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ABSTRACT

This report focuses on AI systems that are able to automate large-scale scientific
projects and argues that such systems, if created using current methods, will pursue
unintended and catastrophic goals. We discuss important properties of hard tasks
like novel science; success in these tasks is defined in terms of outcomes and
requires overcoming novel and diverse obstacles. We argue that AIs capable of
such tasks will be well described as taking actions in order to achieve goals. We
further argue that behavioral training, the current method of creating AIs, is an
incredibly imprecise way to specify goals and so AIs created this way are likely to
pursue misaligned goals. Due to the scale of the projects these AIs will be doing, it
will be very difficult to safely get useful work out of misaligned AIs. We ultimately
argue that the default outcome for creating such AIs will likely be catastrophic.
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Summary

In this report we argue that AI systems capable of large scale scientific research will likely pursue
unwanted goals and this will lead to catastrophic outcomes. We argue this is the default outcome,
even with significant countermeasures, given the current trajectory of AI development.

In Section 1 we discuss the tasks which are the focus of this report. We are specifically focusing
on AIs which are capable of dramatically speeding up large-scale novel science; on the scale of the
Manhattan Project or curing cancer. This type of task requires a lot of work, and will require the AI
to overcome many novel and diverse obstacles.

In Section 2 we argue that an AI which is capable of doing hard, novel science will be approximately
consequentialist; that is, its behavior will be well described as taking actions in order to achieve an
outcome. This is because the task has to be specified in terms of outcomes, and the AI needs to be
robust to new obstacles in order to achieve these outcomes.

In Section 3 we argue that novel science will necessarily require the AI to learn new things, both facts
and skills. This means that an AI’s capabilities will change over time which is a source of dangerous
distribution shifts.
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In Section 4 we further argue that training methods based on external behavior, which is how AI
systems are currently created, are an extremely imprecise way to specify the goals we want an AI to
ultimately pursue. This is because there are many degrees of freedom in goal specification that aren’t
pinned down by behavior. AIs created this way will, by default, pursue unintended goals.

In Section 5 we discuss why we expect oversight and control of powerful AIs to be difficult. It will
be difficult to safely get useful work out of misaligned AIs while ensuring they don’t take unwanted
actions, and therefore we don’t expect AI-assisted research to be both safe and much faster than
current research.

Finally, in Section 6 we discuss the consequences of building a powerful AI with improperly specified
goals. Such an AI could likely escape containment measures given realistic levels of security, and
then pursue outcomes in the world that would be catastrophic for humans. It seems very unlikely that
these outcomes would be compatible with human empowerment or survival.

Introduction

We expect future AI systems will be able to automate scientific and technological progress. Im-
portantly, these systems will be doing novel science, developing new theories, discovering new
knowledge. We expect these systems will be doing large scale projects, the kinds of projects that
would require many people multiple years to complete. This is the scale of the task that we will be
considering in this report.

We expect such tasks to require robust goal-directed behavior, and we expect agents capable of
such behavior to also be difficult to supervise and contain while retaining their usefulness. If such
goal-directed agents are created by behavioral training, this training won’t be sufficient to precisely
specify its terminal goals. This means that such an AI is unlikely to have goals that align with our
goals. When people attempt to use misaligned powerful AIs for large scale useful tasks, these AIs
are likely to escape and pursue their own goals. Behavioral training is the default way to create AIs,
and so without fundamental advances (which we don’t speculate on) powerful AIs will likely be
dangerously misaligned.

We argue that AIs must reach a certain level of goal-directedness and general capability in order to
do the tasks we are considering, and that this is sufficient to cause catastrophe if the AI is misaligned.
This does not require the AI to be “superintelligent” and “optimally goal-directed” in all situations.

One reason for pessimism about getting powerful AIs to safely do hard novel science is the scale of
this task. We expect that the AIs will be doing the equivalent of years of human labor, and there will
be many opportunities to take irreversible, catastrophic actions. We very likely cannot account for all
of the unknown unknowns the AI will encounter in its research.

Our aim for this report is to explain the central difficulty where we expect AIs that are capable of
novel science to also be dangerously misaligned, and why we expect this problem not to be solved if
we continue along the default trajectory. We focus on the difficult tasks which we assume the AIs will
be capable of. The specific capabilities required for these tasks, combined with the imprecision of
behavioral training, lead us to expect misaligned goal-directed behavior, even though current, 2024,
AI systems do not seem dangerously capable and goal-directed.

We aim to lay out a mostly complete argument for our mainline beliefs about catastrophic outcomes
caused by AI, starting from the tasks we assume they are capable of.1 This risk model can be thought
of as an “inner alignment” failure, where even if we knew what to tell the AI to do, we are unable to
make it safely do that.

We hope that this can be helpful for informing AI safety research directions; ideally focusing research
effort on approaches which are still valid for extremely powerful AI systems or on foundational
research to avoid the problems inherent to behavioral training. Many of the claims in this report
are not of the form “It is impossible in principle to get an AI with this desired property” but rather
“Given how we made the AI and that it is capable of certain things, it is unlikely to have this desired
property”. It is not impossible to create an aligned or safely constrained powerful AI, however this is
unlikely if the AI is created using current methods.

1We are aiming for this document to be as complete as possible on our mainline reasoning, but we will
inevitably miss many important considerations.
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This report considers AIs that are capable of hard, novel science, and we expect AI alignment research
to be in this category (see Section 1.4). Therefore, difficulties and dangers in this report should be
relevant considerations for groups attempting to use AIs to do AI alignment research. The most
prominent example of this that we know of is the OpenAI Superalignment team [1], although teams
at Anthropic and Google Deepmind are probably pursuing similar strategies. This also includes any
group aiming to radically speed up scientific progress using AIs.

0.1 How to read this report

This report is intended to explain the authors’ beliefs and the main reasons for these beliefs. Each
section is stating a thesis which depends on a number of assumptions. The sections are ordered such
that assumptions of later sections are argued for in earlier sections. Unfortunately, this means that
at any point the reader doesn’t agree with an argument we make part way through, the rest of the
document won’t feel fully justified. In this case, the reader should treat each section as a separate
argument for a conditional statement: If we believe the assumptions2, then the section is our mainline
reasoning for believing the conclusion.

The arguments that are “most central” vary a lot between people. We are trying to provide the
arguments that would be most likely to change our beliefs if we discovered they were wrong. There
is a heavy bias toward arguments that are most salient to us. These arguments are usually salient
because they have been important in disagreements with people we regularly talk to.

This report represents the views of the authors, not the views of MIRI or other researchers at MIRI.

We are fairly confident about most of the individual claims in this document, however this doesn’t
mean we are confident that all arguments and assumptions are correct. We think it is likely that
there are sections that contