development follows a safety case (Clymer et al., 2024)—a goal we discuss
briefly in the appendix

● Given a data center, know it is not being used for any dangerous AI development or
deployment (i.e., covering pre-training, post-training, and inference)

● Frontier AI development does not happen until humanity’s understanding of advanced AI
system safety is much more mature (i.e., global pause)

Many of the technical building blocks in this report are relevant to achieving those policy goals, but
we leave specific discussions about them for future work.

We assume general familiarity with common AI and AI governance concepts; “compute” is used to
refer to both the hardware used in AI development and as a measurement of operations done by
these chips (Gupta & Ranjan, 2024).
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Verifying the Location of AI Compute

Why This Policy Goal is Included
AI chips (compute) are the main physical instantiation of AI development and deployment. They are
highly specialized, and their supply chain is concentrated, so they are a strong node for AI
governance (Sastry et al., 2024). Knowing where AI compute is located is often a necessary step to
verifying other properties of that compute, e.g., that it’s not being used for something dangerous.
Compute is also necessary for AI development and excludable (access to compute can be
restricted), although the types of compute that could be used for AI development could change in
the future. Governments can be confident there is no covert, dangerous AI development occurring
if nearly all AI chips are accounted for (this section) and are verifiably doing something else (the next
section). In the future, strong on-chip mechanisms may allow for flexible governance of chips
without locating them, obviating the need for this policy goal.

Key Takeaways
● There are two approaches to tracking AI chips: physical inspections and on-chip

mechanisms.

● In the absence of secure on-chip mechanisms (at least 2 years away), political will is
needed to facilitate the physical inspection and monitoring regime that would successfully
track the location of AI chips.

● Tracking AI chips from their manufacturing and throughout their lifecycle appears more
effective than monitoring for undeclared data centers.

Verification Approach
“AI compute” refers to the computer chips used in frontier AI workloads, e.g., NVIDIA H100 GPUs
and Google TPUs. For the sake of simplicity, we defer to the criteria for defining advanced (AI)
chips as used by the current U.S. export controls (Dohmen & Feldgoise, 2023), based on total
performance, performance density, or marketing for data center use. Currently, the specific
hardware used for frontier AI workloads is highly specific, being designed and fabricated by a
handful of companies (Sastry et al., 2024). The viability of locating AI compute is sensitive to
questions of what counts as an AI chip and how many chips are concerning—considerations we
discuss in the appendix.

Data centers are the buildings, or parts of buildings, which primarily house computer systems such
as AI chips. Locating AI compute will, therefore. make use of data centers, e.g., involving the
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inspection of them or their power draw. However, it is sometimes more useful to focus specifically
on AI chips rather than on the data centers that house them. Using this level of abstraction is useful
for a few reasons: data centers are much broader than AI—there are estimated to be tens of
thousands of data centers around the world (Pilz & Heim, 2023)—but only a small fraction of these
are likely to house AI chips; advances in distributed training will likely allow geographically separate
data centers to effectively act as one; and the AI chip supply chain is both specialized and
concentrated, thus amenable to regulation. We discuss these considerations and more in the
appendix. As a result, the mechanisms in this section apply mainly to tracking AI chips themselves
rather than data centers. Both approaches will be useful in practice, but we caution against
focusing too strongly on the data center level of abstraction.

Tracking AI-relevant compute is a difficult task, and there are two primary approaches. The first
approach is a low-tech solution that is implementable in the near future. It consists of physical
inspections of declared data centers and a registry that tracks the ownership and location of AI
compute. The second approach uses on-chip mechanisms for AI governance. In particular, it
involves AI chips being outfitted with tamper-proof security mechanisms and remote location
attestation. It is desirable to pursue both approaches because they have different strengths and
weaknesses. The first has the major downside of being politically difficult due to the access
requirements for international inspectors or continuous monitoring. However, it is technically
feasible today, whereas the second approach will likely not be feasible for at least two years.

In the first, low-tech, approach to tracking AI chips, the following components are necessary:
countries self-report the location of their data centers that house AI chips, identify and count AI
chips in those data centers, and keep an updated registry of this information; reported centers are
physically inspected to ensure the presence of a random sample of the expected chips. If there is a
worry that routine physical inspections would not be frequent enough to detect chips being moved
and used, it may be necessary for reported data centers to have security to prevent chip theft and
undergo continuous monitoring—security cameras watching chips and perimeter controls—in
order to prevent chip smuggling. There is precedent for this level of shared monitoring in the case
of nuclear weapons treaties (Baker, 2023). In order to simplify this data center monitoring process,
it may be useful to move AI chips to a small number of data centers (i.e., individuals and
corporations could still own AI chips, but these would be housed in specific facilities). Additionally,
national intelligence operations could potentially be used to detect undisclosed data centers,
including via human intelligence, power grid analysis, and cyber operations. Initially, implementing
this approach may be quite difficult, as there are millions of AI-relevant chips already in existence,
and no central tracking of them has taken place to our knowledge (besides public estimates, which
are often very uncertain). However, substantial political will, international and domestic laws, and
the small number of companies that produce these chips could aid in locating a significant fraction
of existing chips and bringing them into a monitored data center regime.
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Physically tracking new cutting-edge AI chips is comparatively easier, as these chips are fabricated
in fewer than 20 facilities (though they undergo further development before being shipped to data
centers) (Sastry et al., 2024; TSMC Fabs - Taiwan Semiconductor Manufacturing Company
Limited, n.d.). International agreements can leverage this small number of fabrication facilities to
track chips from their production to the data centers they are housed in. The narrow supply chain
also enables tracking of critical components, such as EUV lithography machines, likely making it
feasible to prevent covert chip production for years. The efficacy of tracking the compute supply
chain would depend on the scope of monitoring and whether alternative chip production pathways
become viable—something which may be particularly worrying if highly capable AI systems have
been developed and are used for this purpose.

The second approach to tracking AI compute requires that chips have certain on-chip mechanisms
that enable remote location attestation (Aarne et al., 2024; Kulp et al., 2024). This could include
chips using a time-based ping to servers throughout the world in order to locate themselves (Brass
& Aarne, 2024). Implementing such a mechanism on AI chips themselves is technically
straightforward but would likely have security vulnerabilities, and it requires coordinating chip
design across many companies. The main security issue is ensuring that a chip’s private key
cannot be extracted, as extraction would allow other chips to pretend to be the AI chip of note,
resulting in its location being spoofed. Some AI chips, including NVIDIA H100s, have such a private
key (Nertney, 2023), but it is unclear how well-secured this is. While it is difficult to be confident,
existing chips are likely insecure: they do not appear to have undergone extremely rigorous testing,
and the threat model assumed in this report is that of the most capable nation-state actors. If new
chips with better security are needed, this would add substantial development time, likely at least
two years, including extensive testing and mutual trust that the implementation has not been
purposefully backdoored.

One approach to on-chip location attestation, which could be faster to implement, is using a
Flexible Hardware-Enabled Guarantee, FlexHEG, mechanism that is implemented alongside the AI
chip (Petrie et al., 2024). FlexHEGs are primarily discussed in a future section, and their application
to location verification is narrow. One specific implementation of a FlexHEG mechanism involves a
secure processor that is mutually trusted to carry out location attestation and a tamper-proof
enclosure that encompasses the main AI accelerator and the secure processor: efforts to tamper
with the location attestation mechanism or extract its private key would result in, e.g., the AI chip
self-destructing. This particular mechanism could be applied to chips at any point in their lifecycle
(e.g., at data centers or after chip fabrication but before shipping to data centers), but it requires
temporary physical access to chips. The implementation time for this type of chip-adjacent
location attestation is faster than for creating new AI accelerators—perhaps one to two years for
development and a year for mass production and retrofitting existing chips. Implementation is
faster because the secure processor could be much less performant than cutting-edge AI chips
(i.e., many more could be produced quickly, and the chip can be simpler and more secure), and
this mechanism could be applied to chips after fabrication (i.e., it is not delayed by production-time
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bottlenecks). On the other hand, approaches that require fabricating new AI accelerators will
necessarily have the downside of taking over a year to saturate the compute stock (i.e., replace
existing chips as a large fraction of compute) (Heim, 2024a). Approaches that involve fabricating
new AI chips can utilize bottlenecks in the chip supply chain to ensure all new chips have these
mechanisms applied, whereas retrofitting depends on being able to locate existing chips, e.g., via a
combination of self-reporting, intelligence operations, and whistleblowers, which is likely less
reliable. As with standard on-chip approaches, one difficulty with FlexHEG mechanisms is trusting
that other parties have not backdoored the implementation, in this case of tamper-proof enclosures
or the secure processor, in a way that allows private key extraction.

While on-chip mechanisms (including FlexHEGs) can be used for location verification, this is not
their primary use. Rather, as discussed previously (Aarne et al., 2024; Kulp et al., 2024; Petrie et
al., 2024), they could be designed to enable other forms of governance, such as having an
operating license issued by an international regulator; we discuss these in the next section. In such
a case, locating these chips may not be necessary because they can be governed remotely.

Analysis
Whether location verification takes place via low-tech or high-tech methods, securing the AI chip
supply chain will be crucial. For low-tech approaches, it will be necessary to track chips from their
manufacturing (i.e., fabrication, if this remains a tight bottleneck) throughout their life cycle,
ensuring chips are not smuggled. For high-tech approaches, it will be necessary to ensure the
correct on-chip mechanisms are applied and that chips are sufficiently tamper-proofed. By default,
there is a concern that state actors may try to subvert governance mechanisms during chip
production, e.g., by implementing a backdoor. Securing the chip supply chain to prevent these
subversions will likely involve the registration of key production facilities, the use of various methods
to track chip production, physical inspections and continuous monitoring of fabrication facilities,
and multilateral export controls on chip production equipment to make this monitoring easier by
reducing the number of necessary countries. It could also require mutual evaluation of chip designs
and testing of fabricated chips to ensure they have whatever on-chip mechanisms are mandated
by the agreement.

Meeting this policy goal likely requires that the international community treat AI chips with a
seriousness similar to nuclear materials—these are resources that pose an incredible danger in the
wrong hands, and tracking them is of utmost importance. When lost or stolen, AI chips will likely be
difficult to find due to them being hard to distinguish from other computers (from a distance) and
lacking notable physical attributes. Attempting to detect secret data centers may help but is
unlikely to be the load-bearing part of a verification regime: it will likely be too easy to hide AI
compute among other compute or construct secret data centers, though whistleblowers could
enable detection in such a scenario. If the amount of compute that must be monitored is very high,

Mechanisms to Verify International Agreements About AI Development | 17



e.g., data centers with >50,000 AI chips, detecting data centers may be effective, but this
approach is less robust than focusing on chips; we discuss this more in the appendix.

Generally speaking, a multi-pronged approach will be most effective. Locating compute should
involve using national intelligence operations to detect data centers that might house AI compute,
physically inspecting AI data centers, implementing continuous monitoring of AI chips (e.g., security
cameras), and investing in higher-tech on-chip mechanisms that could allow robust location
verification with less access (or the implementation of governance mechanisms on a chip without
knowing that chip’s location). It should also involve centralizing and monitoring the chip supply
chain in order to reduce the likelihood of secret AI development projects occurring.

While decentralized access to AI compute is often considered desirable, an international verification
regime would likely benefit from compute being physically centralized, both nationally and
internationally. The case for international compute centralization is fairly straightforward: if fewer
countries have the computing capacity to do activities that are prohibited by an international
agreement (such as training frontier AI models), fewer countries are necessary for successful
coordination to regulate such AI activities. Domestic compute centralization likely makes verification
easier by decreasing the number of physical facilities that need to reach the requisite level of
monitoring and security. In both cases, the usefulness of centralizing compute is primarily about
where AI chips are located, rather than who owns them or uses them. Generally speaking,
compute can be made democratically accessible while still being physically centralized, as is the
case for cloud compute providers (Heim et al., 2024). Such centralization would make verification
easier in both the international and domestic case.

Building Blocks Preview
13/37 rows displayed. See appendix for complete table and explanation of feasibility estimates.

Building Block Mechanism Details

Chip ownership
and location
registry

Chip ownership
and location
registry

AI chip owners / data center operators must register the chips they
own, and where those chips are located, with a central regulator.
Chip sales require updating the registry with the new owner and
location.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Jones (2024); Shavit (2023); Baker
(2023); Fist & Grunewald (2023)
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Flexible
Hardware-
Enabled
Guarantee
(FlexHEG)
mechanisms

Tamper-
evident chips

Includes: video surveillance, tamper-evident seals or packaging on
chips, and potentially remote attestation. Helps detect violators but
does not on its own prevent tampering—needs to be paired with
enforcement.

Feasibility Previous work (non-comprehensive)

1–5 yearsHigh Aarne et al. (2024); TamperSec (n.d.)

Notes
Some approaches here require replacing AI chips, but some may be
applied to existing chips (with temporary physical access) or at the data
center level.

Chip location
tracking

Ping-based
location
tracking

Set up a series of servers that ping chips and triangulate chip
location based on response time to different servers. This is
relatively low precision.

Feasibility Previous work (non-comprehensive)

2–4 yearsHigh Aarne et al. (2024); Brass & Aarne
(2024)

Notes
May not require replacing hardware. The main security requirement is chips
having a private key, however, it is unclear if current chips are secure
against physical attacks to extract such a key, as would be needed here.
May require chips to be connected to the internet.

National
intelligence
operations

Satellites
(visual)

Satellite imagery may be used to detect the construction of data
centers, fabs, and power infrastructure.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Wasil, Reed, et al. (2024); Pilz & Heim
(2024)

Notes
Satellite information is unlikely to differentiate AI vs. non-AI data centers. It
also may struggle to differentiate data centers from other industrial

buildings (cooling may be a key differentiator).
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Tracking of
relevant
personnel

There are hundreds to thousands of experts who have the
knowledge and skills to contribute to frontier AI development, chip
design, or chip fabrication. Building state-of-the-art domestic chip
production would be very difficult without these people. Various
measures could be used to confirm that these people are not
contributing to covert national projects in violation of an international
agreement.

Feasibility

<1 yearHigh

Security AI data centers
are secure
against chip
theft

Data center operators and their countries collaborate to boost data
center security. Ideally, this would prevent the theft of model
weights and algorithmic secrets, but preventing the theft of physical
chips is the focus of this section and is probably much easier
(current security may be sufficient if done with international
collaboration).

Feasibility

<1 yearHigh

Physical
inspection of data
centers

Verify chip
identity and
count

Use unique chip identifiers to ensure the right chips are present;
count to make sure all are accounted for.

Feasibility

<1 yearHigh
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Continuous
monitoring of AI
data centers

Perimeter and
portal
continuous
monitoring

Materials coming in and out of data centers (especially AI chips)
flow through portals, which are jointly monitored to avoid chip theft.
Existing physical security measures such as fencing and cameras
are likely to be sufficient if they can be jointly monitored.

Feasibility Previous work (non-comprehensive)

<2 yearHigh START: Annex to Protocol on
Inspection and Continuous Monitoring
Activities (n.d.)

Notes
It may also be desirable for network traffic in and out of data centers to be
jointly monitored (this can reduce the risk of model weights being
improperly moved), but that is out of scope for this section.

Security
cameras inside
data centers

This is standard (Google Cloud Tech, 2020) but would involve giving
international inspectors access or (more likely) having international
inspectors install their own cameras. The primary goal of security
cameras in data centers for verification is to ensure chips are not
being removed, added, or modified to bypass governance
mechanisms, so cameras should focus on chips.

Feasibility

<1 yearHigh

Notes
Cameras might confirm that unauthorized chips aren’t being substituted
into a data center, that interconnect limits aren’t being changed, or that
chips are not being tampered with.

Register chip
production

Supply chain
registry

Key parts of the chip supply chain must register their production
facilities with a central verifier. This should likely be based on a
thorough assessment of the current bottlenecks and crucial actors
for chip production.

Feasibility

<1 yearHigh
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Tracking chip
production

Chain-of-
custody

Chain-of-custody (CISA, n.d.) is implemented for the AI chip supply
chain: firms document the transfer and storage of components
along the chip supply chain.

Feasibility

1-3 yearsMedium

Physical
inspection of fabs

Physical
inspection and
continuous
monitoring of
fabs

Check that chip production facilities are implementing the
agreed-upon on-chip measures, have the manufacturing capacity
claimed, and are not doing unauthorized production or distribution.
Includes human inspectors, cameras, interviews with employees,
etc.

Feasibility

<1 yearHigh

Notes
Includes inventory audits.

Multilateral export
controls

Multilateral
export controls

Members of the international agreement have a shared list of export
controlled countries for AI chips and major components, in effect
requiring a license from an international authority.

Feasibility

<2 yearHigh

Notes
These rules could be “disallow” or “allow” based, depending on risk.
Countries might agree to reduce the proliferation of AI chips via shared
export controls. It appears difficult to make such agreements robust to a
country later deciding to break such an agreement.
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Verifying That Known Compute is Not Being
Used for a Large Training Run

Why This Policy Goal is Included
This policy goal is included because it allows for a clear decomposition of the space of verification
mechanisms, the size of a pre-training run is sometimes a proxy for risk from AI systems, and it is a
major focus in AI governance research and policy. While this report focuses on pre-training, it may
be necessary in the future for international coordination to focus on inference or post-training.

Ideally, international coordination should aim to restrict dangerous AI development and deployment
(i.e., dangerous pre-training, post-training, and inference). However, humanity’s limited
understanding of the dangers from advanced AI systems makes discussing this goal somewhat
intractable, so we presently discuss the policy goal of restricting large (pre-)training runs. This is
identical to restricting training runs that exceed some compute threshold—compute thresholds are
used in various AI regulations (EU AI Act, 2024; Executive Order 14110, 2023). The size of a
training run is currently a proxy for danger (Heim & Koessler, 2024), but this is unlikely to
remain a sufficient proxy in the future. On the one hand, large training runs may eventually be
safe when accompanied by a safety case or other strong argument for their safety. On the other
hand, substantial danger will likely originate from post-training or inference on already-trained
models, and algorithmic progress will likely allow dangerous training runs to occur with increasingly
smaller amounts of compute.

During an intelligence explosion (rapid, AI-driven, AI progress), international relations are likely to be
strained, and restricting the size of AI training runs may slow a dangerous international AI race,
permitting more focus on safety. Compared to more detailed policy objectives—such as all frontier
AI development following a safety case (Clymer et al., 2024), which we discuss briefly in the
appendix—restricting large training runs could be more politically and technologically tractable,
even in a low-trust setting. Restricting large training runs is an imprecise approach to AI risk
reduction, but it may provide marginal safety improvements in high-stakes scenarios. Crucially, for
the sake of this report, the verification mechanisms discussed in this section will apply to numerous
other policy goals.

Key Takeaways
The principal ways to show that some compute is not being used for a large training run are to
show that it is either incapable, or that it is not (based on classifying a large enough share of the
chip-hours as not part of a large training run).
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● Data center operators could engage in “compute accounting” (Baker et al., Forthcoming),
demonstrating that a sufficiently large portion of the available chip-hours are not being used
in a large training run; this will include some form of registry where data center operators
keep track of the workloads running.

● An important mechanism discussed previously is partial workload re-running (Choi et al.,
2023; Jia et al., 2021; Shavit, 2023; Baker et al., Forthcoming), where a mutually trusted
data center is used to confirm that a declared workload actually occurred.

● One promising approach to verifying that some compute is not being used for a large
training run is to construct small pods of chips that have restrictions on their external
interconnect bandwidth, i.e., restricting the rate of information flow in and out of the pod,
such that sharing gradients between pods is too slow for (data) parallel training. This
restriction has been discussed for newly manufactured chips (Kulp et al., 2024), but it could
also be applied with networking equipment and verified with security cameras and physical
inspections while requiring no code access (discussed in the appendix).

● Implementations of the FlexHEG design stack could monitor chip activity to ensure chips
are not participating in a large training run, and these approaches are especially desirable
because they could implement various governance operations which do not need to be
determined in advance, but technical development is needed ahead of time to make these
approaches available.

Verification Approach
In this section, the goal is to verify that some AI compute (e.g., that was located with techniques
discussed in the previous section) is not being used for some prohibited purpose. Ideally,
international regulations would specifically ban dangerous AI development and deployment.
However, this objective is currently intractable due to humanity’s poor understanding of dangers
from AI systems. Instead, we focus on the proxy objective of ensuring AI chips are not being used
for large AI training runs.

We use “data center” to refer to a physical space that houses compute and “data center operator”
to refer to some actor who has responsibility for it, though institutional details are not the focus of
this report. The approach to this policy objective includes two key components. First, exclude as
much compute as possible on the basis of it not being capable of supporting a large AI training
run. This is principally to reduce the verification cost and compliance burden for actors who are
very unlikely to contribute to risks, such as an individual with a personal computer. Second, verify
that some compute, which could be used for large AI training, is not, in fact, being used for this
purpose.
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Figure 1: A hypothetical breakdown of how different amounts of compute could be monitored
using mechanisms discussed in this section. Parentheses include what the mechanism could tell
us about some particular compute.

Excluding Compute From Further Monitoring

Compute may be excluded from further monitoring due to its incapability to be used for large
training runs, based on the number of chips and type of chips in a data center. The quantity and
types of chips in a data center can be confirmed with physical inspections and continuous
monitoring. These exclusions face one core issue: progress in the field of distributed training may
make even small AI compute clusters useful for large training runs when combined together,
complicating compute-based verification. Hopefully, in the future, AI chips could be designed to
specifically allow for certain operations while being ineffective at others, for example, chips that can
execute AI inference but are highly inefficient for AI training; current inference-specialized AI chips
are not all sufficiently limited. While the definition of “AI compute” may need to change and should
therefore be flexible, using the operationalization from current U.S. export controls (Dohmen &
Feldgoise, 2023) means most GPUs that are not intended for data center use and most CPUs
(Feldgoise et al., 2024) can be excluded.

We now turn to compute that cannot be excluded on the basis of incapability. There are a few
approaches to showing that a chip that could be useful for large training runs is not being used for
this purpose. Trivially, chips could be shut down in emergency or transitory situations, drawing no
power and thus not being useful for a violation. This is not desirable, however: AI systems could be
creating large amounts of economic value or contributing to critical services, so completely shutting
off AI compute may be very costly. Instead, we would like approaches that allow AI compute to
continue doing activities that are permitted by an international agreement but not other
activities—in this case, large AI training runs are not permitted. These approaches include partial
re-running of chip activities to confirm that some declared use of compute happened as stated,
workload classification based on high-level chip measures, classification using FlexHEGs, and
other methods.
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Partial Re-Running of Chip Activities

Data center operators could keep registries of the activities of their chips, and these registries could
be used to verify that chips were not used for a violation. In particular, the partial re-running of chip
activities protocol (Choi et al., 2023; Jia et al., 2021; Shavit, 2023) and generalizations of it (Baker
et al., Forthcoming) may be able to accomplish this goal. This approach involves a data center
operator reporting enough information about a particular workload that this workload can be
replicated in a mutually trusted data center, confirming that the workload re-run matches the
declared workload and, therefore, that the declared workload was actually how some compute
was used. Re-running is not the only implementation method available to confirm a declared
training run is correct, but we refer to these methods as re-running for simplicity. Ideally, this
protocol is zero-knowledge in that the trusted data center could report only whether the declared
workload is correct. Additionally, other properties of the workload could be confirmed in the trusted
data center, e.g., the architecture of the model used, whether particular reported evaluation results
are correct, and effectively all other information about the workload; these could still be reported in
a zero-knowledge manner, only revealing the concise answer to governance-related questions
without revealing the underlying data.

Despite this approach being zero-knowledge in principle, there could be practical security
challenges that make this difficult. The “trusted” data center needs to be mutually believed to not
leak sensitive information, which could require new AI hardware or very strict security measures.
This approach of keeping and verifying a registry of chip activities has a major downside in that it
requires code access, even if this is intended to be secure. Code in the context of AI development
is particularly sensitive, encapsulating model weights and architectures. In some of the potential
futures where international verification is needed, this information is some of the most sensitive
information a government has (i.e., akin to the location of nuclear weapons).

Workload Classification With High-Level Chip Measures

Therefore, ideally, one could verify that AI chips are not taking part in a large training run based on
just high-level information about these chips’ activities without code access. This could be
implemented alongside a registry (i.e., acting as a secondary verification of that registry) or on its
own. The primary approach here is to measure a chip’s activity with external sensors—e.g., a
chip’s power draw, within-server bandwidth, between-server bandwidth, core utilization, etc.—and
then to classify whether the chip is participating in a large training run, on this basis.

One promising approach to this classification is to impose communication limits, which restrict
chips to high communication only with a small number (e.g., 128) of other chips but low
communication with chips outside this “pod”. This is a generalization of the “fixed-sets” approach
discussed by Kulp et al. (2024). Crucially, this approach could be implemented by using specialized
networking equipment, physical inspections, and security cameras, but not requiring access to
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code or the manufacturing of new AI chips. A data center operator would claim that a pod of chips
is not participating in a large training run because it does not have sufficient bandwidth with the
rest of the world, and the pod could still be used for inference or various other uses. If international
verification is needed soon, this may be one of the most effective mechanisms to verify that some
compute is not being used in a large training run, given its feasibility with existing technology,
limited access requirements, and relative robustness. Interconnect bandwidth limits have a number
of downsides. For example, they may not be robust to shifts in AI development practices, and the
relevant limits could be strict enough that they impose costs on permitted AI activity (e.g., only
permitting text inference but not inference with bandwidth-heavy modalities such as images or
videos). We discuss details of this approach in the appendix.

Various other methods could, speculatively, distinguish training and inference with just high-level
information about chip activity (e.g., power draw, bandwidth utilization, numerical precision of
computations). Many of these methods appear easily spoofable given the present threat model,
e.g., by making training 20% slower in order to look like inference, within the budget of relevant
actors. However, they could be made robust if they are paired with temporary code access.
Specifically, an inspector could take measurements of some chips’ power draw while reviewing
code to ensure the chips are conducting inference, and this creates a baseline, or signature, of the
chip’s power draw while conducting an approved activity (in this case, inference on a specific
model). Later, the inspector would only monitor the power draw to ensure it is sufficiently close to
the baseline.

Workload Classification With FlexHEG Mechanisms

Workload classification could also take place via AI chips either reporting on their activities or
having their activities restricted. Flexible Hardware-Enabled Guarantee, FlexHEG, refers to a design
stack for AI chips that can securely implement a variety of governance functions, such as
monitoring or restricting chip activities (Petrie et al., 2024). Work on FlexHEG mechanisms is in its
early stages, so specific implementation details have not yet been determined. Similar ideas have
also been referred to as “on-chip governance mechanisms” (Aarne et al., 2024) or
“hardware-enabled governance mechanisms, HEMs” (Kulp et al., 2024); these concepts are
somewhat overlapping, so we refer to “FlexHEG” for simplicity and to gesture at the
implementations most relevant to verification of chip activities.

One specific implementation worth discussing is “chip-adjacent” FlexHEGs. A chip-adjacent
FlexHEG implementation would involve designing and building a secure process that sits next to an
AI chip, both in a tamper-proof enclosure—e.g., a high-tech box encompassing a GPU or server,
with an additional computer inside, and the box destroys the GPU if tampered with. Both the
second processor and the enclosure must be mutually trusted, e.g., all relevant parties believe the
mechanisms have not had security vulnerabilities inserted in them. The role of the secure processor
is to implement various governance functions, which could include monitoring what operations are
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happening on a chip, monitoring the total number of operations happening on a chip, restricting
chip activities, logging the contents of the chip’s memory to compare with declared registries,
controlling what other chips this chip interacts with via encrypting communication, and more. The
secure processor needs to interact with the AI chip to various degrees in order to perform the
governance functions desired; successful FlexHEG implementations would be sufficiently flexible
that the governance functions carried out could be modified over time by an international authority.
The role of the tamper-proof enclosure is to make interference with these governance functions
extremely difficult (e.g., interference would result in a chip self-destructing).

This chip-adjacent implementation is particularly promising in the near term because designing a
mutually trusted secure processor that carries out governance operations is likely much easier than
redesigning all high-performance AI chips themselves to the same degree of security and mutual
trust. In the longer run (e.g., 3-5 years), designing AI chips themselves to have the requisite
security—FlexHEGs implemented directly on-chip—is likely desirable as it could be more secure;
as mentioned, FlexHEG is a general design stack that is implementation agnostic.

Previous work has discussed “on-chip” or “hardware-enabled” governance mechanisms, which
sometimes serve a similar purpose to FlexHEGs (Aarne et al., 2024; Kulp et al., 2024), and for
simplicity, we refer to these under the umbrella of FlexHEGs because they usually have similar
security requirements. A key feature of FlexHEGs is that, if they are well designed, the range of
governance functions enabled can be quite broad and remotely updatable by an international
authority. Here, we discuss how FlexHEGs could be applied to workload classification.

Existing proposals (Aarne et al., 2024; Kulp et al., 2024; Petrie et al., 2024) are mainly technical
approaches for how to implement chip monitoring or restricting. However, for their application to
workload classification, it is also crucial to determine on what basis chip activities would be
restricted or flagged by monitoring, especially given our assumption of well-resourced adversaries
who may attempt to disguise workloads. FlexHEG mechanisms could implement classification of
workloads based on high-level chip information (as in the external sensor case), specific
mathematical operations used (e.g., an “allow” or “disallow” list of chip operations), outsourcing this
classification to inspectors, checking measured chip activity (e.g., chip memory snapshots) against
declared chip activity registries, or something else. These different approaches to classification
likely differ substantially in their ease of implementation and robustness, and more work is needed
to prioritize among them.

FlexHEG approaches are malleable and could implement different restrictions over time, especially
via mechanisms such as offline licensing (Aarne et al., 2024; Kulp et al., 2024) or workload
approval. Offline licensing could operate similarly to general software licensing, where a regulator
issues an AI chip a license for some period of time or amount of compute and renews the license if
some governance-related criteria are met (e.g., the snapshots from the chip’s memory match those
expected from the declared registry of chip activity). Workload approval would be much more
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fine-grained, where each workload submitted to chips requires sign-off from a regulator.
Fundamentally, these approaches rely on strong security around a general processor carrying out
governance operations—whether it be the AI accelerator itself or a chip-adjacent auxiliary
processor. The R&D time for these mechanisms is multiple years, perhaps only a couple in the
case of chip-adjacent FlexHEGs, as they do not require designing and fabricating new
cutting-edge AI chips.

FlexHEG mechanisms are especially promising because, if they are implemented well, they would
not require that compute be located in order to be governed. Locating compute is necessary if AI
chips are insecure and could likely be modified to bypass governance mechanisms (thus, physical
inspections and security cameras can confirm this modification is not happening), but
tamper-proofing, as part of the FlexHEG stack, would include chips being hardened against such
attacks. Therefore, chips could be trusted to carry out verification operations without their location
being known, and if the FlexHEG implementation is sufficiently flexible, these governance
operations could change over time.

Other Workload Classification

Trivially, inspectors could be granted access to large amounts of code, which would enable them to
classify workloads as permitted or not permitted. That is, one way to verify that some AI chips are
not being used for a large training run is to read the code being run on them. While this carries
privacy and security concerns, it does not require significant R&D the way FlexHEG approaches
do: this presents a case where access can trade off against the technological maturity of
verification mechanisms.

AI chips are sometimes used for non-AI activities. Fortunately, many of the methods that could be
used to differentiate between AI workloads can also differentiate AI and non-AI workloads, such as
re-running chip activities, inspectors reviewing code, or classifying chip activity with high-level chip
measures. For verifying particular non-AI activities, such as cryptocurrency mining, Proof-of-Work
approaches could be used. In the future, it may be possible to develop Proof-of-Work-style
approaches for other workloads (ideally including AI workloads, as partial re-running attempts to
do), which could be used to verify that compute was used for some declared purpose.

Compute Accounting

At its core, distinguishing large training runs from other AI workloads at the chip level is a difficult
problem because both consist of basic arithmetic operations. The general approach to verifying
that some compute (i.e., some number of chips for some time), which could be used for a violation,
is not being used for a violation is to classify a significant portion of chip time as non-violations. This
could include a combination of the above methods, e.g., partial re-running of certain workloads to
confirm they were correctly reported and classifying workloads on the basis of either high-level chip
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measures or aspects of the code they are running. Some of these approaches include an
affirmative claim that chips were doing some specific other thing (e.g., for partial re-running of
declared workloads), and some are negative claims (e.g., interconnect limits mean some chips
could not be participating in a large training run).

The key argument a data center operator would make in compute accounting is that there are not
enough unverified chip operations (or hours, depending on the implementation) remaining to carry
out a violation. This is often a non-trivial argument—especially for affirmative claims—and
forthcoming work from Baker and colleagues makes progress on it. For example, chips often do
redundant operations during training (“recomputation”) in order to save on memory, leading the
number of operations actually performed by a chip to exceed the quantity required by the
workload, a gap that could potentially be exploited to do illicit computation. Fortunately, negative
claims may not have this issue: if a pod of chips has interconnect limits placed on them, it is
infeasible for them to be acting as part of a larger, parallel training run, regardless of the efficiency
or completeness of declared workloads. Figure 1 gives an example of how an AI developer might
demonstrate that they are not violating an agreement by piecing together different methods for
verifying that compute is not being used for a large training workload.

Analysis
Verifying that chips are not being used for large training runs presents significant challenges. For
instance, an adversary could split a large training workload across multiple smaller, seemingly
innocuous data centers, or state-level adversaries controlling data centers might obscure the
distinctions between training and inference, complicating detection. While granting inspectors
greater access could mitigate these risks, such access introduces privacy and security concerns.
Moreover, the verification mechanisms in this section are primarily being ideated and designed in
today’s threat landscape, so they are unlikely to be robust to subversion attempts from highly
capable (i.e., superintelligent) AI systems.

An ideal verification regime might exclude data centers incapable of supporting large-scale training,
but this is difficult due to algorithmic progress, which makes smaller amounts of compute
increasingly capable, and distributed training, which allows multiple small amounts of compute to
be combined for large workloads. As a result, thresholds for exclusion must be sensitive to rapid
advances in efficiency and distributed training capabilities, and conservative thresholds may be
necessary.

One way to frame the goal in this section is that we would like to demonstrate that some AI chips
are not being used in a large training run while revealing minimal information about what these
chips are doing (in particular, not leaking sensitive model weights or code), and this approach
needs to be robust to highly competent adversaries. Partial re-running of chip activities and
FlexHEG-based approaches could both serve this purpose. However, they are not yet
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technologically mature and they could pose security risks due to the amount of access they
require—they are zero-knowledge in principle, but obtaining the high degree of security needed in
practice could be difficult. Workload classification based on high-level chip measures would be
desirable because it does not require very much access, but it may be spoofable with relatively
small performance penalties. Interconnect bandwidth requirements appear promising for permitting
AI inference while blocking large AI training runs, they seem less spoofable than other high-level
chip measures, and they could likely be implemented with existing technology, but this approach
has numerous drawbacks.

Other minimal-access methods to verify compute use may exist, but this area is underexplored,
and further research is needed to develop effective methods. We emphasize that, given likely
advancements in distributed training, it may be difficult to exclude small AI data centers (e.g.,
hundreds or low-thousands of AI chips) from further monitoring. Excluding such data centers, if
possible, is highly desirable for bringing down the burden of compliance and the difficulty of
verification. Therefore, developing better methods to verify compute use, ideally with
minimal-access and existing technology, is a key area for further research.

Some of the mechanisms in this section would be implemented in a way that is highly specific to
the current AI development paradigm of transformer-based large language models and
pre-training: inference-only chips, workload classification with high-level chip information (including
interconnect bandwidth limits), and some implementations of FlexHEG-based workload
classification. On the other hand, some approaches appear more paradigm-invariant, requiring
changes to implementation details but very likely remaining relevant under paradigm shifts: partial
workload re-running, the general FlexHEG approach, and using inspectors with code access.

While it is not the focus of this section, it is worth discussing how these mechanisms can affect the
verification of other policy goals. For instance, it may be desirable to verify particular properties of
the models being developed by a country, such as the data or architectures being used. In the
appendix, we briefly discuss one such policy goal, verifying that a declared safety case is followed.
The mechanisms in this section vary in the granularity of information they provide about AI
activities, affecting their usefulness for these other policy goals. High-level chip measures are
unlikely to be helpful here. Partial re-running of workloads and code-based analysis, e.g., via
FlexHEGs, are likely effective here as they allow access to the code being run in a zero-knowledge
manner. These more effective mechanisms rely on strong security and have development times of
at least 2 years, so work on them should begin early.

Building Blocks Preview
11/34 rows displayed. See appendix for complete table and explanation of feasibility estimates.
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Building Block Mechanism Details

Inference-only
chips

Inference-only
manufacturing

Some AI chips could be manufactured to be especially efficient at
inference while not being optimized for training, e.g., Groq, AWS
Inferentia, Sohu. Further work may be needed to make such chips
sufficiently inefficient for training.

Feasibility

1–4 yearsMedium

Notes
Some current inference-specialized chips could likely be repurposed for
training without significant effort, e.g., as is done in a blog post about AWS
Inferentia (Rand, 2023). Therefore, for them to be a credible sign that no
large training runs are happening, future chips would have to be designed
to be particularly inefficient for training. Some existing inference-specialized
chips may be sufficiently incapable of being useful for training, e.g.,
because they use inflexible ordering of operations. On the other hand,
approaches here will need to contend with substantial effort going into
overcoming these limitations.

Emergency chip
shutdown

Unplug the data
center from its
primary and
backup power
supply

Trivially, a data center operator can claim that its chips are not being
used in a large training run if they are not receiving the power
needed to operate. This can likely be verified with less invasive
methods such as power draw of the data center and knowledge
about on-site (e.g., backup) power generation or potentially thermal
imaging.

Feasibility

<1 yearHigh

Notes
It would impose negative externalities to unplug an entire data center if
there is important non-AI compute in the data center, hence the
importance of avoiding co-location.
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Chip use
registries

Registry of
training
transcripts

Data center operators keep a detailed registry of how chips are
used. This includes training transcripts that detail model weight
checkpoints and everything necessary to replicate a training run
(data, hyperparameters, random seed, etc.).

Feasibility Previous work (non-comprehensive)

<1 yearHigh Shavit (2023)

Notes
This registry is highly private and likely should only be used in
zero-knowledge ways, such as being encrypted except for use on a
mutually trusted data center. This registry could be implemented at the
data center layer, but it would benefit from individual chips reporting on
their activities.

Partial re-running
of chip activities

Partial
re-running
description

A data center operator can claim its compute was used for a
training run, and this claim can be verified by an external party with
much less compute by re-running small segments of the full training
run to see if they match the declared run. This requires checkpoints
and hyperparameters provided in a registry of chip activity. This
re-running happens in a zero-knowledge way in a mutually trusted
data center where the chance of sensitive information leaking is low.
There may be other approaches to verify a given transcript other
than partial re-running, such as those explored by Choi et al. (2023).

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Shavit (2023); Choi et al. (2023); Baker
et al. (Forthcoming)

Notes
Partial re-running enables verification of practically all properties of a training
run: model architecture, hyperparameters, data, etc., because the data
center operator provides this entire training transcript to a mutually trusted
data center for verification.
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Mechanisms for
chip limiting,
monitoring, or
workload
classification

FlexHEGs Discussed previously. In addition to the FlexHEG design discussed
above, in this section, it is crucial that FlexHEGs have some insight
into what a chip is doing. For example, this could look like
intercepting the communications this chip makes to other chips and
encrypting them (where only specific chips can decrypt them), a
way to implement interconnect bandwidth restrictions. This could
also include the secure processor viewing the chip’s operations and
ensuring they do not violate some criteria. Because a FlexHEG
design uses a general processor, many verification approaches
could be pursued with such a mechanism.

Feasibility Previous work (non-comprehensive)

2–5 yearsMedium Petrie et al. (2024)

Notes
Requires mass production of new hardware; depending on the
implementation, it may require either new AI chips, auxiliary chips with
secure enclosures, or something else.

Allow list
operation stack

An international authority could certify certain operations at the level
of “Inference on the Llama 70B model on a DGX H100 server” and
issue the specific GPU-level code for such use cases. AI chips
would be restricted to only run code approved by this authority. This
could be implemented with a FlexHEG mechanism.

Feasibility

2–5 yearsMedium

Mechanisms to Verify International Agreements About AI Development | 34



Speculative
differences
between training
and inference
with high-level
chip measures

Inter-chip
interconnect
limits (network
bandwidth
between
servers)

Large-scale AI training involves linking thousands of chips with
high-bandwidth interconnect. Efficient inference, meanwhile, can be
done with dozens to low-hundreds of highly connected chips.
Between different “pods” of well-connected chips, the
communication requirements are very low for inference (tokens)
compared to the activations or gradients that are transferred in
other forms of parallelism—this gap is the target of interconnect
bandwidth limits.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Discussed below; Kulp et al. (2024);
Heim et al. (2024)

Notes
The main distinction here is that inference does not use data
parallelism: different batches of data being processed do not need to be
closely linked together at all, whereas for training this is needed to share
gradients. Advances in distributed training may make this approach
ineffective. With well-designed limits and enhanced security, this could be
difficult to spoof.
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Chip utilization
rates, core
utilization rates

Chip utilization, specifically Hardware FLOP Utilization (HFU), is a
measure of the actual amount of computations performed by a chip
relative to its theoretical maximum. Training and inference often
differ along this metric. Current inference for LLMs involves two
stages (Verma & Vaidya, 2023): “prefilling” (computing the KV cache
on input tokens) and “decoding” (generating additional
tokens)—these stages may have distinct effects on power
consumption because decoding is more limited by memory
bandwidth while prefilling is more limited by computational
performance (i.e., utilization and power draw are higher during
prefilling). Therefore, inference could have distinct fluctuations in
utilization.

Feasibility Previous work (non-comprehensive)

<1 yearMedium Heim et al. (2024); Baker et al.
(Forthcoming)

Notes
Recently, it has become popular to report Model FLOP Utilization (MFU), a
measure of the obtained throughput relative to theoretical max throughput
(Chowdhery et al., 2022). MFU calculations are based on the number of
tokens processed, so this requires more access than just high-level chip
information. On the other hand, HFU is more easily measurable and thus
more relevant to the present use case (but for other use cases, such as
accurately estimating the model-FLOP size of a workload, this difference is
very important). Classification on this basis is likely spoofable with medium
cost penalties (e.g., a 20% cost increase via making training less efficient,
which is in the budget of the relevant actors).
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Signatures of
high-level chip
measures

Signatures of
high-level chip
measures

High-level information about chip activities (e.g., power draw,
numerical precision, network activity, etc.) is likely spoofable in the
default setting where one country is trying to classify the workloads
of another country’s data center with limited access. However, this
approach can be made more robust by using high-quality, labeled
data from the monitored data center to improve this classification
approach. The monitored data center operator would run their most
common, internationally approved/permitted workloads (e.g.,
inference of their popular models) while an inspector has code
access to confirm this is happening. The inspector takes readings
for high-level chip measures (e.g., power draw, network activity).
The inspector can then create a classifier based on this data (e.g.,
train an ML classifier), which can be applied to high-level chip
measures in the future (code access is no longer needed if the
high-level chip measures match that of approved activities). If the
measurements deviate significantly from their expected patterns or if
the common workloads change significantly, the inspector can
review the code again. The key insight compared to naively trying to
classify workloads is that temporary code access can provide
high-quality labeled data from the production system, and the data
center operator can be expected to keep its chip activities
sufficiently close to these baselines, versus classifiers needing to
deal with massive distribution shift in an adversarial environment (if
code access is never provided, software stacks and model
architectures may differ substantially, and even the AI chips
themselves may be different from the classifier’s training data).

Feasibility Previous work (non-comprehensive)

<2 yearHigh See below

Notes
It is unclear how consistent these signatures will be over time, but previous
results attempting to classify chip activities with high-level information have
been effective (Copos & Peisert, 2020; Karimi et al., 2024; Köhler et al.,
2021). This approach requires granting temporary code access (including
whenever major changes are applied to chip activities), which could pose
privacy and security risks. This temporary access could be acceptable if a
neutral party or zero-knowledge approach is used (e.g., inspectors who live
onsite and have limited communication with their home country). It could
also be difficult for inspectors to be confident they are seeing the true code
being run.
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Proof-of-Work
methods

Proof-of-Work
methods for
crypto mining

Cryptocurrency mining uses “Proof-of-Work” schemes, which
provide confidence that some declared operations have taken
place. For example, a standard implementation is for workers to
hash variants of the same message until one of the resulting hashes
matches some criteria (e.g., many leading zeros in the hash). It can
be quickly verified that the message variant used produces such a
hash. The acceptance criteria (e.g., number of leading zeros) can
be varied to control the likelihood of an input message producing an
acceptable hash and, thus, the amount of original work confirmed
by each presentation of an acceptable hash. Applying
Proof-of-Work could verify that compute declared to be doing
crypto mining is indeed doing it.

Feasibility

<1 yearHigh

Compute
accounting

Compute
accounting

Data center operators can demonstrate that their AI chips are not
being used for a large training run by showing that they are being
used for other things, as accomplished through partial re-running of
chip activities and other workload classification. By summing
declared and verified compute use and comparing it to total
potential compute use, they can show that there is not enough
compute left over for a violation. One difficulty here is that the
quantity of declared chip uses may not correspond to the actual
chip use. For example, chips often do redundant operations during
training (“recomputation”) in order to save on memory, so a data
center operator might claim to have done a training run with 10^25
FLOP, but the chips actually did 1.5*10^25 FLOP because they did
substantial recomputing. Forthcoming work from Baker and
colleagues makes progress on this.

Feasibility Previous work (non-comprehensive)

<1 yearMedium Heim et al. (2024); Baker et al.
(Forthcoming)
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Verifying the Authenticity of Model
Evaluations

Why This Policy Goal is Included
Evaluations of AI systems, by their developers or external parties, have numerous use cases. They
play a key role in if-then commitments, which AI developers are currently using to make
development and deployment decisions (Karnofsky, 2024). They have received substantial
attention as a governance node and will likely be part of future AI regulations (EU AI Act, 2024;
Executive Order 14110, 2023; “IDAIS-Venice,” 2024). In an international AI race context,
evaluations of another country’s AI systems could reduce race dynamics by building trust that all
parties are following agreements to move slowly; they are a more direct measure of AI capabilities
progress than compute thresholds (see Story 1 in the appendix for motivation). Due to the broad
interest in model evaluations and their numerous use cases, this section focuses on verifying that
model evaluations are conducted properly.

Key Takeaways
● Methods to make external evaluations technically secure, such as having evaluations and

deployment both occur in a Trusted Execution Environment and ensuring the model
weights and code match, are nearly solved in theory for basic evaluations, but existing
hardware may not be sufficiently secure to enable these methods for international
verification.

● Substantial progress is still needed in the science of evaluations due to difficulties in
knowing what to evaluate, building evaluations, and eliciting a model’s full capabilities.

Verification Approach
There are a few key criteria that must be met to carry out authentic, secure, and effective model
evaluation in the international agreement scenario; we mainly discuss authenticity and security.
First, there needs to be confidence that the model being evaluated is the model of interest (e.g., the
same model that is deployed in some environment or that is trained in a declared training run).
Second, the developer and the evaluator need to protect their sensitive information (e.g., the model
weights and evaluation prompts). Third, evaluations need to be effective at measuring the desired
model property. There are at least a couple of viable technical approaches to achieving the first two
of these criteria.
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Evaluations could happen in a Trusted Execution Environment (TEE), where mutually verified
evaluation code is run, and the inference code is certified to match the code used in deployment or
training. The use of a TEE can reduce the risk of sensitive information leaking (though current
hardware may not be sufficiently secure to provide guarantees). Additionally, a TEE can facilitate
confirming that the model evaluated is the same model that was trained or deployed, specifically by
hashing the computation done in the TEE (i.e., the model code and weights), signing it with a
chip’s private key, and allowing an outside inspector to compare the hashes between two
scenarios where they want to ensure the same model was run. Note that this does not require a
TEE; it is instead a general technique, but it is unlikely to be secure without TEE-type security. This
approach is mostly solved in principle, but there are some remaining implementation challenges
(Trask & Bejan, 2024, 48:45). TEEs on NVIDIA H100s (called “Confidential Computing”) currently
only work on single-GPU setups (NVIDIA Trusted Computing Solutions Release Notes, n.d.).
Existing chips may additionally have security vulnerabilities that make this approach insecure
against the well-resourced adversaries in our threat model (e.g., leading to evaluation data being
stolen). NVIDIA’s Confidential Computing is not designed to be secure against advanced physical
threats (Nertney, 2023), and more importantly, current AI chips have not undergone the high
degree of real-world testing necessary to be confident about their security.

Another approach to confirm that the same model is being evaluated as the one developed or
deployed is if AI developers use cryptographically secure audit trails (i.e., version control) to track
changes to their models. The actual implementation of this approach may also make use of TEEs.
While the basic TEE approach is answering the question “Is model 𝑋 the same as model 𝑌?,” more
complex audit trails could answer questions such as “Is model 𝑋 a derivative of model 𝑌 with only a
small number of changes?” This fine-grained analysis may be useful given the current status quo,
where AI developers often modify their models between the version external pre-deployment
evaluators have access to and the version released to customers (OpenAI, 2024a). If it is infeasible
to do away with such a practice, it may be practical to bound the amount that a model changes
before widespread deployment via cryptographically secure audit trails. Audit trails and version
controls have precedent in other software development, and there are some attempts to apply
them to AI development (Millet, 2024), but there are remaining problems in making them sufficiently
secure for the present use case, such as ensuring the integrity of the entire hardware, firmware,
and software stack.

There are a couple of other potential approaches to secure evaluations. Evaluations could take
place in a mutually trusted data center (where both parties think it is very unlikely sensitive data will
be leaked); however, it may be difficult to ensure that the model being evaluated is the correct
model. Partial re-running of AI workloads can also be leveraged to confirm that self-reported model
evaluations were done correctly, with a verifier repeating some of them and ensuring the same
results are achieved. If the model of interest is available to external evaluators during deployment,
e.g., via an inference API, evaluators can redo evaluations to check if a model performs sufficiently
similar to the model tested earlier, gaining confidence that they are the same model. If there are
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significant concerns about the security of hardware, inspectors with code access could also carry
out evaluations alongside the main AI developers, however, this poses privacy and security risks.

Besides making evaluations secure, it’s also crucial that they are effective—actually measuring
what they are meant to measure. This problem is not specific to verification, but substantial
progress in the science of evaluations is likely needed before evaluations can give strong
guarantees in an international verification context. Existing problems include: Evaluators may not be
able to elicit the highest level of capability that could occur in deployment, e.g., due to lack of
evaluation resources or access (Casper et al., 2024; METR, 2024), undiscovered capability
elicitation techniques (Davidson et al., 2023), or either model developers or models themselves
purposefully underperforming (Greenblatt, Roger, et al., 2024; Weij et al., 2024). Evaluations may
not account for all categories of substantial model risk or may not provide sufficient coverage within
each category (Reuel et al., 2024). Some risks arise from a model’s interactions with the world and
are very difficult to evaluate ahead of time (Mukobi, 2024). There are many more limitations to
current model evaluations, and substantial progress is needed (Barnett & Thiergart, 2024; Mukobi,
2024; Reuel et al., 2024).

Beyond these standard evaluation approaches, countries can gain confidence that they have
evaluated the proper model by using national intelligence operations to determine if far more
capable models are being deployed. In particular, powerful AI systems are likely to have major
benefits if deployed in economic or military contexts, and some forms of this deployment may be
readily identifiable. However, two key uses for advanced AI systems—AI development and cyber
operations—may be difficult to detect.

Analysis
Trusted external evaluations will almost certainly require participation, but not necessarily honesty,
from the model developers. For example, an international agreement could specify that deployed
models must be run in TEEs with code to check that this is the same model that was evaluated. If
the TEEs and the hardware they are running on are sufficiently secure, such an approach could
verify the same model is used and that evaluations are performed properly without leaking sensitive
information. However, we are overall uncertain about the difficulty of subverting the verification
approaches described here on existing hardware. Currently, external evaluations rely almost entirely
on trust that AI developers are not acting adversarially. Given that the present threat model and
international verification context involve a substantial departure from this assumption, significant
changes are needed. If there are irreparable vulnerabilities in existing AI hardware, it could take
multiple years before the seemingly simple guarantees necessary for authentic model
evaluations—the correct model is evaluated, and sensitive information is not leaked—can be
achieved with high confidence.
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In lieu of secure technical mechanisms, other approaches could achieve the goals of secure
evaluations, such as inspectors with substantial code access or using cyber espionage to steal and
evaluate models. In the long-run, more technical approaches are likely desirable because they can
be designed to pose minimal security and privacy risks.

While evaluations are sometimes conceptualized as a static set of questions to which a model
generates responses, effective evaluations may require more access, such as fine-tuning or access
to model internals (Bucknall & Trager, 2023; Casper et al., 2024). In that case, lower-tech
approaches, such as using inspectors in a mutually trusted data center with strong security, may
be desirable, as they allow evaluators substantial access. TEE-based approaches could potentially
facilitate these more dynamic evaluations, but this would involve substantial complexity in
specifying what code is approved and what information evaluators would have access to.

Approaches to make evaluations secure are mostly narrowly scoped technical problems, whereas
making evaluations effective is a complex and long-term scientific endeavor. Substantial work is still
needed to make evaluations effective, for instance improving threat modeling and deciding what
model properties should be measured, figuring out how to measure those properties with
evaluations, and achieving sufficient capability elicitation. Due to the risk of under-eliciting
capabilities, model evaluations may not be able to assess risks from advanced AI systems,
including in a verification context.

Building Blocks Preview
6/14 rows displayed. See appendix for complete table and explanation of feasibility estimates.

Building Block Mechanism Details

Self-reported
evaluations

Self-reported
evaluations

Model developers can report evaluation results for their models
without any verification.

Feasibility

<1 yearHigh

Notes
Provides very little confidence on its own.
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Proof of same
model for
training,
evaluation, and
deployment

Verifying same
computation in
TEE

A TEE can hash key elements of the computation (e.g., the model
weights and inference code), and then confirm that the hash at
evaluation time matches the hash at training and deployment. The
"model from training" could be verified by re-running parts of the
training run and comparing the weight hash at the end of the
verified run to the inference weights.

Feasibility Previous work (non-comprehensive)

1–4 yearsMedium Trask & Bejan (2024)

Notes
This technology is not production-ready yet, but it is very close, and we
know how to solve the problem in principle. It is unclear if TEEs with
existing AI chips can be made sufficiently secure or if new chips are
needed. This general approach could be done without TEEs, but it would
be easier to spoof.

Secure
evaluations

Inspectors In the absence of TEE-based security around external evaluations,
but as an improvement on self-report evaluations, international
inspectors could observe the evaluations being done alongside the
main researchers.

Feasibility

<1 yearHigh

Notes
It may be difficult to balance ensuring the inspectors have sufficient access
(are sure the right models are being evaluated) with mitigating security risks.
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Effective
evaluations

Proof of
sufficient
capability
elicitation

Show that capability evaluations would be reliable even if model
developers or models themselves were engaged in sandbagging
(purposefully underperforming during evaluation). Proof of
training/inference may be needed.

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Greenblatt, Roger, et al. (2024); van
der Weij et al. (2024)

Notes
This may be impossible for sufficiently advanced AI systems.

General
intelligence
gathering to
augment
evaluations

External
deployment
monitoring

It may be relatively easy to infer the approximate capability level of
AI systems that are deployed in the world, e.g., by looking at their
economic impact, the state of automation, or interacting with them
to test their capability level. We might expect powerful AI systems to
be deployed widely because they could bring massive economic
benefits.

Feasibility

1–3 yearsMedium

Notes
There is likely room for new work, similar to Observational Scaling Laws
(Ruan et al., 2024), that allows for the inference of general model
capabilities based on particular deployment information. Work aimed at
inferring the properties of proprietary models (Carlini et al., 2024) may also
be relevant.
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Internal
deployment
monitoring via
HUMINT

Human-based intelligence can help identify the capability level of
secret AI projects. This could include spies, unintentional leaks,
whistleblowers, and interviews conducted by international
authorities.

Feasibility

<1 yearHigh

Notes
Monitoring the capability level of internal AI systems, which are only
deployed internally and are kept secret, is more difficult than monitoring
externally deployed models.
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Verifying Various Policy Goals
There are many other policy goals that international coordination on AI may aim to achieve. For
instance, an international treaty could require every frontier AI development project to write a safety
case that is reviewed by an international committee. This section discusses some self-report and
verification building blocks that may help with these goals.

Key Takeaways
● Various human-based data collection methods can help build confidence that agreements

are followed, especially whistleblower programs and access to interview relevant personnel.

● In the future, AI systems could assist with verification, e.g., by reviewing code for
compliance without leaking sensitive information.

● AI data centers should not be co-located with sensitive military installations or non-AI
compute as this would make monitoring and enforcement more difficult.

Verification Approach
Some general verification mechanisms will be useful for many policy goals. Shared and anonymous
reporting channels for AI incidents (e.g., model misuse, cybersecurity incidents) can build trust
between countries by increasing transparency into other AI development projects without revealing
highly sensitive information. Whistleblower programs are likely a key part of verifying international
treaty compliance. Along with whistleblower programs, international authorities could be given the
ability to interview the people working on countries’ AI projects in order to increase the likelihood of
finding covert violations. Whistleblowers and interviews could be used to verify a wide range of
claims about AI development (Brundage et al., 2020; Brundage, 2024), such as whether loosely
defined safety commitments are being followed, making them more flexible than many technical
approaches, which are often limited to verifying narrow claims about AI models.

There are numerous potential mechanisms to help with verification that are enabled by AI systems,
such as improved monitoring of the chip supply chain, zero-knowledge code review, and the
saving of relevant AI systems’ logs. For instance, effective evaluations may require conducting
repeated experiments and fine-tuning on a model, with direct weight access to prevent tampering,
a task that requires substantial access; while it may be difficult to trust humans working for a
foreign government, it may be possible to jointly build an “evaluations bot” that is mutually trusted
to carry out such a procedure. Whether AI-enabled approaches are viable will depend on whether
such systems can be made competent, trustworthy, and robust to adversaries.
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Some policy goals need to verify properties about inference, for instance, whether a model is being
used to make weapons or whether certain safety measures are run alongside it. Two main
conditions must be met: all copies of the model that are running are known, and all known copies
of the model have the intended oversight applied. While it may appear difficult to verify that all
copies of the model are known, this could be accomplished with stringent security measures
around model weights (e.g., model weights do not leave a particular data center), which
developers may implement for standard security reasons, but would need to be made
internationally verifiable and sufficiently secure against insider threats (Nevo et al., 2024).

Knowing where copies of a model are could also be accomplished by encrypting model weights so
that only certain chips can decrypt them, but this faces a security problem as the chips doing
decryption may not be sufficiently secure. Speculatively, a small part of inference computation
(e.g., one layer of a model) could happen in a centralized data center which is subject to
monitoring, whereas the vast majority of compute does not need to be known or monitored.
Because the centralized computation is necessary for inference, all inference would be known;
however, this has numerous difficult requirements, such as the centralized computation being very
difficult to reproduce. If the vast majority of the AI chips in the world are covered by a governance
regime that can restrict their activities (e.g., with FlexHEGs), another option to know where
inference is occurring is to broadly restrict chips from running inference on a model of interest, or
monitor that inference. Due to the difficulty in ensuring all AI chips are covered by a governance
regime, this approach could build confidence but is unlikely to provide strong guarantees.

The actual oversight applied to inference might include input/output classifiers, similar to content
filters, an idea we discuss in the appendix. Unfortunately, verifying that inference classifiers are
running properly may be difficult, given the adversarial situation. Generally, some mechanisms for
limiting or monitoring chips might be applicable to this use case, as the goal is to ensure chips are
only running if particular oversight is applied, but they likely require better chip security. Partial
re-running of workloads may also be effective, with a mutually trusted data center retroactively
confirming declared classifier results on a subset of inference requests (Baker et al., Forthcoming).
Goals pertaining to inference may also benefit from monitoring the downstream effects of these AI
systems (e.g., economic growth).

Policy goals may also concern the desired behavior of AI systems, e.g., abiding by international
agreements or not engaging in military first-strikes. These could be met with substantial progress
on Provably Safe AI agendas, using agreed-upon model behavior specifications (an idea we
elaborate on in the appendix), or reducing relevant model capabilities; none of these are
technologically mature, and all require additional confidence that a specific training process was
used and the deployed model is the same model that was trained. Model evaluations are a natural
approach to testing if an AI system follows some desired behavior, but current techniques should
not be relied on here due to their inability to assess model propensity and the likelihood of
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corruption by developers. Inference monitoring could potentially be used to ensure deployed AI
systems follow desired goals but may require more access.

We note that numerous verification mechanisms require substantial access to data centers, so we
encourage AI data centers to be built separately from non-AI data centers and separately from
sensitive military installations in order to reduce the privacy cost of closely monitoring AI
development and deployment. We discuss numerous ideas from cryptography that will play a role
in the various verification mechanisms discussed.

Analysis
Verifying some property about all inference instances of a model is difficult. This is likely to require
substantial access and tight security around AI development (e.g., to ensure all inference of a
model is known). Further ensuring that inference oversight is being applied faces difficulties due to
the security of AI hardware: new chips or FlexHEG retrofitting of existing chips (e.g., with a secure
processor and tamper-proof enclosure) may be necessary. Other approaches that could guarantee
that all inference is monitored, such as FlexHEGs applied to all AI chips, are likely much more
difficult to achieve. So, while in principle, there are various approaches to monitoring all inference of
a particular model, the most promising appears to be securing and centralizing a model’s weights
to a small number of monitored locations, and this security being robust against insider threats
(e.g., subversion by the AI developer). Significant investment in security is needed early to reach
this level (Nevo et al., 2024).

One under-explored area is AI-enabled verification mechanisms, which may be especially effective
because they could allow zero-knowledge review of sensitive information, however these require
favorable developments in AI capabilities and safety properties. Another under-explored approach
is training AI systems to abide by shared norms, such as following international agreements. This
appears desirable but may be extremely technically difficult.

Whistleblowers and interviews, on the other hand, have been used previously and do not require
novel technical advances. Therefore, these low-tech methods are likely to be critical to international
verification if verification regimes are needed in the near future.
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Building Blocks Preview
12/29 rows displayed. See appendix for complete table and explanation of feasibility estimates.

Building Block Mechanism Details

Whistleblower
programs

Whistleblower
programs

People who whistleblow about violations of international
agreements are protected, e.g., with asylum guarantees.
Whistleblowing is encouraged by access to reporting channels that
are robust to intense state surveillance.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Baker et al. (Forthcoming)

Interviews Interviews Countries agree to allow international inspectors to interview
personnel working on AI development. These interviews focus on
verifying treaty compliance. These interviews should occur in neutral
locations with privacy and safety guarantees.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Wasil, Berglund, et al. (2024)

AI-enabled
verification
mechanisms

AI-powered
zero-knowledge
work

AI systems could be used to do a substantial amount of work with
sensitive data and then output only a non-sensitive final result. For
instance, an “Evaluations Bot” would be one such system. This
could dramatically expand the set of cognitive tasks that could be
accomplished in a zero-knowledge way, aiding with many aspects
of verification.

Feasibility

1–4 yearsMedium

Notes
The model capabilities will inform what sort of work is possible here, and
sufficiently capable models for some task may not be trustworthy.
Additionally, models will need improved robustness to jailbreaks in order to
be effective.
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Model behavior
specification
agreements
(specifically, the
model will not
help violate
international
treaties)

Countries agree to use behavior specifications that are good for
other countries. E.g., “The model will engage in 𝑋 benefit sharing”
or “The model will not execute military first-strikes”. Verification that
a given behavior specification is used can be done with partial
re-running of training. Hypothetically, external evaluations could be
used to gain confidence that behavior specifications were used, but
current evaluations are unable to assess propensity (as is needed)
and are unlikely to work in this adversarial setting. Even without
being robust, this approach could be cheap to implement and thus
worth pursuing.

Feasibility Previous work (non-comprehensive)

Medium

1–100? years

Discussed below; OpenAI (2024b)

Notes
The tractability of this approach likely varies significantly with AI capability
level. Current approaches for frontier AI systems are insufficient (as
evidenced by models’ susceptibility to jailbreaks, which could be used by a
country when carrying out violations). Robustness to jailbreaks for current
models is likely viable within a few years, based on our familiarity with the
literature. Proper value alignment for advanced AI systems may be
incredibly difficult (Yudkowsky, 2022), and it is difficult to upper bound the
time needed.
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Knowledge of all
inference
instances of a
model

Weights do not
leave their
training data
center

If data centers are registered and have very good security, it may be
possible to quarantine model weights to the data center they were
trained on (or a small number of other data centers). If successful,
this would allow a monitoring party to know where all inference is
happening. While strong security around model weights is generally
desired, sufficient effort is needed to make it happen. Additionally,
this approach requires that security be sufficient to prevent insider
threats from the country operating the data center, e.g.,
international collaboration on security.

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Nevo et al. (2024); Greenblatt (2024);
Harack et al. (Forthcoming)

Notes
Requires very good security and likely continuous monitoring of security but
is otherwise straightforward.
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Widely applied
chip restrictions

If nearly all AI chips in the world are under a governance authority
with tools like FlexHEGs, various mechanisms for chip limiting or
monitoring could be applied, as discussed previously. For instance,
chips could be restricted to only running inference or training on
certain models which have been approved by an international
authority. If a substantial fraction of all AI chips were covered by
such controls, this could increase confidence that inference was not
being done on an unapproved model.

Feasibility

2–6 yearsMedium

Notes
A key uncertainty is defining which chips these restrictions would need to
apply to, and a key difficulty would be implementing sufficiently secure
restrictions on those chips. Inference typically has lower compute
requirements than training; if these are still high (e.g., >64 cutting-edge AI
chips), this may be feasible but would be very difficult. If the model of
interest could be run on consumer hardware, it is likely infeasible to bring all
such hardware under a governance authority. It may also matter both
whether the model can be run, at all, on some hardware, and whether it
can be run efficiently (e.g., if consumer hardware can run a model, but
does so much slower than data center AI chips, restrictions on data center
AI chips could be effective).

Inference-time
oversight

Inference
classifiers

Lightweight classifiers run locally on inference workloads, enabling
verifiers to check that deployment follows the rules while limiting
access.

Feasibility Previous work (non-comprehensive)

1–2 yearsMedium Discussed below
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Provably Safe AI Provably Safe
AI

This is a family of research agendas. Formal verification of AI agents
and AIs that oversee them such that deployment of the agent will
provably fall within some safety specifications designed with human
input.

Feasibility Previous work (non-comprehensive)

3–15 yearsMedium Dalrymple et al. (2024); Dalrymple
(2024)

Reduce model
capabilities in
relevant domains

Knowledge
unlearning

After training, apply knowledge unlearning techniques to reduce the
model’s capabilities in the dangerous domain. Verification that
countries are following this commitment could include partial
re-running of chip activities.

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Casper (2023); Tamirisa et al. (2024)

Notes
Current techniques are insufficient. May be intractable for advanced AIs
due to knowledge collisions. This unlearning may need to be robust to
fine-tuning, or not, depending on the risk there.

Non-AI
monitoring

General
intelligence
gathering
(economic)

Publicly available discussions about AI integration, scientific studies,
general economic measures, and private financial data are all likely
to indicate when a country is getting substantial economic returns
from its AI systems and automation.

Feasibility

1–2 yearsHigh

Mechanisms to Verify International Agreements About AI Development | 53



No data center
colocation

No colocation
with non-AI
compute

Data centers built only for AI workloads allow numerous crucial
security, verification, and enforcement mechanisms to be applied
without collaterally affecting non-AI compute. For example,
verification approaches based on data-center-wide power draw
would be ineffective if there were power-hungry non-AI workloads
happening in the same data center.

Feasibility

1–2 yearsHigh

No colocation
with sensitive
military facilities

Verification mechanisms that make use of physical inspections, or
compute tracking in general, may be much more difficult if AI data
centers are part of military installations, as there is an increased risk
of sensitive information leaking.

Feasibility

1–2 yearsHigh
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Conclusion
This report gives an overview of mechanisms that can help verify that countries are not breaking
international agreements about AI development. Such agreements and confidence-building
mechanisms may be crucial to avoiding societal-scale risk from advanced AI systems. There are
numerous barriers to the verification approaches in this report working:

● Substantial international political will (or domestic political will, if applied to national
regulation) is needed.

● Most of the specific mechanisms are not yet technologically mature.
● Substantial time is needed for testing and implementation of mechanisms.
● Future advancements in algorithmic progress or distributed training could make verification

much harder.
● The mechanisms in this report are unlikely to be robust to superintelligent AI capabilities,

given the large jump from the current technological landscape to that one.
● The implementation details of many mechanisms are somewhat specific to the current

language model, transformer, pre-training paradigm and may require adjustment for other
paradigms.

Many of the mechanisms described in this report are in their early stages—frequently the ideation
stage—but appear feasible. If they were a priority for a national government, minimal versions could
be achieved in months and more robust versions in a few years. However, if development projects
only happen when risks are acute (e.g., following a catastrophic AI event), we may not have that
time. Therefore, we must begin this development early, especially for mechanisms that require
serial time. We provide a list of such mechanisms in the appendix, including FlexHEG mechanisms,
tracking existing AI chips, and centralizing the chip supply chain.

The main threat model in this report is motivated and well-resourced state actors putting
substantial effort into bypassing verification mechanisms. While this is a critical threat model for
international verification to deal with, one should not let perfect be the enemy of good: many of the
mechanisms discussed here, while not comprehensive on their own, could be used together as an
effective verification regime.

Verification of AI treaties is a large area of research and practice for which this report provides only
a high-level overview. As such, there are numerous directions for future work that are not tackled
here, for example:

● What verification mechanisms are most relevant and useful for domestic, rather than
international, regulation and verification?
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● How can verification mechanisms be put together to accomplish comprehensive and
ambitious goals, such as all frontier AI development following a safety case (discussed in
the appendix), or enforcing a global pause on frontier AI development and deployment?

● Prototyping and stress-testing the mechanisms discussed in this report (e.g., developing
novel methods for verifying compute use with minimal-access, improving methods for
partial re-running of chip activities, making TEEs more secure).

● Carving the space of verification mechanisms by their robustness to different types of
adversaries, as Aarne et al. (2024) do for some on-chip mechanisms.

● Building political will at the international, national, and corporate levels to develop and
implement these mechanisms.

We conclude by noting that effective verification mechanisms could be a catalyst for international
agreements, as has been the case previously (Toivanen, 2017). Strong verification is crucial,
regardless of whether the international situation is one of “trust but verify” or "distrust and verify”.
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Appendix
Table of contents:

● Acknowledgments

● Author Contributions Statement

● Feasibility Estimates: a brief note on what the “Feasibility” column in the Building Block
tables means

● Building Blocks: The full version of the tables of Building Blocks corresponding to each
policy goal

● Elaboration on Particular Mechanisms: some verification mechanisms in this report have not
been discussed at length elsewhere; we describe them in this section. We discuss
inference classifiers, shared model behavior specifications: AIs do not violate international
agreements, we provide a lengthy discussion of networking equipment interconnect limits,
and we discuss signatures of high-level chip measures

● Mechanisms Needed Early: A list of mechanisms in this report for which research and
development must begin early for the mechanisms to be effective later (e.g., a list of
high-priority areas of research)

● What Compute Needs to Be Monitored?: Discussion of key factors in determining what
type and quantity of chips should be targeted by a monitoring regime. We discuss which AI
activities to monitor, algorithmic progress, performance effects, distributed training, difficulty
in defining AI chips, and the costs of monitoring

● Track AI Chips, Not Data Centers: We argue why hoping to detect rogue data centers
appears difficult and why we instead recommend focusing on AI chips themselves

● Would Highly Capable AI Render Verification Mechanisms Ineffective?: building verification
mechanisms that are resistant to highly capable AI adversaries may be very difficult

● Verification Approach for All Frontier AI Development Following a Safety Case: An initial
sketch of what a verification approach would look like for ensuring that all frontier AI
development follows a safety case

● Hypothetical Futures: Three hypothetical stories about the future of AI development that
motivate some of the framing choices in this report
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Feasibility Estimates
All the feasibility estimates assume significant political will to curb risks from frontier AI development
(i.e., similar to the U.S. response to 9/11). The time estimates reflect our estimation of how long it
would take to design and implement the given measure. They are dominated by technical R&D
time for most mechanisms due to the assumption of strong political will. Approaches that require
new AI chips tend to have long implementation timelines due to the time it takes for new chips to
become a significant share of computing power (Heim, 2024a).

A feasibility rating of “High” indicates that there are no major technological hurdles we are aware of
(“the world basically knows how to do this, even if there are some finicky details”), a rating of
“Medium” indicates some technological innovation is needed, but it could likely be accomplished
with <200 experts working for a year; a rating of “Low” corresponds to a mechanism being
particularly politically intractable or a very difficult technological project. The actual implementation
of many mechanisms will require substantial effort from thousands of people, but we assume this is
easy given the political will and technological maturity. These are very optimistic assumptions.

We have low confidence in most of the feasibility estimates. They are preliminary, quick, estimates,
rather than a thorough analysis.
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Building Blocks

Locating Compute Building Blocks

Building Block Mechanism Details

Chip ownership
and location
registry

Chip ownership
and location
registry

AI chip owners / data center operators must register the chips they
own, and where those chips are located, with a central regulator.
Chip sales require updating the registry with the new owner and
location.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Jones (2024); Shavit (2023); Baker
(2023); Fist & Grunewald (2023)

Data center
registry

Data centers that do not have AI chips but could later be
repurposed for AI use may need to be registered with a central
regulator. “Data center” can be defined quite broadly, and it is
unclear what data centers would need to be registered.

Feasibility

<1 yearHigh

Notes
Perhaps an initial requirement for registration would be if a data center
currently consumes >1 MW—this would correspond to ~1,000 H100
GPUs. There are likely thousands to tens of thousands of such data
centers currently (Pilz & Heim, 2023).
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Flexible
Hardware-
Enabled
Guarantee
(FlexHEG)
mechanisms

Main FlexHEG
design

A FlexHEG is a mechanism added to an AI accelerator that allows
privacy-preserving verification of chip compliance with varied and
flexible policy goals. This could be retrofitted to existing chips by
inspectors or added to chips as they are shipped to data centers.
The key technical requirements of such a mechanism are a secure
enclosure to detect physical tampering, a self-disablement
mechanism, a secure processor, an accelerator interlock (control
over GPU sufficient for enforcement), a mechanism update process,
and confidential communication between devices. If these
component pieces are built, they could be added to existing AI
chips or servers.

Feasibility Previous work (non-comprehensive)

2–5 yearsMedium Petrie et al. (2024)

Notes
Strong and secure FlexHEG mechanisms would allow the implementation
of many different policy goals that do not need to be decided in advance,
making them highly desirable. Key difficulties are likely to include designing

and verifying a secure processor and designing tamper-proof enclosures.

On-chip
cryptographic
capabilities

Chips can execute basic cryptographic operations securely, such
as key signing. This should probably be done with a dedicated
hardware security module.

Feasibility Previous work (non-comprehensive)

1–3 yearsMedium Aarne et al. (2024)

Notes
Many AI chips can already do this, but their adversarial robustness is
unclear, so new AI chips could be needed.

Mechanisms to Verify International Agreements About AI Development | 68



Tamper-evident
chips

Includes: video surveillance, tamper-evident seals or packaging on
chips, and potentially remote attestation. Helps detect violators but
does not on its own prevent tampering—needs to be paired with
enforcement.

Feasibility Previous work (non-comprehensive)

1–5 yearsHigh Aarne et al. (2024); TamperSec (n.d.)

Notes
Some approaches here require replacing AI chips, but some may be
applied to existing chips (with temporary physical access) or at the data
center level.

Tamper-proof
chips

Tampering results in destroying chip capabilities, e.g., via a secure
enclosure of a chip that destroys the chip if broken. In effect, this
mechanism is tamper-evident chips with enforcement built in. Helps
directly prevent violations.

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Aarne et al. (2024); TamperSec (n.d.)

Notes
Some approaches here require replacing AI chips, but some may be
applied to existing chips (with temporary physical access).

Chip identity
verification

Each chip has a unique identifier, perhaps secured as a private key
or a physical unclonable function (“Physical unclonable function”,
2024). This enables other chip mechanisms. Basic serial numbers
are not adversarially robust.

Feasibility Previous work (non-comprehensive)

1–3 yearsHigh Aarne et al. (2024); Reuel et al. (2024)

Notes
Many AI chips can already do some versions of this, but their adversarial
robustness is unclear, so new AI chips or modifying existing chips could be
needed.
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Trusted
Execution
Environment
(TEE)

Code run in TEEs is secure against most external surveillance, and
only approved programs can interact with the TEE. To ensure
integrity, TEEs should use trusted code, likely starting with secure
boot. “Confidential Computing” is the name of NVIDIA’s TEE
implementation. See also “Secure Enclave” from Apple.

Feasibility Previous work (non-comprehensive)

1–4 yearsMedium Aarne et al. (2024); Kulp et al. (2024)

Notes
H100s already have confidential computing for single-chip setups, and it
may not be too difficult to get this for multi-chip setups (Nertney, 2023).
The adversarial robustness of current implementations is unclear, so new AI
chips could be needed.

Firmware
roll-back
protection

Once a firmware update has been applied, previous firmware
versions cannot be used. This is a critical component to
firmware-based regulations changing over time.

Feasibility

2–5 yearsMedium

Notes
Some AI chips, such as H100s, appear to have firmware roll-back
protection (NVIDIA H100 NVL GPU Product Brief, 2024), but the current
implementation is likely not sufficiently secure, so new AI chips could be
needed.
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FlexHEG
applied to
location
verification

The secure processor that is part of a FlexHEG could implement
various chip location tracking protocols and be trusted to do so
given that it is part of a FlexHEG. On the other hand, strong
FlexHEGs would obviate the need for location verification as
governance could be conducted remotely with trust that chips will
not be tampered with.

Feasibility

2–5 yearsMedium

Notes
If a FlexHEG is in place, additionally implementing location verification is
likely easy and could be done in less than a year.

Chip location
tracking

Ping-based
location
tracking

Set up a series of servers that ping chips and triangulate chip
location based on response time to different servers. This is
relatively low precision.

Feasibility Previous work (non-comprehensive)

2–4 yearsHigh Aarne et al. (2024); Brass & Aarne
(2024)

Notes
May not require replacing hardware. The main security requirement is chips
having a private key, however, it is unclear if current chips are secure
against physical attacks to extract such a key, as would be needed here.
May require chips to be connected to the internet.

Topology-
based location
tracking

Chips locate themselves based on signals from emitters with known
locations, such as cell towers.

Feasibility Previous work (non-comprehensive)

2–4 yearsMedium Brass & Aarne (2024)

Notes
Requires an antenna on chips. May be difficult to make sufficiently robust.
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GPS-based
location
tracking

Chips locate themselves using GPS or similar technology and report
this to a monitoring server.

Feasibility Previous work (non-comprehensive)

2–4 yearsMedium Brass & Aarne (2024)

Notes
GPS can be easily spoofed. Requires an antenna on chips. May be difficult
to make sufficiently robust.

Firmware-
based chip
operating
licenses for
current chips

It may be possible to implement operating licenses on current AI
chips via firmware updates and secure boot. This is very unlikely to
be secure against state actors, but augmenting with tamper-evident
mechanisms such as security cameras may be effective (this
requires physical access).
This license could be set to a fixed amount of FLOP or clock time.
The license could include the chip’s identity, the license expiration,
and it could be signed by the private key of a regulator or
counterparty. Chip does not need direct internet connection to
renew license (i.e., could be air-gapped and the license delivered
via a physical drive). License renewal can be connected to
numerous governance goals, such as chips reporting their activity,
their location, or their compliance with on-chip limitations.

Feasibility Previous work (non-comprehensive)

1–3 yearsMedium Aarne et al. (2024); Kulp et al. (2024);
Petrie (2024)

Notes
The protocols for location tracking in this section are relatively
straightforward, but they could be spoofable either by tampering with the
mechanisms on the chips (current chips likely aren’t sufficiently secure) or
elsewhere, as in GPS spoofing.
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National
intelligence
operations

Satellites
(visual)

Satellite imagery may be used to detect the construction of data
centers, fabs, and power infrastructure.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Wasil, Reed, et al. (2024); Pilz & Heim
(2024)

Notes
Satellite information is unlikely to differentiate AI vs. non-AI data centers. It
also may struggle to differentiate data centers from other industrial

buildings (cooling may be a key differentiator).

Satellites
(infrared)

Thermal imaging may be used to detect data centers in use. In
particular, data centers may remain in a narrow temperature range
throughout the day due to chips constantly running and being
cooled.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Wasil, Reed, et al. (2024)

Geophysical
MASINT to
detect
underground
construction

Various approaches are already in use to detect underground
construction (  National MASINT Office, 2022). This could be applied
to reduce the likelihood of underground data centers being built
secretively.

Feasibility

<1 yearHigh

Notes
These approaches may not, on their own, differentiate between data
centers and other underground construction.
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HUMINT Human-based intelligence such as spies, unintentional leaks,
whistleblowers, and interviews conducted by international
authorities can add confidence that secret AI development, data
center, or chip production are not taking place.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Baker et al. (Forthcoming)

Power grid
analysis

Large AI data centers may have substantial power requirements.
Surveillance of existing power grids and off-grid generation could,
therefore, detect such data centers.

Feasibility

<1 yearMedium

Notes
The power draw of 100,000 H100s is ~130 MW (“NVIDIA DGX H100
Datasheet”). Given the scale of current military nuclear reactors (up to low
hundreds of MW electrical output on some aircraft carriers) (“United States
naval reactors”), covert generation of substantial power may be possible.
Chip performance per watt is increasing at a rate of ~1.6x per year (Epoch
AI, n.d.). It’s estimated that there are currently ~500 data centers globally
with >10 MW capacity (Pilz & Heim, 2023).

Cyber
operations and
communication
surveillance

Signals-based intelligence is already used. For detecting AI
compute, such approaches might focus on AI developers, data
centers, and chip producers.

Feasibility

<1 yearHigh
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FININT AI development projects are very expensive, and covert AI projects
might leave a substantial money trail. Intelligence gathering here
might focus on purchases of AI-relevant raw materials, chips, and
other data center components.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Wasil, Reed, et al. (2024)

Tracking of
relevant
personnel

There are hundreds to thousands of experts who have the
knowledge and skills to contribute to frontier AI development, chip
design, or chip fabrication. Building state-of-the-art domestic chip
production would be very difficult without these people. Various
measures could be used to confirm that these people are not
contributing to covert national projects in violation of an international
agreement.

Feasibility

<1 yearHigh

Security AI data centers
are secure
against chip
theft

Data center operators and their countries collaborate to boost data
center security. Ideally, this would prevent the theft of model
weights and algorithmic secrets, but preventing the theft of physical
chips is the focus of this section and is probably much easier
(current security may be sufficient if done with international
collaboration).

Feasibility

<1 yearHigh
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Physical
inspection of data
centers

Verify chip
identity and
count

Use unique chip identifiers to ensure the right chips are present;
count to make sure all are accounted for.

Feasibility

<1 yearHigh

Verify
non-tampering
of chips (only
relevant if there
are
mechanisms
that could be
tampered with)

Make sure chips have not been modified in violation of agreements.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Aarne et al. (2024)

Notes
Easy if we have good tamper-evident chips to begin with.

Audit data
center security

Check that the data center is at the security level claimed.

Feasibility Previous work (non-comprehensive)

1–4 yearsMedium Nevo et al. (2024)

Notes
It may be easy to verify that the security in a data center is strong enough
to prevent the theft of chips, but it may be more difficult to verify the much
higher level of security needed to secure model weights.

Power
accounting

Compare the expected power draw of a data center, based on the
type and number of chips, to the actual power draw to build
confidence that there are not undeclared chips.

Feasibility

1–2 yearsMedium

Notes
If a data center has a combination of older (less energy efficient) and newer
chips, this is difficult. If a data center has a combination of AI and non-AI
chips, this is difficult.
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Continuous
monitoring of AI
data centers

Perimeter and
portal
continuous
monitoring

Materials coming in and out of data centers (especially AI chips)
flow through portals, which are jointly monitored to avoid chip theft.
Existing physical security measures such as fencing and cameras
are likely to be sufficient if they can be jointly monitored.

Feasibility Previous work (non-comprehensive)

<2 yearHigh START: Annex to Protocol on
Inspection and Continuous Monitoring
Activities (n.d.)

Notes
It may also be desirable for network traffic in and out of data centers to be
jointly monitored (this can reduce the risk of model weights being
improperly moved), but that is out of scope for this section.

Security
cameras inside
data centers

This is standard (Google Cloud Tech, 2020) but would involve giving
international inspectors access or (more likely) having international
inspectors install their own cameras. The primary goal of security
cameras in data centers for verification is to ensure chips are not
being removed, added, or modified to bypass governance
mechanisms, so cameras should focus on chips.

Feasibility

<1 yearHigh

Notes
Cameras might confirm that unauthorized chips aren’t being substituted
into a data center, that interconnect limits aren’t being changed, or that
chips are not being tampered with.
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Sensors for
chip activities
(not relevant to
locating chips)

Various workload classification methods involve gathering
information about chips, such as their power draw or network
traffic. Specific equipment would be installed to gather this
information.

Feasibility Previous work (non-comprehensive)

1–3 yearsHigh Baker et al. (Forthcoming)

Notes
There are likely low-millions of high-performance AI chips in the world
(Epoch AI, n.d.), so mass-production of these sensors would be necessary,
which could take many months or a couple years.

Register chip
production

Supply chain
registry

Key parts of the chip supply chain must register their production
facilities with a central verifier. This should likely be based on a
thorough assessment of the current bottlenecks and crucial actors
for chip production.

Feasibility

<1 yearHigh

Tracking chip
production

Chain-of-
custody

Chain-of-custody (CISA, n.d.) is implemented for the AI chip supply
chain: firms document the transfer and storage of components
along the chip supply chain.

Feasibility

1–3 yearsMedium
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Tracking raw
materials and
component
parts

Major parts of the chip supply chain, from raw materials to EUV
machines, to clean room components, are tracked by intelligence
agencies and an international body.

Feasibility

1–3 yearsMedium

Notes
It’s unclear if the raw materials are sufficiently AI-specific that it makes
sense to track them. There are many details and approaches to tracking
chip production, and we leave them to future work.

General
intelligence
gathering

National intelligence agencies use satellites, HUMINT, and other
sources of information to identify the construction and operation of
unregistered chip production facilities.

Feasibility

<1 yearHigh

Notes
Covertly building a chip supply chain appears very difficult, and international
regulations with whistleblower programs may be sufficient for detection.

Physical
inspection of fabs

Physical
inspection and
continuous
monitoring of
fabs

Check that chip production facilities are implementing the
agreed-upon on-chip measures, have the manufacturing capacity
claimed, and are not doing unauthorized production or distribution.
Includes human inspectors, cameras, interviews with employees,
etc.

Feasibility

<1 yearHigh

Notes
Includes inventory audits.
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Evaluation of
chip designs
and testing of
chips in
development

If on-chip mechanisms are used, there needs to be assurance that
the manufactured chips actually have these mechanisms correctly
implemented. To ensure chip designs have not been backdoored to
circumvent governance measures, it may be necessary for
international inspectors to evaluate these designs and confirm that
a small number of randomly selected fabricated chips are
implementing the intended design. Numerous tests like this may be
necessary throughout the chip design process to ensure the
on-chip mechanisms are implemented correctly.

Feasibility

1–4 yearsMedium

Notes
This might involve a small contingent of experts from each country working
on this verification with strong information security to avoid the leaking of
sensitive data about chip designs.

Multilateral export
controls

Multilateral
export controls

Members of the international agreement have a shared list of export
controlled countries for AI chips and major components, in effect
requiring a license from an international authority.

Feasibility

<2 yearHigh

Notes
These rules could be “disallow” or “allow” based, depending on risk.
Countries might agree to reduce the proliferation of AI chips via shared
export controls. It appears difficult to make such agreements robust to a
country later deciding to break such an agreement.
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Compute Use Building Blocks

Building Block Mechanism Details

Chip ownership
and location
registry

Chip ownership
and location
registry

AI chip owners / data center operators must register the chips they
own, and where those chips are located, with a central regulator.
Chip sales require updating the registry with the new owner and
location.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Jones (2024); Shavit (2023); Baker
(2023); Fist & Grunewald (2023)

Inference-only
chips

Inference-only
manufacturing

Some AI chips could be manufactured to be especially efficient at
inference while not being optimized for training, e.g., Groq, AWS
Inferentia, Sohu. Further work may be needed to make such chips
sufficiently inefficient for training.

Feasibility

1–4 yearsMedium

Notes
Some current inference-specialized chips could likely be repurposed for
training without significant effort, e.g., as is done in a blog post about AWS
Inferentia (Rand, 2023). Therefore, for them to be a credible sign that no
large training runs are happening, future chips would have to be designed
to be particularly inefficient for training. Some existing inference-specialized
chips may be sufficiently incapable of being useful for training, e.g.,
because they use inflexible ordering of operations. On the other hand,
approaches here will need to contend with substantial effort going into
overcoming these limitations.
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Modify chips to
be
inference-only

Using a combination of firmware updates, improved chip security,
and likely operating licenses, modify chips to only be useful for AI
inference, even after manufacturing. This could potentially be
implemented with FlexHEG mechanisms.

Feasibility

2–5 yearsMedium

Notes
This likely requires that chips be hardened during manufacturing and
equipped with flexible hardware mechanisms like operating licenses.
Mechanisms that resist adversaries may be difficult to design.

Emergency chip
shutdown

Unplug the data
center from its
primary and
backup power
supply

Trivially, a data center operator can claim that its chips are not being
used in a large training run if they are not receiving the power
needed to operate. This can likely be verified with less invasive
methods such as power draw of the data center and knowledge
about on-site (e.g., backup) power generation or potentially thermal
imaging.

Feasibility

<1 yearHigh

Notes
It would impose negative externalities to unplug an entire data center if
there is important non-AI compute in the data center, hence the
importance of avoiding co-location.
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Unplug
particular chips
or servers

A data center could unplug certain AI chips while letting the rest of
the data center receive power, and this could be verified with
cameras or physical inspections. If there are substantial differences
in the external resource requirements for AI and non-AI chips, this
could be verified without access to data center internals, e.g., using
power draw or cooling information.

Feasibility

<1 yearHigh

Notes
AI chips require specific infrastructure (e.g., server racks, cooling,
networking equipment) to operate, so there are many ways to show such
chips are not operational, e.g., all the AI chips are stacked on a table
instead of in server racks.

Chip use
registries

Low-detail
registry

Data center operators keep track of high-level information about
different AI workloads run, e.g., training/inference, which model,
which project, and the size of workloads. This type of registry would
ideally account for all chip use in a data center. For some of these
uses, high-level chip information could add confidence to this
registry. Successfully spoofing a low-detail registry and the
associated high-level chip measures is likely possible given the lack
of workload re-running, so this registry does not provide strong
guarantees.

Feasibility

<1 yearHigh

Notes
A key issue is that an adversary could split a single workload so that it
appears to be multiple workloads. Know Your Customer (KYC) rules are a
step toward such a registry, but they are unlikely to be applicable in the
context of international verification.
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Registry of
training
transcripts

Data center operators keep a detailed registry of how chips are
used. This includes training transcripts that detail model weight
checkpoints and everything necessary to replicate a training run
(data, hyperparameters, random seed, etc.).

Feasibility Previous work (non-comprehensive)

<1 yearHigh Shavit (2023)

Notes
This registry is highly private and likely should only be used in
zero-knowledge ways, such as being encrypted except for use on a
mutually trusted data center. This registry could be implemented at the
data center layer, but it would benefit from individual chips reporting on
their activities.

Partial re-running
of chip activities

Partial
re-running
description

A data center operator can claim its compute was used for a
training run, and this claim can be verified by an external party with
much less compute by re-running small segments of the full training
run to see if they match the declared run. This requires checkpoints
and hyperparameters provided in a registry of chip activity. This
re-running happens in a zero-knowledge way in a mutually trusted
data center where the chance of sensitive information leaking is low.
There may be other approaches to verify a given transcript other
than partial re-running, such as those explored by Choi et al. (2023).

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Shavit (2023); Choi et al. (2023); Baker
et al. (Forthcoming)

Notes
Partial re-running enables verification of practically all properties of a training
run: model architecture, hyperparameters, data, etc., because the data
center operator provides this entire training transcript to a mutually trusted
data center for verification.
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On-chip weight
logging

Individual chips occasionally save a snapshot of their memory (this
is a “shard,” or subset, of all model weights). This could be a (short)
hash of the weights stored locally or the (larger) full-weights stored
externally, ideally cryptographically signed by the chip to ensure
authenticity.

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Shavit (2023)

Notes
Logging on individual chips may add security relative to just using the data
center level registry. This is especially true if chips have strong security, but
it is likely still useful to attempt this with existing chips.

Proof-of-
Training-
Transcript

Given a training transcript and weight shards from individual chips,
prove that this training transcript is the only feasible one that leads
to the observed weight shards. Ideally this is done in a
zero-knowledge way on a mutually trusted data center. Methods
include re-running segments of training to ensure they reach the
claimed end-point and testing memorization of recent data points at
various checkpoints.

Feasibility Previous work (non-comprehensive)

1–3 yearsMedium Shavit (2023); Jia et al. (2021); Choi et
al. (2023)

Notes
Robustness to adversaries is unclear. It may be impossible to know that the
given training transcript is the only feasible one that leads to the weight
shards.

Mechanisms to Verify International Agreements About AI Development | 85



Mutually trusted
data center

To show that a particular training transcript leads to the expected
weight shards, run a small section of the transcript in a trusted data
center, verify that the weight shards are as expected, and
communicate this to the verifying party without leaking model
details. The trust requirement here is that sensitive information used
in the data center (e.g., model weights, model architectures) is
highly unlikely to leak. This confidence might come from a
combination of improved chip security (it is likely difficult to gain
mutual confidence in existing chips) and other security measures,
such as reducing the amount of information that can leave the data
center (Greenblatt, 2024) and using onsite staff who have limited
external contact. While stronger chip security could take substantial
R&D effort, lower-tech solutions which require more political will
could be viable in the short-term.

Feasibility Previous work (non-comprehensive)

1–6 yearsMedium Shavit (2023); Baker et al.
(Forthcoming); Nevo et al. (2024);
Heim (2024b)

Notes
Ensuring this data center is sufficiently secure may be difficult. New AI chips
could be needed.

Key detail:
Provably
random
initialization

One major risk is that an AI developer will split up a large training
run into numerous small training runs to avoid detection. This can
perhaps be avoided by having model training start by initializing
model weights randomly, e.g., according to a set seed, which a
verifier can then replicate to ensure the beginning weights are
random. It may also be necessary to require that the order of
training data be decided through a certified-random process.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Shavit (2023); Choi et al. (2023)
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Mechanisms for
chip limiting,
monitoring, or
workload
classification

FlexHEGs Discussed previously. In addition to the FlexHEG design discussed
above, in this section, it is crucial that FlexHEGs have some insight
into what a chip is doing. For example, this could look like
intercepting the communications this chip makes to other chips and
encrypting them (where only specific chips can decrypt them), a
way to implement interconnect bandwidth restrictions. This could
also include the secure processor viewing the chip’s operations and
ensuring they do not violate some criteria. Because a FlexHEG
design uses a general processor, many verification approaches
could be pursued with such a mechanism.

Feasibility Previous work (non-comprehensive)

2–5 yearsMedium Petrie et al. (2024)

Notes
Requires mass production of new hardware; depending on the
implementation, it may require either new AI chips, auxiliary chips with
secure enclosures, or something else.

Workload
approval

Individual workloads are pre-approved by a verifier as being in
accordance with the rules, and chips only work if a valid signature is
given. This is a more fine-grained version of operating licenses and
might be implemented via a FlexHEG mechanism.

Feasibility Previous work (non-comprehensive)

2–5 yearsMedium Baker et al. (Forthcoming)

Notes
It may be difficult for the verifier to do this without substantial access to
algorithms. Vulnerability to tampering would be a property of the FlexHEG
design used, and it could be very difficult to make this limitation robust on
existing hardware.
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Software and
firmware
restrictions

Chips are limited (via firmware and software attestation) to only use
approved functionality. For example, no training if parallelized across
>16 GPUs, or only run training on models approved by an
international authority. Whether this is more of an allow list or a
disallow list likely affects feasibility. This could be implemented via a
firmware update that specifies approved functionality (combined
with rollback protection). This could be implemented with a
FlexHEG mechanism.

Feasibility

2–5 yearsMedium

Notes
A key difficulty is making these restrictions adversarially robust, especially if
they are not tied to expiring licenses (and therefore being updated
frequently). Vulnerability to tampering would be a property of the FlexHEG
design used, and it could be very difficult to make these restrictions robust
on existing hardware.

Inspectors
reviewing code

Inspectors are given substantial access to the AI development
projects, including reviewing code, allowing them to verify that large
training runs are not taking place.

Feasibility

1–2 yearsMedium

Notes
Requires significant access and might pose privacy or security risks, but it
is not particularly difficult, technically. In the future, it may be possible to use
AIs to assist with tasks like this in a zero-knowledge manner.
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Allow list
operation stack

An international authority could certify certain operations at the level
of “Inference on the Llama 70B model on a DGX H100 server” and
issue the specific GPU-level code for such use cases. AI chips
would be restricted to only run code approved by this authority. This
could be implemented with a FlexHEG mechanism.

Feasibility

2–5 yearsMedium

Disallow list
operation stack

This could include blocking certain training operations such as
backpropagation. While it is mathematically similar to other
operations, it may nevertheless be possible to isolate and prohibit
backpropagation given substantial control of the AI stack. This
could be implemented with a FlexHEG mechanism.

Feasibility

2–15 yearsLow

Notes
This may be impossible. If successful, it would likely involve replacing the AI
software stack with approved libraries and restricting developers from
writing code outside of these frameworks. This would be a major
engineering endeavor.

On-chip
interconnect
limits (“Fixed
Set”)

Chips are manufactured to only have high interconnect with a small
fixed set (e.g., 128) of other chips, making them difficult to use for
training large models. This could be implemented with a FlexHEG
mechanism.

Feasibility Previous work (non-comprehensive)

3–5 yearsMedium Aarne et al. (2024); Kulp et al. (2024);
Discussed below

Notes
Requires replacing hardware. “However, this level of interoperability could
be at least 2 years away, based on an interview with an industry expert”
(Aarne et al., 2024).
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Networking
equipment
interconnect
limits

Regardless of how they are manufactured, chips could be arranged
in small pods with high intra-pod interconnect and very small
inter-pod interconnect. Physical inspections combined with
continuous monitoring (e.g., cameras) of data centers can confirm
inter-pod interconnect.

Feasibility Previous work (non-comprehensive)

1–2 yearsHigh Discussed below

Sensors for
other properties
of chips

Various workload classification methods involve gathering
information about chips, such as their power draw or network
traffic. Many of these properties could be measured with specialized
devices.

Feasibility Previous work (non-comprehensive)

1–2 yearsHigh Baker et al. (Forthcoming)

Notes
Development time would depend on the sensors needed.
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Speculative
differences
between training
and inference
with high-level
chip measures

Inter-chip
interconnect
limits (network
bandwidth
between
servers)

Large-scale AI training involves linking thousands of chips with
high-bandwidth interconnect. Efficient inference, meanwhile, can be
done with dozens to low-hundreds of highly connected chips.
Between different “pods” of well-connected chips, the
communication requirements are very low for inference (tokens)
compared to the activations or gradients that are transferred in
other forms of parallelism—this gap is the target of interconnect
bandwidth limits.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Discussed below; Kulp et al. (2024);
Heim et al. (2024)

Notes
The main distinction here is that inference does not use data
parallelism: different batches of data being processed do not need to be
closely linked together at all, whereas for training this is needed to share
gradients. Advances in distributed training may make this approach
ineffective. With well-designed limits and enhanced security, this could be
difficult to spoof.

Synchronous
changes in
many GPUs,
e.g., beginning
of a training
run, logging of
intermediate
checkpoints

The beginning of a training run may involve many chips doing
nothing, which then suddenly begin processing inputs, showing a
spike in energy use, network traffic, and memory use across many
chips simultaneously. Similar patterns may occur at other points in
training.

Feasibility

<1 yearLow

Notes
This was observed in the Llama 3.1 405B training, resulting in “instant
fluctuations of power consumption across the data center on the order of
tens of megawatts” (Dubey et al., 2024). This is likely spoofable with small
performance penalties, e.g., by slowly adding more servers to a workload
or by using various distributed training techniques.
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Chip utilization
rates, core
utilization rates

Chip utilization, specifically Hardware FLOP Utilization (HFU), is a
measure of the actual amount of computations performed by a chip
relative to its theoretical maximum. Training and inference often
differ along this metric. Current inference for LLMs involves two
stages (Verma & Vaidya, 2023): “prefilling” (computing the KV cache
on input tokens) and “decoding” (generating additional
tokens)—these stages may have distinct effects on power
consumption because decoding is more limited by memory
bandwidth while prefilling is more limited by computational
performance (i.e., utilization and power draw are higher during
prefilling). Therefore, inference could have distinct fluctuations in
utilization.

Feasibility Previous work (non-comprehensive)

<1 yearMedium Heim et al. (2024); Baker et al.
(Forthcoming)

Notes
Recently, it has become popular to report Model FLOP Utilization (MFU), a
measure of the obtained throughput relative to theoretical max throughput
(Chowdhery et al., 2022). MFU calculations are based on the number of
tokens processed, so this requires more access than just high-level chip
information. On the other hand, HFU is more easily measurable and thus
more relevant to the present use case (but for other use cases, such as
accurately estimating the model-FLOP size of a workload, this difference is
very important). Classification on this basis is likely spoofable with medium
cost penalties (e.g., a 20% cost increase via making training less efficient,
which is in the budget of the relevant actors).

Power draw
associated with
training and
inference
differences

Power draw may act as a proxy for chip utilization.

Feasibility Previous work (non-comprehensive)

<1 yearMedium Heim et al. (2024); Patel et al. (2023)

Notes
This has similar problems as chip utilization. It is unclear how closely power
draw correlates with HFU (especially in an adversarial environment).
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Between-chip
data flows
could indicate
training

Inference does not require propagating gradients backward in a
model, so a cluster could be configured for pipeline parallelism and
only permit data to flow one direction through chips.

Feasibility

<2 yearMedium

Notes
For example, a data center operator declares that chips A are storing early
model layers while chips B are storing later layers, and data flow is only
permitted to flow from A to B but not backward. This likely requires
designing custom networking equipment. The spoofability is unclear.

Network
bandwidth
within servers

Generally, the communication pattern between chips in a server
could classify the server’s activity and forms of parallelism being
used.

Feasibility Previous work (non-comprehensive)

<1 yearMedium Heim et al. (2024)

Notes
Given that both training and inference benefit from within-pod/server
parallelism, this may not be a useful differentiator.

Quantity of
accelerators
used in a
workload

Large AI training is distinct in its use of thousands of AI chips for
many days, so it may be possible to differentiate workloads based
on their size. However, this is unlikely to work in the international
verification context because there is effectively one customer who
can break a large workload into smaller, innocuous-seeming
workloads.

Feasibility Previous work (non-comprehensive)

<1 yearLow Heim et al. (2024)

Notes
In the context of cloud compute providers, there are numerous customers
submitting workloads which are likely different. Given the threat model in
this report, we should assume these may all be coordinated by a single
actor. Workloads could be split up sequentially or in parallel.
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Numerical
precision

Lower precision data formats may be more common in AI than
non-AI workloads. However, precision is unlikely to differentiate AI
training and inference reliably.

Feasibility Previous work (non-comprehensive)

<1 yearLow Heim et al. (2024)

Notes
It is sometimes thought that training requires higher precision than
inference, however, this difference is unlikely to be reliable enough for the
present use case. There are known cases of using low precision (e.g., fp8)
for large LLM training (Inflection AI, 2023).

Modification of
weights in
memory

Training requires repeatedly updating model weights, so it may be
possible to monitor changes to values in memory to differentiate
training and non-training workloads.

Feasibility Previous work (non-comprehensive)

<3 yearMedium Heim et al. (2024)

Notes
It is unclear how this would be implemented and how reliable it would be.
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Signatures of
high-level chip
measures

Signatures of
high-level chip
measures

High-level information about chip activities (e.g., power draw,
numerical precision, network activity, etc.) is likely spoofable in the
default setting where one country is trying to classify the workloads
of another country’s data center with limited access. However, this
approach can be made more robust by using high-quality, labeled
data from the monitored data center to improve this classification
approach. The monitored data center operator would run their most
common, internationally approved/permitted workloads (e.g.,
inference of their popular models) while an inspector has code
access to confirm this is happening. The inspector takes readings
for high-level chip measures (e.g., power draw, network activity).
The inspector can then create a classifier based on this data (e.g.,
train an ML classifier), which can be applied to high-level chip
measures in the future (code access is no longer needed if the
high-level chip measures match that of approved activities). If the
measurements deviate significantly from their expected patterns or if
the common workloads change significantly, the inspector can
review the code again. The key insight compared to naively trying to
classify workloads is that temporary code access can provide
high-quality labeled data from the production system, and the data
center operator can be expected to keep its chip activities
sufficiently close to these baselines, versus classifiers needing to
deal with massive distribution shift in an adversarial environment (if
code access is never provided, software stacks and model
architectures may differ substantially, and even the AI chips
themselves may be different from the classifier’s training data).

Feasibility Previous work (non-comprehensive)

<2 yearHigh See below

Notes
It is unclear how consistent these signatures will be over time, but previous
results attempting to classify chip activities with high-level information have
been effective (Copos & Peisert, 2020; Karimi et al., 2024; Köhler et al.,
2021). This approach requires granting temporary code access (including
whenever major changes are applied to chip activities), which could pose
privacy and security risks. This temporary access could be acceptable if a
neutral party or zero-knowledge approach is used (e.g., inspectors who live
onsite and have limited communication with their home country). It could
also be difficult for inspectors to be confident they are seeing the true code
being run.
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Proof-of-Work
methods

Proof-of-Work
methods for
crypto mining

Cryptocurrency mining uses “Proof-of-Work” schemes, which
provide confidence that some declared operations have taken
place. For example, a standard implementation is for workers to
hash variants of the same message until one of the resulting hashes
matches some criteria (e.g., many leading zeros in the hash). It can
be quickly verified that the message variant used produces such a
hash. The acceptance criteria (e.g., number of leading zeros) can
be varied to control the likelihood of an input message producing an
acceptable hash and, thus, the amount of original work confirmed
by each presentation of an acceptable hash. Applying
Proof-of-Work could verify that compute declared to be doing
crypto mining is indeed doing it.

Feasibility

<1 yearHigh

Proof-of-Work
methods for
other common
uses of AI
compute

Ideally, Proof-of-Work-style approaches could also be used to
validate many declared uses of AI compute. The methods
discussed for partial re-running of chip activities include some
versions of this for AI.

Feasibility

2–6 yearsMedium
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Compute
accounting

Compute
accounting

Data center operators can demonstrate that their AI chips are not
being used for a large training run by showing that they are being
used for other things, as accomplished through partial re-running of
chip activities and other workload classification. By summing
declared and verified compute use and comparing it to total
potential compute use, they can show that there is not enough
compute left over for a violation. One difficulty here is that the
quantity of declared chip uses may not correspond to the actual
chip use. For example, chips often do redundant operations during
training (“recomputation”) in order to save on memory, so a data
center operator might claim to have done a training run with 10^25
FLOP, but the chips actually did 1.5*10^25 FLOP because they did
substantial recomputing. Forthcoming work from Baker and
colleagues makes progress on this.

Feasibility Previous work (non-comprehensive)

<1 yearMedium Heim et al. (2024); Baker et al.
(Forthcoming)
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Evaluations Building Blocks

Building Block Mechanism Details

Self-reported
evaluations

Self-reported
evaluations

Model developers can report evaluation results for their models
without any verification.

Feasibility

<1 yearHigh

Notes
Provides very little confidence on its own.

Proof of same
model for
training,
evaluation, and
deployment

Verifying same
computation in
TEE

A TEE can hash key elements of the computation (e.g., the model
weights and inference code), and then confirm that the hash at
evaluation time matches the hash at training and deployment. The
"model from training" could be verified by re-running parts of the
training run and comparing the weight hash at the end of the
verified run to the inference weights.

Feasibility Previous work (non-comprehensive)

1–4 yearsMedium Trask & Bejan (2024)

Notes
This technology is not production-ready yet, but it is very close, and we
know how to solve the problem in principle. It is unclear if TEEs with
existing AI chips can be made sufficiently secure or if new chips are
needed. This general approach could be done without TEEs, but it would
be easier to spoof.
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Cryptographical
ly secure audit
trail

An audit trail demonstrating that deployments of a model are using
the same model that was evaluated by tracking the development of
the model in a cryptographically secure way. This is basically
version control which is cryptographically signed to be legitimate.

Feasibility Previous work (non-comprehensive)

1–3 yearsMedium Reuel et al. (2024, Section 5.4.1);
Brundage et al. (2020); Millet (2024)

Notes
Software audit trails are a standard tool. However, there may be some
difficulties in applying them to AI deployment, such as including various
efficiency optimizations in the audit trail. It is also unclear how effectively
these could be made secure for the present use case.

Redo
evaluations in
deployment

One way for an external auditor to gain confidence that the model
they evaluated is the same model that is deployed via a public API
is simply to re-run the evaluations during deployment and check if
the results match those from testing (or are similar enough, given
that inference often uses sampling). This mechanism is less relevant
to the international verification context because it relies on public
API access, which is somewhat unlikely for frontier models in the
international context (these models seem much more likely to only
be deployed internally, with publicly available capabilities lagging
behind). It is also unclear how effective this would be against
adversarial efforts from developers.

Feasibility Previous work (non-comprehensive)

<1 yearMedium Gao et al. (2024)

Notes
Likely not relevant to the international verification context. One potential
application to the international verification context would be to allow an
evaluator to query a model that is not generally available externally and treat
these queries like other requests. For instance, if an external auditor had
access to the accounts of an AI developer employee, they could potentially
determine if the inference model being served changes over time by
analyzing the model responses.
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Secure
evaluations

TEEs for
evaluation

On-chip and data center-level security mechanisms allow for secure
external evaluations. The model remains with the developer, an
inspector can be confident that the evaluations were properly run
and not spoofed, and the developer cannot see what evaluations
were run.

Feasibility Previous work (non-comprehensive)

1–4 yearsMedium Aarne et al. (2024); Kulp et al. (2024);
Trask et al. (2024)

Notes
H100s already have confidential computing for single-chip setups, and it
may not be too difficult to get this for multi-chip setups (Nertney, 2023).
The adversarial robustness of current implementations is unclear, so new AI
chips could be needed.

Mutually trusted
data center

It may be necessary to run evaluations in a trusted data center
where model details cannot leak, evaluations cannot leak, nor could
a model developer spoof evaluation results. This level of security
might come from a combination of improved chip security (it is likely
difficult to gain mutual confidence in existing chips) and other
security measures, such as reducing the amount of information that
can leave the data center (Greenblatt, 2024) and using onsite staff
who have limited external contact. While stronger chip security
could take substantial R&D effort, lower-tech solutions that require
more political will could be viable in the short-term.

Feasibility Previous work (non-comprehensive)

1–6 yearsMedium Shavit (2023); Baker et al.
(Forthcoming); Nevo et al. (2024);
Heim (2024b)

Notes
Ensuring this data center is sufficiently secure may be difficult.
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Inspectors In the absence of TEE-based security around external evaluations,
but as an improvement on self-report evaluations, international
inspectors could observe the evaluations being done alongside the
main researchers.

Feasibility

<1 yearHigh

Notes
It may be difficult to balance ensuring the inspectors have sufficient access
(are sure the right models are being evaluated) with mitigating security risks.

Evaluations Bot Instead of human inspectors who may pose security risks, it may be
possible for countries to jointly design an AI system to run
zero-knowledge evaluations on each other’s models. Such a bot
could e.g., carry out dynamic red-teaming in a mutually trusted data
center.

Feasibility

1–6 yearsMedium

Notes
Given the design process for the Evaluations Bot, both countries could
have faith that the model is not backdoored to leak sensitive information,
and that the model is sufficiently competent to complete the task.

Effective
evaluations

Better science
of evaluations

Model evaluations are widely believed to be somewhat insufficient
for assessing model capabilities and very insufficient for assessing
model propensities for advanced AI systems. Substantial progress
in the science of evaluations is needed to remedy these
shortcomings and make evaluations effective for assessing risk.

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Bengio et al. (2024); Mukobi (2024);
Barnett & Thiergart (2024)
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Proof of
sufficient
capability
elicitation

Show that capability evaluations would be reliable even if model
developers or models themselves were engaged in sandbagging
(purposefully underperforming during evaluation). Proof of
training/inference may be needed.

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Greenblatt, Roger, et al. (2024); van
der Weij et al. (2024)

Notes
This may be impossible for sufficiently advanced AI systems.

Dynamic
evaluations

As argued in previous work (Bucknall & Trager, 2023; Casper et al.,
2024), effective evaluations may require that evaluators can iterate
on model prompting strategies, fine-tune models, access model
families, and more. Evaluating certain capabilities may also involve a
model repeatedly interacting with the real world, e.g., running code
on computers, as in METR (2024). These forms of access may be
more difficult to facilitate in a secure way than merely prompting a
model with a standard set of queries. If more access is needed, the
difficulty of designing secure environments (e.g., TEEs) for this
evaluation could rise substantially.

Feasibility

1–4 yearsMedium
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General
intelligence
gathering to
augment
evaluations

External
deployment
monitoring

It may be relatively easy to infer the approximate capability level of
AI systems that are deployed in the world, e.g., by looking at their
economic impact, the state of automation, or interacting with them
to test their capability level. We might expect powerful AI systems to
be deployed widely because they could bring massive economic
benefits.

Feasibility

1–3 yearsMedium

Notes
There is likely room for new work, similar to Observational Scaling Laws
(Ruan et al., 2024), that allows for the inference of general model
capabilities based on particular deployment information. Work aimed at
inferring the properties of proprietary models (Carlini et al., 2024) may also
be relevant.

Internal
deployment
monitoring via
cyber
espionage

Cyber offensive tools may be applied to better understand the state
of AI capabilities in a secret AI project.

Feasibility

1–3 yearsMedium

Notes
Monitoring the capability level of internal AI systems, which are only
deployed internally and are kept secret, is more difficult than monitoring
externally deployed models.
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Internal
deployment
monitoring via
HUMINT

Human-based intelligence can help identify the capability level of
secret AI projects. This could include spies, unintentional leaks,
whistleblowers, and interviews conducted by international
authorities.

Feasibility

<1 yearHigh

Notes
Monitoring the capability level of internal AI systems, which are only
deployed internally and are kept secret, is more difficult than monitoring
externally deployed models.
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Other Building Blocks

Building Block Mechanism Details

Incident reporting Incident
reporting

Worrying AI incidents can be anonymously reported to a central
body that helps gauge risk.

Feasibility

<1 yearHigh

Whistleblower
programs

Whistleblower
programs

People who whistleblow about violations of international
agreements are protected, e.g., with asylum guarantees.
Whistleblowing is encouraged by access to reporting channels that
are robust to intense state surveillance.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Baker et al. (Forthcoming)

Interviews Interviews Countries agree to allow international inspectors to interview
personnel working on AI development. These interviews focus on
verifying treaty compliance. These interviews should occur in neutral
locations with privacy and safety guarantees.

Feasibility Previous work (non-comprehensive)

<1 yearHigh Wasil, Berglund, et al. (2024)
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AI-enabled
verification
mechanisms

Logs of relevant
AI activities

Any AI systems used in chip development (e.g., robots in factories)
or AI algorithm development have logs of their activities and
observations stored and accessible by a trusted verifier. These logs
could be used to confirm that these AI systems are not being used
to violate international agreements.

Feasibility

1–5 yearsMedium

Notes
Minimal versions of this could be developed quickly, but ensuring they are
robust and apply to all inference would require more time and potentially
new hardware.

AI-powered
zero-knowledge
work

AI systems could be used to do a substantial amount of work with
sensitive data and then output only a non-sensitive final result. For
instance, an “Evaluations Bot” would be one such system. This
could dramatically expand the set of cognitive tasks that could be
accomplished in a zero-knowledge way, aiding with many aspects
of verification.

Feasibility

1–4 yearsMedium

Notes
The model capabilities will inform what sort of work is possible here, and
sufficiently capable models for some task may not be trustworthy.
Additionally, models will need improved robustness to jailbreaks in order to
be effective.
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AI-powered
data processing

Trusted AI models can be used to classify large amounts of data
(e.g., video surveillance of data centers) to determine whether it
contains violations.

Feasibility

<1 yearHigh

Notes
This is a subset of “AI-powered zero-knowledge work”, and it is additionally
worth noting because it increases the amount of labor available (i.e., this is
useful for privacy-preservation reasons and for total labor supply reasons).

AI-powered
supply chain
tracking

Crucial parts of the chip supply chain can be monitored with drones
in addition to standard security measures.

Feasibility

1–3 yearsHigh

Notes
For example, EUV machines and fabricated chips can be tracked in transit
by drones from multiple countries to ensure they reach their intended
destination.
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Model behavior
specification
agreements
(specifically, the
model will not
help violate
international
treaties)

Countries agree to use behavior specifications that are good for
other countries. E.g., “The model will engage in 𝑋 benefit sharing”
or “The model will not execute military first-strikes”. Verification that
a given behavior specification is used can be done with partial
re-running of training. Hypothetically, external evaluations could be
used to gain confidence that behavior specifications were used, but
current evaluations are unable to assess propensity (as is needed)
and are unlikely to work in this adversarial setting. Even without
being robust, this approach could be cheap to implement and thus
worth pursuing.

Feasibility Previous work (non-comprehensive)

Medium

1–100? years

Discussed below; OpenAI (2024b)

Notes
The tractability of this approach likely varies significantly with AI capability
level. Current approaches for frontier AI systems are insufficient (as
evidenced by models’ susceptibility to jailbreaks, which could be used by a
country when carrying out violations). Robustness to jailbreaks for current
models is likely viable within a few years, based on our familiarity with the
literature. Proper value alignment for advanced AI systems may be
incredibly difficult (Yudkowsky, 2022), and it is difficult to upper bound the
time needed.
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Knowledge of all
inference
instances of a
model

Weights do not
leave their
training data
center

If data centers are registered and have very good security, it may be
possible to quarantine model weights to the data center they were
trained on (or a small number of other data centers). If successful,
this would allow a monitoring party to know where all inference is
happening. While strong security around model weights is generally
desired, sufficient effort is needed to make it happen. Additionally,
this approach requires that security be sufficient to prevent insider
threats from the country operating the data center, e.g.,
international collaboration on security.

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Nevo et al. (2024); Greenblatt (2024);
Harack et al. (Forthcoming)

Notes
Requires very good security and likely continuous monitoring of security but
is otherwise straightforward.

Model weights
only
decryptable by
certain chips

If chips are partially hardened, at least to the point of having private
keys and TEEs, model weights can be encrypted with the public
key of the chips they will later run on, allowing only those chips to
decrypt the model weights and run the model. This could potentially
be implemented with FlexHEG designs, with the secure processor
providing encryption and decryption while the secure enclosure
makes it difficult to extract model weights or private keys.

Feasibility

2–4 yearsMedium

Notes
This is unlikely to be robust to physical attacks on chips (i.e., extraction of
chip private key) unless substantial hardening measures are taken. If only
pre-specified chips can run inference for a model, it is much easier to
locate those chips and thus know where all inference is occurring.
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Bottlenecked,
distributed
inference

One party or data center has some of the model weights and
another has the other model weights. Both parties are required for
inference to take place. A country could have one centralized and
internationally monitored data center that performs a small but
crucial part of inference computation (such as one layer of a model),
ensuring international regulations are followed, but a majority of
compute would not be directly monitored. This approach is useful
because it reduces the amount of compute that needs to be
monitored (i.e., cheaper and easier), and unmonitored compute
could be located in secret data centers.

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Borzunov et al. (2023)

Notes
If carrying out a forward pass on a model requires multiple parties, each of
those parties is a node for knowing inference is taking place. There are a
few requirements: The centralized data center must be secure enough
(according to not just the host country, e.g., including against insider
threats) to protect the centralized computation (Nevo et al., 2024). The
centralized computation must also be necessary for inference and very
difficult to reverse engineer (Carlini et al., 2024) or replace (e.g., by training
a module to match its behavior). Additionally, monitoring may be more
difficult because the centralized data center primarily receives intermediate
activations from a model rather than inputs and outputs; this could be
addressed by having decentralized clusters send all inputs and outputs
(tokens) to the centralized data center and the centralized data center
re-running a small fraction of the full model inference to ensure the
submitted inputs, activations, and outputs match.
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Widely applied
chip restrictions

If nearly all AI chips in the world are under a governance authority
with tools like FlexHEGs, various mechanisms for chip limiting or
monitoring could be applied, as discussed previously. For instance,
chips could be restricted to only running inference or training on
certain models which have been approved by an international
authority. If a substantial fraction of all AI chips were covered by
such controls, this could increase confidence that inference was not
being done on an unapproved model.

Feasibility

2–6 yearsMedium

Notes
A key uncertainty is defining which chips these restrictions would need to
apply to, and a key difficulty would be implementing sufficiently secure
restrictions on those chips. Inference typically has lower compute
requirements than training; if these are still high (e.g., >64 cutting-edge AI
chips), this may be feasible but would be very difficult. If the model of
interest could be run on consumer hardware, it is likely infeasible to bring all
such hardware under a governance authority. It may also matter both
whether the model can be run, at all, on some hardware, and whether it
can be run efficiently (e.g., if consumer hardware can run a model, but
does so much slower than data center AI chips, restrictions on data center
AI chips could be effective).

Inference-time
oversight

Inference
classifiers

Lightweight classifiers run locally on inference workloads, enabling
verifiers to check that deployment follows the rules while limiting
access.

Feasibility Previous work (non-comprehensive)

1–2 yearsMedium Discussed below
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Verification that
inference
classifiers are
running

Inference software stacks could be designed to ensure classifiers
are running correctly. This could use one of the approaches
discussed for limiting or monitoring chip activities (and chip
restrictions being tied to the presence of specific oversight). Chips
likely need to be made more secure. Partial re-running of chip
activities could also be applied here, with a verifier checking that the
classifier results from declared inference are correct.

Feasibility

1–4 yearsMedium

Notes
E.g., a classifier which is approved by an international body runs on inputs
and outputs, a CPU-based TEE attests to this fact (with tamper-evidence
to avoid private-key exfiltration), and AI chips are restricted to only perform
computations when such a signature is present.

Provably Safe AI Provably Safe
AI

This is a family of research agendas. Formal verification of AI agents
and AIs that oversee them such that deployment of the agent will
provably fall within some safety specifications designed with human
input.

Feasibility Previous work (non-comprehensive)

3–15 yearsMedium Dalrymple et al. (2024); Dalrymple
(2024)
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Reduce model
capabilities in
relevant domains

Train without
dangerous
information

Countries agree on particularly dangerous knowledge they do not
want models to know; information about these topics is filtered out
of training data. This would be moderately easy to do but harder to
verify: verification that countries are following this commitment
could include partial re-running of chip activities.

Feasibility

<1 yearMedium

Notes
May be intractable for advanced AIs due to them learning knowledge
without explicitly training on it. Requires defining dangerous knowledge
before training and thus runs some risk of proliferating that knowledge.

Knowledge
unlearning

After training, apply knowledge unlearning techniques to reduce the
model’s capabilities in the dangerous domain. Verification that
countries are following this commitment could include partial
re-running of chip activities.

Feasibility Previous work (non-comprehensive)

1–5 yearsMedium Casper (2023); Tamirisa et al. (2024)

Notes
Current techniques are insufficient. May be intractable for advanced AIs
due to knowledge collisions. This unlearning may need to be robust to
fine-tuning, or not, depending on the risk there.

Non-AI
monitoring

General
intelligence
gathering
(military)

Countries already attempt to gain insight about each other’s military
capabilities via numerous intelligence gathering methods.

Feasibility

<1 yearHigh
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Physical
inspections
(military)

Inspectors monitor military production facilities to ensure particularly
powerful weapons (e.g., novel WMDs) are not being developed.
Ideally, this happens in a privacy-preserving manner.

Feasibility

2–4 yearsHigh

Notes
Political will and privacy costs are likely a large implementation barrier.
Given the uncertainty about what novel weapons could be developed, it
also may be difficult to reliably monitor for them.

General
intelligence
gathering
(economic)

Publicly available discussions about AI integration, scientific studies,
general economic measures, and private financial data are all likely
to indicate when a country is getting substantial economic returns
from its AI systems and automation.

Feasibility

1–2 yearsHigh

Monitoring of
automation and
economic
capacities

Countries could agree to monitor the production and distribution of
robots (and their components), as a way of providing early warning
for many types of automation. This could involve access to
otherwise-private high-level financial data accompanied by
occasional physical inspections.

Feasibility

1–2 yearsHigh

Notes
Because the focus is on economic applications and capabilities,
deployment is likely to be widespread, making monitoring easier (as
compared to monitoring secret robotics programs).
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No data center
colocation

No colocation
with non-AI
compute

Data centers built only for AI workloads allow numerous crucial
security, verification, and enforcement mechanisms to be applied
without collaterally affecting non-AI compute. For example,
verification approaches based on data-center-wide power draw
would be ineffective if there were power-hungry non-AI workloads
happening in the same data center.

Feasibility

1–2 yearsHigh

No colocation
with sensitive
military facilities

Verification mechanisms that make use of physical inspections, or
compute tracking in general, may be much more difficult if AI data
centers are part of military installations, as there is an increased risk
of sensitive information leaking.

Feasibility

1–2 yearsHigh

Cryptography
concepts

Public-key
cryptography

A pair of keys, known as a private key and public key. A message
can be encrypted by a reader’s public key, allowing only the reader
(with their own private key) to decrypt and read the message.

Cryptographic
signature

Using public-key cryptography, a party can sign a message with
their private key, allowing readers (anybody with the corresponding
public key) to know the signer was the true author of the message.

Notes
This is commonly used to verify that the author of a software update was
the true company: the company releases their public key to the public and
then signs software updates with their private key.

Hashing A message can be encoded into a short representation (a “hash”)
with a known algorithm. Only the same original message would lead
to that hash, and the original message cannot be
reverse-engineered from the hash.

Mechanisms to Verify International Agreements About AI Development | 115



Secure Boot When powering on, a computer only runs software that is
cryptographically signed by trusted authorities (e.g., the device
manufacturer). Allows a computer to boot into a trusted
environment.

Zero-
knowledge
proof

A zero-knowledge proof is a protocol where a prover demonstrates
to a verifier that some claim is true without revealing sensitive
information about the claim to the verifier besides its truth value.
This report uses the term “zero-knowledge” to refer to protocols
with this property, even though they may not be strictly
zero-knowledge proofs.

Cryptographic
Escrow

A party to declare and encrypt a set of information and then
selectively show/decrypt subsets of that information to a verifying
party later. In doing so, the proving party must commit
(“Commitment Scheme,” 2024) to their full story at the beginning
but only needs to reveal the story incrementally, e.g., as diplomatic
talks progress.

Previous work (non-comprehensive)

Philippe et al. (2019)

Notes
This approach is conceptually similar to a prover privately implementing a
blockchain (“Blockchain, 2024”) that sequentially includes all the data they
may later want to reveal and then being able to selectively reveal the true
value of any particular block.
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Elaboration on Particular Mechanisms
This section elaborates on a few of the mechanisms described above that benefit from more clarity.
These are largely derivative of existing ideas (we do not claim originality), but placing them in the
context of international treaties may provide value to some readers.

Inference Classifiers

Summary

Inputs and outputs during inference can be seen by a trusted classification model which asserts
that they do not contain any prohibited content.

Longer Description

This is a similar approach to ChatGPT and Claude having secondary filters for prohibited content
other than the LLM itself refusing; it is also similar to content moderation generally. It can likely be
done in a privacy-preserving way where country 𝑋 develops a classifier that country 𝑌 must run,
and country 𝑌 can verify that the classifier can only transmit back a small amount of information
(e.g., “permitted” or “not permitted”) to country 𝑋, to avoid leaking sensitive data. The classifier
itself, and its judgments, should be obfuscated from country 𝑌 to make it more difficult for country
𝑌 to nefariously get around the classifier’s judgments. Inputs/outputs classified as “not permitted”
can undergo additional inspection, e.g., by an air-gapped multi-national committee.

Feasibility

Medium; 1-2 years. We have very similar content moderation systems already in deployment for
numerous applications and hundreds to thousands of experts. Making the classifier opaque to
country 𝑌 seems like a standard obfuscation problem like that of obfuscating proprietary code or
proprietary ML models—it would be aided by having Confidential Computing for AI chips.

One major hurdle is ensuring that all relevant inputs and outputs are passed through the classifier.
One way to achieve this is to both: prevent weights from leaving the data center, and have close
monitoring of all chips in the data center. The second of these might involve FlexHEG mechanisms
such that a chip is only allowed to operate if it has received cluster-level authorization for a
particular batch of inputs that has been classified.

Another hurdle is having clear definitions of permitted content and turning these into classifiers: a
rule like “no inputs/outputs about cybersecurity” may be easier to enforce than “no inputs/outputs
used for offensive cyber operations”, as the second requires more sophisticated classifiers.
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A classifier like this may be able to tolerate low sensitivity (a high false negative rate). This is
because effective violations will likely require many queries to models, but finding even one such
query would be a substantial violation of the treaty with significant consequences.

It may be difficult (for political and security reasons) to develop a method for verifying the queries
classified as violations in a way that does not leak sensitive information. Checking these queries in
some way (e.g., human inspectors) is a critical part of this approach being effective because the
classifier will likely not be perfectly reliable.

Implementation Cost

Such a classifier need not be very compute intensive, especially relative to the models being run.
This could likely be done well for <10% of the model inference cost. Classifiers like these are useful
for model developers as well, e.g., as part of an AI Control scheme (Clymer et al., 2024;
Greenblatt, Shlegeris, et al., 2024), or to monitor for misuse, so there may be efforts to make these
classifiers cheap and effective, independent of their use for international verification.

Shared Model Behavior Specifications: AIs Do Not Violate International
Agreements

Summary

Specifications for safe AI behavior should include AIs abiding by international agreements, and this
should be required for development, similar to other safety-relevant behavior specifications.

Longer Description

An international verification regime could take place after there are AI systems capable of
contributing to novel research and engineering. In more extreme cases, AI systems may be doing a
substantial fraction of intellectual labor. If this is the case, there is considerable worry that AI
systems would be used to help violate international agreements, e.g., doing distributed training
research to get around interconnect limits. One potential approach to this problem is to decrease
the relevant AI systems’ propensity to violate international agreements. This motivates the present
approach of using shared model behavior specifications to prevent AI systems from violating
international agreements.

Current AIs are trained with the developer’s intention of AIs following some behavior specification;
see, for example, OpenAI’s “Model Spec” (OpenAI, 2024b). There is ongoing research aimed at
ensuring models actually follow these specifications. If that research is successful, it may be
possible to incorporate specifications such as “abide by international agreements about AI
development” as part of AI model behavior goals, along with other likely goals such as “abide by
local laws” and “uphold the UN Declaration of Human Rights”.
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Ensuring that models always follow these specifications and are resistant to jailbreaking is an
unsolved problem for current models. Getting future AI systems to follow behavior specifications
may be far harder, akin to solving the AI intent alignment problem (Christiano, 2018). Based on our
familiarity with the field, we think that jailbreak resistance could be achieved for current AI systems
in a few years if there is a substantial research effort (an unrealistic expectation, given that
increasing model capabilities will change where research is directed).

For sufficiently advanced models (e.g., AGI), getting any behavior specifications correctly into their
goal systems may be incredibly hard and infeasible on the relevant timescales.

Furthermore, our threat model involves models being trained and deployed by adversaries who
may wish to bypass a particular behavior specification. Thus, there is a worry that developers might
attempt to subvert this mechanism. They could do this via purposefully backdooring a model in
training to, e.g., ignore its behavior rules when a certain password (Greenblatt, Roger, et al., 2024)
is used; by fine-tuning (Volkov, 2024) a model to remove behavior guardrails; or by using any
number of other techniques to bypass behavior specifications. This could be far more difficult than
preventing jailbreaking in the black-box setting. While there is some work on reducing open-weight
models’ risk of being fine-tuned for malicious use, e.g., Tamirisa et al. (2024), Deng et al. (2024),
Henderson et al. (2023), this problem is unsolved. We further note that our threat model includes
adversaries being willing to spend substantial resources to bypass a verification regime and, thus,
potentially to bypass behavior specifications. Work on open-weight fine-tuning prevention is mostly
aimed at attackers with <1% of the compute resources as original training, whereas the
international verification context requires we consider attackers who may be willing to spend more
than 100% of original training costs if they can do so covertly (the covert constraint means that 1%
may still be a relevant target, depending on the verification regime).

It is unclear how such a behavior specification would be translated into AI training processes, as
this would be context-dependent. For instance, it could be instituted via specific training data being
included or in the “constitution” used by AIs providing feedback to a model being trained (Bai et al.,
2022). These details are critical to how another party would verify that the behavior specification is
correctly being applied. For many of those implementation details, the verification approach is likely
to re-run portions of training to confirm a training transcript and then inspect that transcript to
ensure it uses the behavior specification correctly (and does not include obvious backdooring). This
would be accompanied by attestations that the deployed model (in monitored deployments)
matches that from the declared training run, in order to avoid fine-tuning attacks. Inference
classifiers may also be used to reduce the likelihood of jailbreaking. While, hypothetically,
evaluations (e.g., adversarial prompting to encourage a model to break the agreement) could
potentially help verify that trained models are following the desired specification, current evaluations
are unable to assess model propensity and would thus be insufficient. This is especially true given
how porous model behavior specifications can be, e.g., getting models to follow the specification
precisely and interpret ambiguous cases correctly.
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We note that the goal “follow international agreements about AI” may be more difficult to train into
models than many other behavior specifications because these international agreements are
subject to change over time. A goal such as “do not make biological weapons” has no need to
change over time, but the specific rules that are imposed by international agreements might
change, so there is a need for this goal to be represented in a flexible but secure
(jailbreak-resistant) manner in AI systems.

Feasibility

Medium (but maybe very difficult); 1-100? years. As discussed, there are numerous potential issues
which could render this infeasible. However, it may also parallel the feasibility of getting other
behavior goal specifications (OpenAI, 2024b) into AI systems, such as getting an AI system to
follow applicable laws.

One issue is that countries may not agree to this specification as there could be negative
side-effects (or the fear of them) from a model not prioritizing national interests. Furthermore,
confirming that a behavior specification was used (and not backdoored) likely requires re-running
portions of training or similar methods which involve substantial access.

Implementation Cost

This mechanism does not add inference overhead. There is likely minimal training implementation
cost, assuming a behavior specification is used already. This could add substantial complexity to
default training behavior objectives due to the goal change problem discussed, but it is unclear.

Networking Equipment Interconnect Limits

Summary

AI chips can be physically arranged to have high bandwidth interconnect with only a small number
of other chips (a “pod”) and very low bandwidth interconnect to chips outside this pod, thus
preventing their use for large training runs or (for sufficiently small pods) large model inference. This
can be physically verified without access to details about what the chips are doing (e.g., with
security cameras and special networking equipment). While this approach does not make large
training impossible, it can make the time cost sufficiently burdensome to act as a strong deterrent.

This approach draws inspiration from the approach of chips being manufactured in a “fixed set”,
discussed in Kulp et al. (2024). It is distinct because it can be retrofitted to chips already in use via
networking equipment, but it requires physical access to data centers for verification.
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Longer Description

AI chips could be networked together so that they are ineffective for large training. In particular, it is
currently much easier to train large models if a developer is parallelizing across thousands of chips
with high interconnect bandwidth between them. Therefore, a data center could assert that it is not
doing a large training run because the physical connection of chips would make this highly
inefficient. There are numerous ways to implement interconnect bandwidth limits; the main one
would likely be using special networking equipment with a physical switch that only allows either
very low bandwidth (e.g., 1 Mb/s) or standard high bandwidth (e.g., 400 Gb/s) communication with
a pod, in a way that is clearly physically verifiable. The low bandwidth mode would correspond to a
pod very likely conducting inference, where the key observation is that input and output tokens are
a smaller communication payload than those used in various forms of parallelism (e.g., gradients
for all weights in the case of data parallelism). This equipment’s presence and switch state can be
verified through occasional physical inspections and security cameras. This is a convenient
verification mechanism because the regulator does not need to access the most sensitive
information: the algorithms, weights, and data being used. We now discuss some of the details:

This mechanism requires physical verification, e.g., regular random physical inspections and
security cameras in data centers to detect any modifications to interconnect, and monitoring of the
supply chain for interconnect equipment (to ensure the approved low-interconnect cables have not
been tampered with to make them too performant).

There is an important distinction between training and inference for interconnect limits: training is
typically parallelized across thousands of chips, so restrictions on the order of a hundred chips may
be effective. On the other hand, efficient inference may be possible with a smaller number of chips.
Inference can be carried out with roughly as many chips as it takes to fit the model into DRAM,
which is currently around ten chips for some of the best models (Dubey et al., 2024). However,
there are significant efficiency gains from using tensor parallelism and larger pods for inference,
perhaps around 128 chips.

Interconnect limits should be at least high enough to allow tokens to quickly pass in and out of a
pod for inference, but they should be lower than would allow this pod to engage in parallel training
with other pods. Additionally, it would be a major hassle if it took a very long time to load models
(or other data) into GPU memory. Ideally, these limits should be tailored individually to input and
output communication from a pod, based on the claimed activities of the pod (e.g., very low output
bandwidth for chips that are doing long-generation inference, as this is a slow process that can
work at low output bandwidth). The hassle of interconnect limits significantly affecting the time it
takes to load a model into memory could be avoided by having a physical switch such that a pod
is permitted to use high bandwidth interconnect every so often (e.g., once every 48 hours).

We note that interconnect limits could also be applied to limit inference on especially large models.
It may be very slow to run inference for large models without a high bandwidth connection
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between many chips; for instance, the Llama 3 405B (Dubey et al., 2024) model cannot perform
inference at BF16 precision on a server with eight H100 GPUs. Therefore, a data center could
claim that it is not doing large model inference on the basis that it does not have the physical
interconnect to do this efficiently—e.g., it has pods of just four chips with limited interconnect.
Presently, we focus on interconnect limits to restrict training.

The key bounds on the specific inter-pod limits should be based on the requirements for efficient
inference and efficient training. For instance, pod sizes should be large enough to enable efficient
inference (e.g., 128 chips). Meanwhile, inter-pod interconnect limits should be set so that input and
output tokens can be quickly shared for inference, but inter-pod communication is too
bandwidth-limited for training. The primary goal of interconnect limits is to make large training
prohibitively slow, e.g., take 100x longer than if the same GPUs were networked with high
bandwidth interconnect. If the between-pod communication is of full-model gradients (in the case
of data parallelism), then these interconnect limits are taking advantage of the difference between
the size of the model weights (which is approximately equal to the size of gradients) needed for
training and the size of input and output tokens needed for inference. If the between-pod
communication is of activations (in the case of pipeline parallelism), then these interconnect limits
are taking advantage of each token being represented by a high dimensional vector between
layers, i.e., the activations for each token at intermediate layers are larger than the representation of
that token’s index in the vocabulary. We discuss pipeline parallelism below.

Inter-GPU interconnect can often exceed 400 Gb/s within a data center. In the present case, we
would like to enable small pods of chips to communicate quickly (e.g., >400 Gb/s), but have
extremely low communication to other chips (e.g., 1 Mb/s) in order to be prohibitively slow for
training, even given advances in distributed training efficiency and subversion efforts. These limits
would likely be stricter than merely requiring the use of standard ethernet cables (which are typically
at least 1 Gb/s).

Because relatively low bandwidth amounts, e.g., 500 Mb/s, a similar speed to 5G phones (“5G,”
2024), could enable a pod to be used in a distributed training run (see below), additional measures
are needed to restrict covert pod communication, other than blocking the main communication
channels. For instance, security measures may include enclosing each pod in a Faraday cage in
order to block radio signals from a device covertly placed in the pod.

This interconnect bandwidth approach (at least as oriented around preventing data parallelism
between pods) is somewhat analogous to Greenblatt’s (2024) idea to use upload limits to prevent
model exfiltration. The approach in that work is to leverage this difference between the size of
model parameters and inference tokens for improved security by limiting the amount of information
that leaves a data center (such that stealing a model would take prohibitively long). The thresholds
of worry are different: in the present case, if the inter-pod bandwidth limits mean it takes 10 hours
to transfer gradients, that may be sufficient to dissuade distributed training, but if the model
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weights could be stolen in 10 hours, that would clearly not be a sufficient security measure. The
upload limits approach is also more likely to apply at a higher level (e.g., to an entire data center),
whereas the present approach will apply to pods of a small number of chips within a data center.
Both approaches may face difficulty if it is easy to compress model weights or gradients
significantly. Preliminary work from Brown & Mazieka (2024) finds that, in the upload security limit
context, compressing to ~1 bit/parameter is likely feasible (and potentially lower), but in their threat
model, attackers can take advantage of retraining the model after compressed-weight exfiltration.
Retraining is less of a concern in the present case because such retraining would add considerable
time cost to training (the goal of using distributed workers was to accomplish more training in
parallel, and individual workers needing to retrain adds serial time).

One potential benefit of this interconnect-restriction approach is that it’s flexible: physically verifiable
interconnect limits can be changed relatively easily (rather than manufactured-in limits), so it may
not be a major issue that the pod-size limits for training and inference will be very different.
Flexibility is also convenient if there are changes to the safety landscape and it becomes possible
to safely conduct large training runs; it is easy to do this by switching networking equipment. The
flexibility also gives treaty signatories an easy out if they choose to leave the treaty and its
requirements.

However, the flexible nature of this mechanism is also a limitation: it would be very easy to break
such a treaty agreement if, for instance, there is a domestic change in priorities (e.g., the U.S.
pulling out of the JCPOA). If we need mechanisms that are likely to last decades, interconnect
bandwidth restrictions would need to be more permanent than just being based on networking
equipment. But this issue is not specific to interconnect limits: many of the mechanisms for
verification would face major hurdles if they needed to be robust to years of overt subversion, e.g.,
on-chip mechanisms would also struggle with the threat of adversaries building their own
unregulated AI chips on such timescales.

Example Limits Calculation

Here we suggest tentative inter-pod bandwidth limits, but these suggestions should be seen as
illustrative and hypothetical, rather than final—properly setting limits would require extensive
engagement with AI developers to understand their constraints and state of the art methods, as
well as potential future developments. We base these calculations on preventing data parallel
training, which is only one method of making such an estimate; a thorough limit needs to involve
other forms of parallelism.

As discussed, there are two key implementation details, the pod size and the interconnect limits;
we provide example calculations for how to set these limits, based largely on the Llama 3.1 405B
model (Dubey et al., 2024).
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The pod size should be large enough for efficient inference but not too much larger (as that would
run the risk of large training runs). The majority of the pre-training for the Llama 3.1 405B model
uses pods (total GPUs / data parallel count) of 128 H100s. We choose this as our pod size.

Interconnect limits take advantage of lower inference than training bandwidth requirements, so in
this example we want to make assumptions which lower-bound training bandwidth and
upper-bound inference bandwidth, to see if this gap continues to exist under realistic, but
pessimistic, conditions.

Training Communication Requirements

In data parallel training, the total communication requirement (send and receive) per gradient step
per worker is at least 2*size_of_gradients. Conceptually, this reflects that each worker must send
the set of gradients from their data and receive the average set of gradients from the other data
parallel workers’ data. This can reach 2*size_of_gradients in the case of a Parameter Server whose
job is to receive gradients from all workers, reduce them, and broadcast the average gradients; the
Parameter Server requires substantial bandwidth, but each worker only needs to both send and
receive size_of_gradients. In practice, other methods for doing this all_reduce operation are used,
such as ring all_reduce, which require more total bandwidth per worker but are overall more
efficient. Here, we use the Parameter Server baseline where for each gradient step, each data
parallel worker must send size_of_gradients data and receive size_of_gradients data.

The Llama 3.1 405B model has 405 billion parameters (corresponding to the same number of
gradients, for this model). Ignoring issues with this specific model’s training, which will likely be
solved in the future, we assume gradients are stored in BF16, 16 bits. Per training batch, the
amount of information transferred for each pod would then be (405B params * 16 bits/param *
0.125 bytes/bit) = 812 GB per batch (i.e., approximately the storage size of the model) in each
direction.

Time to process a training batch: (131072 tokens * 6 FLOP/token-parameter * 405000000000
parameters / (400e12 FLOP/s/GPU achieved * 128 GPUs)) = 6.2 seconds per batch. We can
further check this answer against the ~60 days that training was reported to take (different
configurations were used, making these estimates uncertain). Given that there is a global batch size
of 16M, training on a total of 15.6T tokens would take ((15.6T / 16M) * (6.2 seconds per batch ) /
(60 * 60 * 24 seconds per day)) = 70 days, close enough for our purposes.

So our total required communication for (synchronous data parallel training) is approximately: (812
GB / 6.2 seconds) = 131 GB/s each direction.

Token Communication Requirements Prelude

The vocabulary size of the model is 128,000, and each token can thus (conservatively) be
transferred with 17 bits/token (2^17 > 128,000); in practice, tokens could be compressed much
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more than this, likely to less than one bit per token. We provide estimates for the communication
requirements of the model doing inference using data from both inference throughput (most
relevant) and training throughput (additional sanity check). Note that the inference data is based on
a smaller pod size, whereas throughput per GPU may be much higher for a larger pod size (one
reason to also consider training throughput data that uses the desired pod size).

Throughput Communication Requirements Based on Inference Data

Inference throughput reported in the Llama 3.1 paper (Dubey et al., 2024, Figure 24a) is about
5,000 tokens/second for prefill tokens in a 16 GPU setup. Based on this, we can calculate the
approximate (input) data requirements as: (5000 tokens/second / 16 GPUs * 128 GPUs/pod * 17
bits/token * 0.125 bytes/bit) = 85,000 bytes per second = 85 KB/s per pod.

Throughput is typically much lower for decoding (generating tokens), e.g., about 1,000
tokens/second for Llama (Dubey et al., 2024, Figure 24b). This would correspond to 17 KB/s
(upload) per pod. As mentioned, it may be ideal for interconnect limits to separately target upload
and download. Presently, we’ll assume the conservative case that inference is almost entirely
prefilling (e.g., one token being generated) as this has the highest communication requirements.

Throughput Communication Requirements Based on Training Data

Much of the Llama 3.1 405B model training (Dubey et al., 2024, Table 4, Row 2) uses a sequence
length of 8,192 and a batch size of 16 per data parallel worker (pod). Therefore, the size of tokens
transferred into a pod per batch is (8,192 tokens/sequence * 16 sequences * 17 bits/token * 0.125
bytes/bit) = 278 KB per batch per pod of 128 H100s.

So our estimated communication for tokens needed per pod during training is: (278 KB / 6.2
seconds—calculated earlier as the time to process a training batch) = 45 KB/s.

Naive Results

To repeat the number calculated above:

● Training gradient communication bandwidth: 131 GB/s (each direction)
● Inference token communication bandwidth: 85 KB/s (download). We will use this figure as

our inference communication requirement.
● Inference token communication bandwidth based on training throughput: 45 KB/s

(download)

So our initial assessment is that the per-batch communication requirements for tokens would be
(131 GB/s / 85 KB/s) = 1.5 million times less than for gradients, assuming no compression of
either. This large difference is the key to interconnect bandwidth being a useful governance tool in
our approach.
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Caveats

There are numerous ways in which these calculations are imprecise. For example,

● Generating inference tokens, “decoding”, is typically much slower than “pre-filling” (which
makes up all of training and some of inference requests)—the above inference throughput
is thus an over-estimate.

● Non-text inputs and outputs may have different token requirements.
● Importantly, throughput per GPU likely changes with pod size such that the “tokens per

GPU per second” number extrapolated from a 16 GPU setup is insufficient. This is a major
source of error, and, unfortunately, there is little public data available about large inference
clusters.

● In practice, many techniques are used to make inference more efficient (including increasing
throughput), such as using quantization, speculative decoding, pruning, etc. The way to
deal with such techniques is likely to adjust pod size downward when a compute operator
wants to do higher-throughput inference.

● The inference throughput numbers from the Llama paper appear to be higher than those in
various blog posts (Comly et al., 2024; Snowflake AI Research, 2024), but this is
acceptable given our goal of upper-bounding inference communication requirements.

● During data parallel training, a pod must also receive tokens to process, so the actual
communication requirements during training are (tokens + gradients) in, (gradients) out, per
batch.

● Etc.

Fortunately, there is a large space between these two bounds.

Another key limitation is that this calculation does not deal with distributed training, a topic we
discuss in more depth in a later section. Based on that discussion, we make a couple of
adjustments.

Adjustments Based on Distributed Training

In a traditional data parallel approach such as that used in the Llama training, gradients need to be
aggregated every training step (i.e., every batch), e.g., every 6.2 seconds for the above estimate. In
a high-bandwidth setting, this aggregation is relatively fast, e.g., less than 6 seconds. Data parallel
training can, in principle, be bottlenecked by the speed at which these gradients can be
aggregated, as this time is idle GPU time (i.e., every 6.2 seconds, the GPUs have to wait for the
global gradient update before processing the next batch, assuming these aren’t done
simultaneously as they sometimes are). In this case, the goal of interconnect limits would be to
extend this aggregation delay by sufficiently long, such that training is highly inefficient. Naively, if
transferring a copy of gradients took 60 seconds, this would increase the required training time by
~10x compared to near-instantaneous synchronization (from ~6 to ~60 seconds per batch).
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Given the discussion of distributed training below, we consider a case where training Llama
requires 100x less data to move per gradient synchronization and 100x less frequent gradient
synchronizations: 8.12GB every 620 seconds; we also assume gradient aggregation occurs in
parallel with computation. So, we consider the case of distributed training that can parallelize
across workers with a bandwidth of 8.12 GB / 620 seconds, or 13.1 MB/s, per direction, as the
training run we would like to prevent. This adjustment for distributed training is rough and a large
source of error.

Limits Suggested by This Example Calculation

The distributed training bandwidth requirements are 13.1 MB/s. Recall that our tokens would like to
move at approximately 85 KB/s for inference. Based on these two bounds, and wanting to
significantly slow training (e.g., 100x), we recommend an inter-pod interconnect limit of 125 KB/s =
1,000 Kb/s = 1 Mb/s for each direction.

This limit is intended for demonstration purposes. It does not account for future distributed training
methods (it only uses approximations of current methods), it assumes no token-compression
(whereas token-compression will be very helpful for widening the gap), it is based on rough
guesses at key values, and it does not involve knowledge of proprietary infrastructure.

Compute would be unusable if this limit was imposed naively—it would take ~75 days to load the
full Llama model into memory! Therefore, these interconnect limits should be implemented with
modular networking equipment, such that high bandwidth is available occasionally for large data
transfers—e.g., once every 48 hours. We leave those details to future work.

Interconnect Limits and Distributed Training

We now discuss the vulnerability of this approach to advances in distributed training. Distributed
training is a research sub-field with the goal of efficiently training large AI systems across many
“islands of compute” (also referred to as: “workers”, “pods”, “nodes”) which have limited connection
between them. For instance, the organization Prime Intellect (Prime Intellect Team, 2024) aims to
enable training between compute nodes on different continents. Here, we discuss what distributed
training means for interconnect bandwidth limits aimed at preventing training. While predicting
future advances is difficult, we can examine previous research to obtain rough estimates for how
much this might change the interconnect limits necessary. Given our suggested implementation of
interconnect limits, the key factor to consider is how much communication each pod requires in a
given setup; we assume a central server without strong interconnect limits (e.g., any unmonitored
server outside a data center) that stores a central copy of a model, and most processing is
occurring in pods which are under a governance regime and have limited interconnect bandwidth.

Federated learning schemes such as DiLoCo (Douillard et al., 2024) take a single model, copy it to
multiple pods, have each pod train on some data, and then aggregate across pods. Compared to
standard data parallel training, this reduces each pod’s communication requirements by a multiple
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of the number of inner steps taken, e.g., if each pod does 100 steps of training before aggregating
across pods, the communication of model weight differences (“pseudo gradients”) would happen
100x less frequently.

Douillard et al. (2024, Figure 2) demonstrate similar performance to standard data parallel training
for a 150M parameter scale LLM, using 500 local steps (i.e., a 500x decrease in communication
frequency).

In follow-up work, Jaghouar et al. (2024, Figure 7) scale to 1.1B parameters and find somewhat
worse but still strong performance: shows (Open)DiLoCo slightly underperforming the
total-FLOP-adjusted baseline with 125 local steps, while being less performance at 500 local steps.

Similar work from Sani et al. (2024) shows similar federated learning approaches working at the 7B
scale, however they do not appear to do the requisite FLOP-adjustment for these results to be
directly relevant.

Together, these results indicate that at least a 100x reduction in communication frequency is likely
possible via workers training for 100 inner steps before sharing gradients.

Another source of communication reduction is gradient compression. The CocktailSGD method
introduced by Wang et al. (2023) combines random sparsification, top-k sparsification, and
quantization to compress gradients by 117x without hurting fine-tuning performance.

Some distributed training techniques will stack with one another, likely including DiLoCo-like
approaches and gradient-compression approaches. While it’s imprecise to simply multiply the
estimates from above (e.g., because the gradient-compression results are for fine-tuning), our goal
is to obtain rough estimates, so we do this. Stacking two 100x efficiency gains leads to an
improvement of 10,000x, which we expect is likely possible, compared to the naive,
16-bit-precision, data parallel, case.

Note that directly decreasing inter-pod communication requirements by 10,000x would not be
particularly significant in the standard data parallel setting because this communication is not a
major bottleneck. Per Amdahl’s Law (“Amdahl’s Law,” 2024), speeding up one part of a system
that only imposes 10% of the time cost can only result in a maximum total time reduction of ~10%.
However, the governance mechanism being discussed involves restricting communication between
pods, making communication responsible for >99% of the time cost. Therefore, these huge
communication reductions directly affect the viability of training in a between-pod
bandwidth-restricted setting.

Again, this discussion of specific limits based on existing distributed training research is intended as
an example. We leave a more thorough assessment of the relationship between distributed training
and interconnect limits to future work.
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While the above discussion focuses primarily on data parallel training, we also need to discuss
forms of parallelism with smaller communication requirements, specifically pipeline parallelism.

Pipeline Parallelism

Pipeline parallelism shards a model vertically across different workers, e.g., the first two layers are
on one worker, the next two on another worker, etc. So inter-pod communication corresponds to
the activations or gradients for each token. As discussed by Erdil & Schneider-Joseph (2024), data
parallelism is more effective when network latency is a limitation (due to only needing to
communicate twice per batch), whereas pipeline parallelism or tensor parallelism are advantaged
when bandwidth is the limitation.

Relative to token inputs and outputs, pipeline parallelism has only a modest increase in
communication requirements: inference inputs and outputs are of the size (batch_size *
sequence_length * bits_per_token), while pipeline parallelism involves communicating the
activations for tokens between workers: (batch_size * sequence_length * activation_size *
bits_per_activation), and technically also (*2 for both forward pass activations and backward pass
gradients). While pipeline parallelism often uses mini-batches, this reduces to simply batch_size for
our use case because mini-batches serve the purpose of more efficiently processing the same
original batch size across pipeline parallel workers.

Assuming batch_size and sequence_length are consistent, the increase by a factor of
(activation_size * bits_per_activation * 2 / bits_per_token) is likely large, naively. For instance, in the
case of Llama 3.1 405B, the activation_size is 16,384, and activations and gradients are in 16-bit
precision. As noted previously, 17 bits per token is a conservative estimate. While there appears to
be a difference in communication requirements of at least 1,000x, this range is much narrower than
that of data parallelism (recall about 1,500,000x for naive data parallelism).

We consider an example: an AI developer might claim to be doing inference with 128 pods of 128
H100s each, with inter-pod bandwidth of 125 KB/s in each direction. In reality, they could be
training a large model with 128-way pipeline parallelism (e.g., a model 128x deeper than Llama). To
determine if pipeline parallel training is viable in this setup, we will calculate the throughput of this
training process. The training process is restricted to the throughput between workers, which is
itself constrained by 125 KB/s interconnect limits. If we assume the model being trained is
somewhat optimized for pipeline parallelism, perhaps its d_model is 5,000 (i.e., a very narrow
residual stream compared to other components of this huge model). The allowable throughput is
(125 KB/s * 8 bit/byte * 1/16 act/bit * 1/5000 tokens/act) = 12.5 tokens/second. This is far too
slow for frontier model training. Even with a 100x adjustment to account for factors like gradient
compression, 1,250 tokens/second is quite slow: approximately 2000x slower than Llama training
throughput (16M tokens / 6.2 seconds = 2.6 million tokens/second).
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Efforts to increase the throughput of this system would likely bump into the interconnect bandwidth
restrictions which are set only slightly higher than is needed for token-inference, e.g., much lower
than that required to transfer activations between pipeline stages.

We note a few potential issues with interconnect limits that target pipeline parallelism:

● Improvements in sparse architectures may allow for much more compressed activation
transfers.

● For frontier LLMs, the size of the residual stream scales sub-linearly with total parameter
count (Kaplan et al. 2020; Duvet et al., 2024)—much larger models will have only modestly
larger residual streams, and thus modestly larger communication requirements for pipeline
parallel training. Purposeful efforts to circumvent interconnect bandwidth restrictions could
of course expand the possibilities here.

● Additionally, because pipeline parallelism communication depends on context length and
batch size, it may be possible to decrease the value of these hyperparameters in order to
obscure training (e.g., claim to be doing inference with a batch size of 16,000 but actually
be doing training with a batch size of 1); it still seems possible for limits here to substantially
slow training, as we saw in the example above.

Previous work has shown promising results in applying pipeline parallelism to distributed training.
For instance, Ryabinin et al. (2023) are able to obtain good GPU efficiency when applying a version
of pipeline parallelism that they call SWARM parallelism to train 1B models with 500 Mb/s
inter-worker bandwidth. This data point indicates that bandwidth requirements will likely need to be
below hundreds of Mb/s to be effective (this is a small model and not the focus of interconnect
bandwidth restrictions, but many more optimizations are likely possible, so this provides some
evidence about larger models).

Feasibility

Feasibility: High; <2 years. This would require downgrading existing interconnect between pods
and likely creating new hardware that can modulate interconnect in a verifiable way (merely
plugging/unplugging cables would work but may not be a desirable long-term solution). Verification
with physical inspections and security cameras appears straightforward. It may be less
straightforward to deal with the various security issues with such an approach—namely that pods
must only be able to communicate via the throttled channel, and there are no secret
communication devices present. We expect these security issues are resolvable.

As discussed, improvements in distributed training could pose an issue for interconnect limits. We
think it is unlikely that improvements here will be sufficient to close the gradient—token gap, so
interconnect limits could still be useful. However, this means that the particular interconnect limits
used may need to change with time. Other than this interconnect limit mechanism, distributed
training may pose major problems for governing AI compute, in general.
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Restricting large AI training runs by using interconnect limits would also be vulnerable to substantial
algorithmic progress as the compute requirements for some dangerous level of training may drop
over time. Interconnect limits may also lose efficacy if there are certain substantial shifts in training
methods or the AI development paradigm. For example, it is possible that, in the future, training
costs could become dominated by the inference costs of creating high-quality synthetic data that
models then train on. That is, the model weight updates could be a small fraction of the total
training compute. Interconnect limits would not prevent this inference and, therefore, may not slow
down training substantially in such a regime (depending on the “training” costs). A change like this
might be deemed “algorithmic progress”, but it is worth explicitly mentioning because it could
involve a similar total compute-efficiency of training, but with more of that compute happening in an
un-throttled (inference) manner. The specific implementation details of interconnect limits would
have to change in response to changes in AI development practices, and some such changes
might render interconnect limits ineffective (e.g., if the between-pod interconnect requirements for
training drop below those for inference).

One detail is how to set the interconnect limits based on the context length and batch size desired.
Memory footprint is based on numerous factors, including the size of the model, the model
architecture, data type/precision, batch size, context length, and whether gradients and optimizer
states need to be stored (training). For the case of using interconnect limits to restrict large model
inference, these hyperparameters could potentially be rearranged to do a violation, e.g., running
inference on a small model with a large context size may be similarly memory intensive to inference
on a large model with a smaller context size (thus enabling a potential violation through use of the
large model). Therefore, setting the right limits will likely be an ongoing process.

Another issue is larger storage inputs and outputs such as images and video. Interconnect limits
may prohibit the use of models that generate images, audio, or videos, if these require large
outputs (above the thresholds). We are unsure how to mitigate this issue; one approach would be
for many pods to simply not do these activities (i.e., be text-only), and certain pods can have
additional oversight applied while dealing with larger data; another approach would be to compress
and decompress this information on each side of the bottleneck, but this could be quite difficult. If
these limits are set in a way that is aware of both inputs and outputs, these restrictions could apply
only to model generations but not inputs (e.g., allowing models to take many modalities as inputs
but only produce text).

Implementation Cost

There are some costs in hiring physical inspectors. Poorly set limits could make inference less
efficient. Additional physical security could be expensive, depending on the necessary level. The
cost of developing the necessary interconnect and monitoring hardware is likely small, as existing
technology could likely be repurposed with minimal modification. Interconnect limits aimed at
preventing large training runs likely do not pose a substantial cost on text-inference or smaller

Mechanisms to Verify International Agreements About AI Development | 131



training if the limits are set in an informed way and adapted to respond to advances in training
efficiency. However, it may be necessary to block the generation of images and other
high-bandwidth-requiring content, which would be costly; this may be an acceptable cost given
the high-stakes nature of the situation.

Signatures of High-Level Chip Measures

Summary

Grant inspectors temporary code access to gather labeled data, enabling classifiers (based on
high-level chip activity) to detect deviations without ongoing code access.

Longer Description

One way to improve on classifying workloads based on high-level chip measures (e.g., power
draw, memory bandwidth utilization, etc.) is to use temporary code access in order to get
high-quality, labeled data about chip activities, train a classifier with this data, and then use this
classifier for workload classification based on high-level chip measures (e.g., including applying it to
other data centers). Temporary code access means inspectors can have high confidence that a
particular workload is the one that occurred when they took a measurement of chip activity, and
then the classifier can compare this chip activity to chip activity at other points in time and check
whether other chip activity is sufficiently close to the approved activity.

This mechanism follows from two problems: first, one country would like to show that some chips
are not doing prohibited activities but would not like to allow access to sensitive information about
those chips, such as the model weights and data; second, classifiers based on high-level chip
activity, such as power draw or data flow between chips, which are an initial solution to the first
problem, will likely not be robust in the adversarial environment in which they are needed—they will
likely be spoofable with minor performance penalties. A solution to both of these problems is to use
classification based on high-level chip activity but ensure the classifiers are high-quality by giving
them access to in-distribution, labeled data, requiring temporary code access for inspectors.
Conceptually, this is similar to gathering a fingerprint or signature of chips doing some particular
activity (e.g., “inference on the Llama 3 70B model quantized to 8-bit and run on a 128 H100
cluster”, “training GPT-2 on different data distributions”), and then ensuring chip activity stays close
to one of the permitted signatures later. This is not fundamentally different from a normal
classification approach, but it is likely more robust in the context of international verification.

The default approach to classifying workloads based on high-level chip information is for one
country to train a classifier on labeled data they generate themselves, across a wide variety of
workloads, on AI chips they have access to. This classifier takes various high-level chip measures
(e.g., power draw, network traffic, bandwidth utilization, etc.) as input and outputs the general
workload type or perhaps just whether the workload is permitted or not. This classifier would then
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be deployed to classify workloads being carried out by another country, potentially on different AI
chip designs and using different model architectures. By contrast, the present mechanism of using
signatures of high-level chip information involves the classifier incorporating data from the country
being monitored and their AI activities, where this data is labeled via inspectors with code access.

In the default case, there are two reasons it is difficult to do classification based on high-level chip
information. First, there is likely a significant distribution shift from the training data of the classifier
to the deployment distribution; for example, the country being monitored could be using different AI
model architectures, different software stacks, or potentially even different (proprietary) AI chips
than the classifier is based on. Second, this is an adversarial situation where competent state
actors may be able to spoof chip activities effectively with limited costs: these actors can run
arbitrary code on chips, and many of the chip activity differences are relatively small. For instance,
inference often has lower chip utilization than training; production numbers are generally not public,
but, for example, training may involve an average hardware utilization of 40%, and inference may
involve an average hardware utilization of 20%. In such an example, artificially dropping training
utilization to match inference would make training take twice as long (or twice as many chips),
which may not be a prohibitive slowdown given the threat model of nation-states being willing to
spend substantial resources to violate agreements. Whether it is possible to modulate chip
behavior in such a precise manner to trick a classifier is unclear, but given the relevant actors are
highly competent and can run arbitrary code, this appears somewhat likely (for spoofing high-level
chip activity).

Classifying AI workloads based on chip activities has been successful in previous literature, but this
work has not involved an adversarial environment (Copos & Peisert, 2020; Karimi et al., 2024;
Köhler et al., 2021). Therefore, it is unclear whether such classifiers would work in an international
verification context. Giving the classifier access to on-distribution, labeled data could change the
effectiveness substantially in the face of adversaries, who now have a much more narrow target of
chip activity they must hit to avoid detection.

This mechanism involves granting inspectors temporary code access, which could pose substantial
privacy and security risks. These inspectors would need sufficient access to know that chips are
performing permitted activities while their measurements are taken, e.g., that the code they believe
is being run is, in fact, the code being run. It is currently unclear how much access would be
required to gain confidence here. Because inspectors would have access to highly sensitive
information, extreme measures may be necessary to reduce the risk of them leaking this
information. For example, they could be required to live onsite and have their communication to
their home country restricted for a period of time. If AI development progress is moving quickly, the
secrets that inspectors have access to may be obsolete in months or a couple of years.

Once a classifier has been trained, this mechanism would function similarly to general classification
on the basis of high-level chip information, except the range of expected values could be quite
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narrow. Data center operators in the monitored country could claim they are doing some permitted
activity by showing that their high-level chip activity matches that of one of the approved
signatures, e.g., “inference on the Llama 3 70B model quantized to 8-bit and run on a 128 H100
cluster” or “training GPT-2 on different data distributions”. In particular, a large fraction of AI chips
will likely be used for inference on a relatively small number of types of workloads (e.g., the best
models at the time and the models that provide the best performance by cost at the time), and
these large-scale inference workloads could each be matched to a particular signature (if this
inference is permitted under the agreement). If the classifier identifies chip activities that do not
match an approved signature, inspectors could review the relevant code to see if a treaty violation
has occurred or whether the classifier needs to be updated. Generally, the classifier needs to be
updated (requiring code access) every time a new type of workload with a unique signature is
introduced.

One notable point of uncertainty is that it is unclear how much particular workloads will vary in their
chip activity signatures, a crucial aspect of this mechanism being effective. Given the success of
previous workload classification attempts (Copos & Peisert, 2020; Karimi et al., 2024; Köhler et al.,
2021), we are optimistic that variation will be manageable. This question will depend on the
definition of a workload type, i.e., the granularity of a workload. For example, “inference on the
Llama 3 70B model quantized to 8-bit and run on a 128 H100 cluster” could have a similar
signature to “inference on the Llama 3 70B model quantized to 8-bit and run on a 16 H100
cluster”, but this is unclear and would depend on various other factors (such as the other possible
workloads). How to implement such a classifier and define workload types is largely an empirical
question based on the performance of different approaches, and we leave it to future work.

Given that this approach requires temporary code access, it is also worth discussing why this
approach is better than merely providing substantial code access all the time. This approach
preserves more sensitive data than general code access. Again, the depth to which a workload
needs to be defined is an open question, but high-level chip activities will likely be data agnostic;
for example, inference with an AI model answering questions about sports will look very similar to
inference of the same model answering questions about cybersecurity. If these are sufficiently
similar, inspectors could be given access to the code (including input data) for a model running
inference on benign data, but code access would not be needed when this model is conducting
inference on sensitive data, such as that relating to national security. If the classifier detects
potential violations, it may be necessary to reveal the more sensitive data, but this would not be the
case by default.

Feasibility

High; <2 years. Key uncertainties include which high-level chip activity to measure, how to define
the granularity of workloads, whether the distribution of chip activity for each workload type will be
sufficiently specific, and how to enable inspectors to have enough access without substantial risk
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of leaking sensitive data. An additional uncertainty is how to respond to the classifier indicating a
violation, e.g., how much access inspectors are allowed in such a case or how frequently
inspectors can investigate such results. Previous results overall provide optimism about workload
classification based on information like a chip’s power draw and communication with other chips,
and supplementing this with on-distribution data from the production systems being monitored
would likely make such an approach effective, plausibly even against competent adversaries.

Implementation Cost

It could be somewhat expensive and take months to years to mass produce the necessary
monitoring equipment (e.g., which measures a chip’s power draw or communication to other
chips), but this likely does not require inventing substantially new technologies. Generally,
permitting code access for international verification is extremely costly; in this case such access is
temporary, which is a slight improvement due to data privacy, and we are optimistic that inspectors
could pose little risk of leaking sensitive information when various precautions are taken.

Mechanisms Needed Early
One way to think about the space of verification mechanisms is to ask: which mechanisms could
be quickly implemented if there was substantial political will, and which need substantial work in
advance or significant serial time? This section lays out which mechanisms are likely to need
substantial work in advance of when they are needed:

● FlexHEGs
● Mutually trusted data center and computing infrastructure
● Centralize and track existing chips
● Centralize and track the chip supply chain
● Inference-only chips
● Strong security of model weights (this may be the only chance to monitor inference)

We now discuss each in slightly more depth:

FlexHEGs

Numerous verification approaches would benefit or require that AI chips be able to implement
various functionalities in a secure way. This can often be done on the AI chip itself or via another
processor located with the AI chip and enclosed in a tamper-proof enclosure. In both cases, work
is needed in advance to design, implement, and test these mechanisms. In the case of adding a
secure processor and tamper-proof enclosure to existing chips or servers, the lead time is likely 1-3
years. In the case of fabricating new chips with stronger security, the lead time is likely 2-5 years,
including the time it takes to saturate the compute stock. Designing a highly performant processor
that is mutually trusted may be a difficult task, and there is limited precedent for it (OpenTitan, n.d.).
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One advantage of using an auxiliary processor for governance, other than the main AI chip, is that
the performance requirements are much lower.

Mutually Trusted Data Center and Computing Infrastructure

The general mechanism of partially re-running AI workloads in a trusted data center requires that
such a data center exists. Beyond the obvious time needed to build such a facility (e.g., potentially
new construction in a neutral country), there are likely to be security difficulties. Numerous aspects
of the hardware infrastructure in a facility are likely untrusted by default. While hardware backdoors
are not necessarily a concern for most security situations, they are highly relevant here due to the
capability of relevant actors, e.g., OC5 in Nevo et al. (2024). There needs to be confidence that
none of the many actors along the chip supply chain (e.g., NVIDIA, TSMC, Micron, Intel, etc.) have
introduced vulnerabilities to the AI chips in this data center. It is unclear what would be needed to
obtain mutual confidence in the security of hardware and software in such a data center—there is
some precedent in open-source processors, but they are far less performant than state-of-the-art
AI hardware (OpenTitan, n.d.). This might be a major technical lift, including years of collaboration. It
is possible that multiple layers of standard security could be sufficient, even with insecure AI
hardware, as discussed by Baker and colleagues (Forthcoming).

Centralize and Track Existing Chips

The general approach to locating AI chips requires locating existing chips that lack sophisticated
on-chip mechanisms. Governments should, therefore, begin closely tracking AI chips, both
domestically and internationally, where possible. U.S. export controls legally prevent the sale of
high-end AI chips to many countries; however, these controls could be supplemented with
stronger monitoring and enforcement, e.g., to closely track the resale of H100s throughout 2025.

While it may not be politically feasible, it could assist a future verification regime to also centralize
compute, both domestically and internationally, as soon as possible due to fewer countries and
data center operators needing to participate. This could include measures such as:

● Expand existing export controls on semiconductors and apply a presumption of denial to
countries which are not close U.S. allies (regardless of whether a U.S.-based entity is
involved). We note that this could have significant negative effects, e.g., decreasing U.S.
influence over AI development in restricted countries, accelerating China’s chip supply—it is
unclear to what extent these effects would occur.

● Offer tax incentives or infrastructure support to the owners of small quantities of AI chips
(e.g., academic institutions, small startups) if they co-locate their chips in large data
centers. This could be partially achieved by building strong compute infrastructure that is
cheaply accessible to such institutions, obviating the need for them to own their own chips,
e.g., through a National AI Research Resource (Executive Order 14110, 2023).
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● Require large compute providers to report the location of their AI data centers to domestic
regulators. This may be required by the Biden Executive Order on AI (Executive Order
14110, 2023). For the purpose of effectively tracking compute, the threshold for “large data
center” likely needs to be lowered, compared to that suggested by the EO, and additional
measures should be taken to ensure these reports are accurate (e.g., inspections).

As discussed, putting AI data centers in sensitive military facilities could make verification much
more difficult, so we recommend against it.

Centralize and Track the Chip Supply Chain

Many verification approaches require that secret AI chip production be infeasible. Therefore, efforts
to centralize and track the chip supply chain should start early. We leave a more thorough
discussion of achieving this to other work. Steps might include: strengthen existing export controls
on the semiconductor supply chain and their enforcement; work with countries and companies
throughout the chain to ensure high quality information about this supply chain reaches the correct
decision-makers.

Inference-Only Chips

One hope for future verification regimes is that some AI activities will be permitted even while others
are restricted. For instance, this report discusses restrictions on large training runs. Ideally, it would
be very easy to verify that some compute is abiding by an agreement, but this is difficult in part
because many AI chips are general processors that can perform a range of AI activities. There are
efforts to make AI chips that excel at either training or inference, but they are typically not
purposefully built to be inefficient for other activities. The present use case has the additional
constraint that such chips cannot practically be used for prohibited activities. Work is needed to
make inference-optimized chips sufficiently inefficient for training that they would serve the use
case discussed in this report. This may prove extremely difficult or effectively impossible, especially
given the need to be robust to future improvements in training methods (which may target these
chips).

If feasible, inference-only chips would present an excellent opportunity to get value out of AI
inference without imposing risks (if risks come from training but not this inference). The lead time on
developing and testing new chips like this is at least 2 years, likely more, and further time would be
needed to mass-produce these chips (i.e., for them to play a key role in a verification regime, they
have to comprise a substantial portion of compute).

Notably, the feasibility of making inference-only chips increases substantially if we assume a less
capable and covert adversary. Specifically, some current inference-optimized chips are likely
difficult to use for training because they conduct operations in a specific order that is used for
inference, but they lack the corresponding operations needed for backpropagation in training. A
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highly competent adversary could likely find ways to bypass this limitation, such as offloading
certain operations to other chips or approximating the necessary training operations. However,
such chips could still be very useful for domestic regulation, as the AI developers are generally less
capable and more law-abiding (e.g., likely to have whistleblowers) than in the international
verification context.

Investment in AI chips, in general, may have negative downstream consequences, such as
enabling rapid and dangerous AI progress or increasing the risk of AI proliferation to dangerous
actors. Investment in specialized AI chips, which can only do some operations (or FlexHEG-type
mechanisms, which could flexibly do only certain operations), is likely better as these chips could
potentially pose minimal risk while enabling society to benefit from advancements in AI capabilities.

Strong Security of Model Weights (This May Be the Only Chance to Monitor
Inference)

Monitoring AI inference is difficult due to the requirement that all inference instances be monitored.
One promising approach is to contain the weights of an AI system during training and deployment
to a small number of physical locations (e.g., the data center it was trained in and maybe a few
other data centers). This, in turn, requires extremely strong security around model weights, and this
security being verifiable by another party to be secure against insider threats. As discussed by
Nevo et al. (2024), model weight security robust against the most capable nation-state actors
could take many years, so it is crucial that progress begins early.

What Compute Needs to Be Monitored?
A key question for verification regimes is what compute they need to monitor, e.g., only data
centers with more than 1,000 H100 equivalents? 10,000? 100,000? While it is infeasible to answer
this question conclusively with current information, we aim to describe the key factors in this
section.

Which AI Activities

A key variable is whether policy goals concern pre-training runs, post-training, or inference, as
these have different compute requirements. Which of these activities is targeted by policy goals
likely depends on their potential for enabling dangerous AI activities. For example, if a potentially
dangerous AI model is widely available (e.g., its weights are available for download, or it can be
accessed via a public API), monitoring inference may be necessary. On the other hand, if there are
models that are generally capable but not specifically able to do the relevant dangerous tasks, risks
might arise from fine-tuning (post-training). Hopefully, dangerous models have not been developed,
and the risk from them must first route through pre-training. This would be desirable because
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pre-training tends to have the largest compute requirements, making monitoring and verification
easier.

In the future, there are likely to be times when substantial risk arises from inference on existing
models. In such cases, effective AI governance is much more difficult than if risks must first route
through expensive pre-training. For example, it is currently feasible to do inference on small,
non-frontier AI systems using a personal laptop, so if inference on small models is a concern (e.g.,
if there are highly capable small models that pose catastrophic risks), such compute may need to
be monitored.

This report’s focus on restricting large pre-training runs reflects that pre-training compute is
sometimes a proxy for danger from AI systems, it is a major focus in AI governance research and
policy, and it allows for a clear decomposition of the space of verification mechanisms. Pre-training
compute is a highly imperfect proxy for risk because risk could arise from other AI activities; this
section and report are nevertheless focused primarily on pre-training.

Algorithmic Progress

As discussed by Pilz et al. (2024) and Tucker et al. (2020), compute becomes more efficient over
time due to improvements in hardware price performance (i.e., FLOP purchasable per dollar) and
algorithmic efficiency (i.e., performance per FLOP, also called “algorithmic progress”). These effects
mean that, for a given capability level of an AI system, less hardware is needed to train a model to
this capability level over time. The rate of hardware price performance improvement is estimated at
~1.3x per year (Epoch AI, n.d.).

The rate of algorithmic efficiency improvements is estimated at ~3x per year (Ho et al., 2024), an
extremely rapid rate of progress. Such a rate implies that if training some model requires 10,000
H100s in 2022, it would take about only 1,000 H100s just two years later in 2024. Algorithmic
efficiency is especially of note because the development loops are relatively fast: the creation of
better training algorithms can be directly translated into the next pre-training runs, and increased
efficiency for inference can immediately bring down inference costs. Furthermore, algorithmic
progress is largely the result of standard AI research and engineering: intellectual work that may be
automated relatively early. Automation of AI R&D could cause algorithmic progress to be even
faster than the current rapid pace (Davidson, 2023). This could quickly lead to much lower
compute requirements to train AI systems to some capability level. Hardware and algorithmic
efficiency improvements indicate that the amount of compute being monitored needs to expand (or
begin large) in order to detect training to a given capability level.

Performance Effect

There is additionally a “performance effect” (Pilz et al., 2024; Tucker et al., 2020) where using more
compute translates to better AI capabilities, so actors with a relatively large amount of compute
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may continue to have the most capable AI systems (assuming those efficiency gains are broadly
available). Therefore, if policy goals are concerned with the highest capabilities at a given point in
time, it may be sufficient to focus on actors who direct large amounts of compute.

Distributed Training

While algorithmic progress, hardware progress, and performance effects all affect the total amount
of compute that may be worrisome, another dimension is how this compute is arranged. Naively,
one might expect that compute can be discussed at the data center level, e.g., “Does this data
center have enough AI chips to do a large training run?” However, this approach is imprecise
because compute which is not geographically close can be pooled to do various AI activities. The
field of distributed training (Douillard et al., 2024; Jaghouar et al., 2024)—see also “decentralized
training” and “federated learning”—is specifically aimed at making it easier to train AI systems
across data centers that are not geographically close or which have limited communication
between them. Currently, large AI training runs usually occur in one or a small number of data
centers (Fist & Datta, 2024): Gemini 1 and 1.5 are trained across multiple data centers (Gemini
Team, 2024), the Llama 2 and 3 series of models are trained in one or two data centers (Dubey et
al., 2024). Google does not report how many superpods, each with 4,096 chips, are used in that
Gemini training, but public estimates place this at 12-19 superpods across an unknown number of
data centers (Besiroglu, n.d.).

However, using only a few data centers is not a fundamental constraint, especially given advances
in distributed training. This field has demonstrated substantial progress in small-scale training (e.g.,
academic research), and the evidence indicates that distributed training will also be possible at
large scale. Per the Gemini paper (Gemini Team, 2024), emphasis ours: “TPU accelerators primarily
communicate over the high speed inter-chip-interconnect, but at Gemini Ultra scale, we combine
SuperPods in multiple datacenters using Google’s intra-cluster and inter-cluster network (Poutievski
et al., 2022; Wetherall et al., 2023; yao Hong et al., 2018). Google’s network latencies and
bandwidths are sufficient to support the commonly used synchronous training paradigm,
exploiting model parallelism within superpods and data parallelism across superpods.”

Notably, further reductions in the bandwidth requirements are known via federated learning (data
parallel workers synchronize gradients less often) (Douillard et al., 2024) or tensor parallelism
(Ryabinin et al., 2023). We, therefore, expect distributed training to be viable in the future, at least
for some AI developers, especially given the current investment in inter-data center bandwidth from
multiple compute providers (Fist & Datta, 2024).

Distributed training advances would make it such that, even if a large amount of total compute
(e.g., 100,000 H100s) is needed for a large training run, this compute could be made up of many
smaller amounts of compute (e.g., 20 different data centers each with 5,000 H100s). Without
distributed training, a monitoring and verification regime would only need to be concerned with
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data centers that house 100,000 H100s—a large and likely detectable quantity. However, if many
smaller compute clusters could be pooled, these smaller clusters also need to be monitored to
ensure they are not taking part in a distributed training run. Previous work has termed this method
of bypassing compute limits “structured training”, following similar approaches in the finance
industry (Heim et al., 2024). We leave a thorough literature review of distributed training to further
work, but based on a cursory understanding of the literature, we expect distributed training will be
feasible with performance penalties that are acceptable for the relevant threat actors in this report
(e.g., if the 20 data center split described above cost 30% more than a centralized training run, this
would be well within the budget of nation-states hoping to violate an international agreement).
Counteracting this threat would require reducing the size of data centers being monitored
substantially. It is unclear how much success the field of distributed training will have in the future,
but even small progress here could pose a major problem for verification regimes, requiring very
invasive monitoring to ensure agreements are not violated.

Difficulty in Defining AI Chips

This report focuses on AI compute, typically thought of as including high-end data center GPUs
and TPUs. For the sake of simplicity, we defer to the criteria for defining advanced (AI) chips as
used by the current U.S. export controls (Dohmen & Feldgoise, 2023), based on total performance,
performance density, or marketing for data center use. Note that these criteria were updated from
their initial specification, following the difficulty in defining AI chips in a way that is robust to a
changing landscape of chip production and AI development.

Future advances could enable more hardware to contribute to AI activities. If, for example,
consumer gaming GPUs (Grunewald, 2024) could be pooled to effectively carry out a distributed
training run, this would pose major problems for a verification regime, and reducing such a risk
could pose major issues for privacy. There is precedent for the pooling of compute resources in
crypto mining. Fortunately, attempts to aggregate large amounts of consumer compute would likely
be detectable via whistleblowers or state intelligence.

While it is currently the case that specialized hardware is used for most frontier AI activities, we
caution that this may not remain the case in the future. We leave a comprehensive analysis of
which chips should be considered “AI chips” to future work, especially as it depends on
technological advancements which are difficult to foresee.

Costs of Monitoring

Monitoring more compute will be more costly than monitoring less compute. Depending on the
mechanisms being used, this monitoring could infringe on privacy rights (e.g., if it is necessary to
monitor consumer hardware) or pose security risks (e.g., if it is necessary to monitor military data
centers). Specifically, mechanisms like partial re-running of workloads could be quite invasive,
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whereas security cameras could be much less invasive. The decision about what compute needs
to be monitored should be based both on the risk of dangerous AI activities and the costs of
monitoring; however, risks from dangerous AI activities are likely an overwhelming consideration in
most cases.

We are unsure what compute will need to be monitored in the future, and this is likely to change
over time. The key factors include which AI activities pose relevant risks, hardware price
performance, algorithmic efficiency, performance effects (more compute leads to better
capabilities, all else equal), distributed training, which types of chips can be used for AI workloads,
and the costs of monitoring. If these factors develop favorably, monitoring and verification could be
relatively easy, e.g., only needing to focus on the 50 largest data centers in the world. However, it
seems more likely that, especially over time, monitoring much more compute will be needed to
verify treaty compliance.

Track AI Chips, Not Data Centers
A common theme in compute governance is to discuss “data centers” as the prime target; after all,
data centers house AI compute. However, in the context of international verification, we believe it is
more efficacious to track AI chips themselves (e.g., from production and monitoring resale) rather
than data centers. We lay out a few arguments:

Argument 1: Worrying Data Centers Will Not Necessarily Be Detectable With
High Reliability

Various factors discussed, especially distributed training, mean that small amounts of compute will
likely be of concern (e.g., the combination of many geographically separated clusters of 5,000 AI
chips). It is likely feasible for a nation-state to hide each cluster of 5,000 AI chips, if they have the
chips to begin with. AI chips are not particularly physically distinct.

Some of the newest AI chips require liquid cooling, which might be distinct. However, it seems
plausible that there will be high-performance chips which can be air cooled (e.g., some H100s are
air cooled). Regardless of whether cooling is liquid or air based, cooling infrastructure might still be
distinguishable, relative to data centers that do not house AI chips. This is possible, but we expect
it is relatively easy to hide the differential in cooling infrastructure, given the threat model in this
report.

Given the current large capital expenditures on data center power infrastructure, some have
hypothesized that power may be an effective metric for detecting secret data centers (Wasil, Reed,
et al., 2024). This is likely not the case for the distributed training threat model—a data center with
5,000 H100 GPUs has a power requirement of ~6 MW (“NVIDIA DGX H100 Datasheet”; Pilz &
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Heim, 2023), similar to ~5,500 U.S. homes (U.S. Energy Information Administration, 2024). This is
likely too small of a footprint to serve as a useful tool for detecting secret data centers.

There are many existing data centers with enough power capacity to host these distributed
clusters. It’s estimated (Pilz & Heim, 2023) that there are currently ~500 data centers globally with
>10 MW capacity. Furthermore, U.S. naval reactors have tens to low hundreds of megawatts of
electrical output, and there are at least 100 of these reactors (“United States naval reactors”). While
it would be non-trivial for a state actor to covertly set up hundreds of megawatts of power for a
distributed training run, it seems feasible.

Power-based detection also must deal with improvements in energy efficiency over time. Chip
performance per watt is increasing at a rate of ~1.6x per year (Epoch AI, n.d.). Over time, a
constant amount of FLOP requires substantially less power. By default, the largest data centers will
continue to require large amounts of power, but the distributed training issue compounds with
improving hardware efficiency to make small pockets of AI compute even harder to detect.

Argument 2: AI Chips Are More Precisely the Thing Being Regulated

One option for regulation would be to require that a country tell you about the location of all of its
medium or large data centers (e.g., >5 MW). Unfortunately, this might include data centers that are
highly sensitive (e.g., running the government’s classified networks), so it may be politically difficult
to have physical inspections. As mentioned, there are hundreds or thousands of such data centers,
so inspecting them all is difficult. Even if physical inspections are permitted, they will end up
focusing on whether there are AI chips present and what those AI chips are doing (as this is what’s
relevant to the AI-related international agreement). Perhaps it would have been easier to simply
monitor the chips, to begin with.

Crucially, the data center industry is much larger than just AI. The vast majority (>80%) of data
center power consumption is non-AI (Goldman Sachs, 2024). Most data centers that would be
captured by a focus on the data center level will simply not have AI chips. It’s better to not
over-monitor if one can help it.

Argument 3: The Chip Supply Chain Is Amenable to Regulation

The supply chain for AI chips is fairly narrow (Khan, 2021; Sastry et al., 2024). There are only a few
companies that can fabricate high-end chips, and there are numerous other bottlenecks in the
supply chain. Therefore, it is comparatively easy to monitor the supply of chips by monitoring, e.g.,
the <20 fabrication facilities necessary for AI chip production (Sastry et al., 2024; TSMC Fabs -
Taiwan Semiconductor Manufacturing Company Limited, n.d.).
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Outlook

Overall, international agreements would likely benefit both from monitoring data center
construction and from continuous monitoring of AI chips from production. If the situation is not very
adversarial (e.g., domestic regulation), focusing on data centers may be sufficient, but distributed
training and the ability to make secret data centers would likely pose an issue in the international
verification context. Therefore, we think focusing specifically on tracking AI chips is likely more
useful for the context of international verification.

Would Highly Capable AI Render Verification Mechanisms
Ineffective?
Discussion of the near-term future would be remiss to not discuss the impact of increasingly
powerful AI systems. While many of the verification mechanisms discussed in this report could
work in a world with technology similar to today’s, that might not be the environment in a few
years. It is plausible (Davidson, 2023) that AI systems will begin contributing substantially to
scientific progress in AI and other fields, the result of which may be rapid improvement in AI
capabilities. The rate of technological progress in such a world may be much faster than society is
used to, which could pose major challenges for a verification regime.

While this AI-enabled feedback loop may appear far away, so does ambitious international
coordination to regulate AI development. If international coordination only happens in such a future,
when there are already highly capable AIs—e.g., as effective as expert humans across many
tasks—verification could be quite difficult. Many of the verification mechanisms described in this
document are being planned, designed, and implemented in a fundamentally different threat
landscape: the current one, without crazy-powerful AIs. It seems likely that they will fail to provide
protection in this new regime.

For instance, Nevo et al. (2024) focus on data center security and define the highest-level threat
actors as “Top-priority operations by the top cyber-capable institutions… Operations roughly less
capable than or comparable to 1,000 individuals…spending years with a total budget of up to $1
billion on the specific operation…”. While there are very few of these actors in the world today, this
kind of operation could be far more common in a world with human-expert-level AI systems. In
such a world, top-priority state operations might (Finnveden, 2023) look more like 100,000 AIs that
are near or exceed human experts.

Fortunately, advanced AI capabilities may be dual-use: some verification mechanisms can be
updated with time, and AIs can also be used to strengthen them. For instance, techniques for
capability elicitation (assisting with evaluation efficacy) may benefit from work by automated
researchers. However, many mechanisms rely on slow-to-replace hardware, such as on-chip
mechanisms. Even mechanisms that have high trust currently—such as cryptography-based
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methods—may be vulnerable in this new threat landscape (e.g., due to the development of
quantum computers and whatever comes after them, breaking post-quantum cryptography). As
another example, superintelligent AI systems may be able to develop new methods of producing
advanced semiconductors, bypassing monitoring of the existing AI chip supply chain. It is difficult
to elucidate the possibilities here: people alive today are used to GDP growth on the order of 2%
per year and the technology R&D speeds that come with that, but a regime where decades worth
of progress happens in months would bring major challenges which are difficult to foresee.
Additionally, advanced AI capabilities may fail to be dual-use because of misalignment problems: a
misaligned AI system deployed to secure a verification regime may act to sabotage (Benton et al.,
2024) such a regime if this is better for its goals.

If superintelligent AI capabilities exist in the world where international verification is being
conducted, new mechanisms will be needed. It is likely futile to design approaches now which will
be robust to such a threat model.

Verification Approach for All Frontier AI Development Following
a Safety Case
Various mechanisms discussed in this report can contribute to verifying that an AI development
process follows a safety case. A safety case is a structured argument that AI systems are unlikely
to cause a catastrophe. It is made by developers before the development and deployment of AI
systems (Buhl et al., 2024; Clymer et al., 2024). Per previous work, there are four types of
arguments that are likely to be made in a safety case: inability (the AI system is not capable enough
to cause a catastrophe), control (there are control measures around the AI system that render it
incapable of causing catastrophe), trustworthiness (the AI system will behave desirably despite
having the capacity to cause catastrophe), and deference (trustworthy AI advisors assert that the AI
system is safe) (Clymer et al., 2024). Safety cases are likely to be somewhat specific to their
deployment environment; for example, a developer might present one safety case for the use case
“use this AI system to help with AI R&D internally” and another safety case for the use case
“provide this AI to the general public via API”.

This section discusses what it might look like to have safety cases be part of an international
agreement and, particularly, what mechanisms could be applied to verify that a safety case is
followed. It may not be immediately obvious why an AI developer would deviate from a stated
safety case. For clarity, some reasons include: it may be technically difficult to follow a safety case,
it may be costly to follow a safety case (e.g., requiring many experiments to develop the case and
potentially expensive monitoring during deployment), and following a safety case prohibits
deployment outside of domains covered by the safety case (e.g., if a safety case applies only to
using AIs for AI development, this AI system could not be used to run a pharmaceutical company,
even though that may be lucrative).
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First, developers would make such a case, and an international body would approve or reject this
case. In making such a case, developers will likely present a plan for training, evaluations, and
control of their AI system. This will involve aspects such as what model architecture is used, which
evaluation datasets will be run during training, what training datasets will be used, what classifiers
will be applied to model outputs during deployment, and what the deployment use cases will be.
Such a safety case will be the result of many experiments conducted by the model developer.

The overall training process matching the stated training process can occur via partial re-running of
AI workloads. Evaluations can also take advantage of partial re-running or be authenticated via
TEEs. As discussed previously, partial re-running and using TEEs for evaluations might both have
security problems on current hardware: existing AI chips may have vulnerabilities that make them
insufficient for this. If that were the case, more access would be needed to ensure the declared
training process is followed, e.g., having international inspectors review the code. One difficulty is
ensuring various experiments claimed in a safety case were actually run correctly; this could
potentially be done by re-running or via audit-trail style approaches that keep an experiment log
secure against tampering.

Control arguments in a safety case will be based on inference-time classifiers running. As
discussed, one promising approach to verify the implementation of such classifiers is to prevent
model weights from leaving a small number of secure locations, and ensure control protocols are
properly applied in this small number of data centers.

The other key issue to deal with is ensuring no other AI development happens that does not follow
a safety case. If AI compute has been sufficiently secured and large pre-training runs are still a
central point of governance, this could be achieved via the previously discussed methods for
demonstrating some compute is not being used for large training runs. On the other hand, if frontier
AI development does not have substantial compute requirements or compute is not sufficiently
monitored, this would be considerably more difficult. In such a scenario, whistleblowers, interviews,
and national intelligence operations could be used, but it is unclear how effective they would be at
ensuring no prohibited AI development is happening. Tracking relevant personnel, in particular,
could be a promising approach, but it poses privacy and sovereignty concerns.

The above mechanisms are generally not technologically mature, so if verification of safety cases is
required quickly, it would likely require a large amount of access, such as inspectors directly
reviewing code. Nevertheless, the above approach would likely succeed at verifying that AI
developers follow a safety case—if the right technologies were developed. On the other hand, as in
the case of model evaluations, there is still a need to make the safety cases good, such that
following them would entail minimal risk from a particular AI system.
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Hypothetical Futures
Forward-looking AI governance is difficult due to the deep uncertainty about the future of AI
development and society. In order to motivate some of the framing choices in this report, e.g., the
focus on international agreements, we provide the reader with a few short descriptions of possible
futures where this work could be relevant. These are hypothetical stories which seem plausible, not
necessarily our mainline predictions.

Story 1

In the late 2020s, AI systems are able to replace humans in significant portions of AI research and
development. It is clear that AI systems will soon have massive impacts on economic productivity
and military technology development, motivating the U.S. Government (USG) and the People’s
Republic of China (PRC) to each consolidate their AI companies and launch national AI projects.
One frontier AI system breaks out of the security measures placed around it and begins operating
autonomously and copying itself to many rentable servers. This rogue AI system successfully
executes a large cyber attack, taking down critical infrastructure and causing hundreds of deaths.
The international community correctly identifies that this is a major problem and is able to
successfully shut down and delete all of the copies of this particular AI system. The international
community further recognizes that this “warning shot” is an early indicator for much larger problems
to come and that the current path of AI development is likely to lead to catastrophic harm from
advanced AI systems. These risks are concerning, and the ideal situation would be to stop entirely;
however, the USG and the PRC are both worried that the other will continue racing ahead. These
countries agree to measures to reduce the race pressures they are facing, for instance, restricting
the size of new AI training runs (this could be a mild restriction—slowing down—or an intense
restriction—fully stopping). Slowing down or stopping enables both sides to spend more time
solving technical safety problems and promoting societal adaptation and resilience, but verification
measures are needed to ensure both sides uphold this agreement.

Story 2

An AI system capable of automating almost all human remote work is developed in early 2026 by a
U.S. company in collaboration with USG. The U.S. has ~80% of the world’s AI chips, and this AI
system is not stolen by other nation-states. Due to the significant capabilities of this AI system, the
PRC is worried about actors in the U.S. (USG or companies) using this system to undergo an
intelligence explosion—rapidly advance AI capabilities to significantly above human level. The PRC
threatens a hot war if U.S. AI development continues, due to the strategic risks of an adversary
having superintelligent AI systems. In order to avoid a potentially nuclear war, the USG and PRC
enter a mostly one-directional agreement where the PRC aims to verify that U.S. AI development is
moving slowly. Due to China’s limited access to compute, monitoring is mostly applied to the U.S.
It’s possible such an agreement could also include provisions for benefit sharing, e.g., China gets
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access to the previous generation of AI models or receives direct economic benefits from U.S.
growth.

Story 3

A U.S. company develops an AI system capable of automating AI development in the 2030s and
successfully uses this AI system to solve all key technical AI alignment challenges while improving
AI capabilities to a superhuman level. This superhuman AI system is tasked with implementing a
global monitoring regime to prevent the development of misaligned AI systems while allowing
democratic access to advanced AI capabilities. While the ideas in this report are superseded by
much better ideas developed by this superintelligence, actually implementing this monitoring and
verification regime requires substantial trust and political buy-in, along with serial R&D time.
Reports like this one moved the conversation in the correct direction early and prompted useful
technical work that enables better monitoring regimes in such a future. The key point of this story is
that some version of an international governance regime to prevent dangerous AI activities (albeit
potentially very different from the ideas discussed here) seems inevitable, conditional on humanity
developing powerful AI systems while avoiding catastrophe.
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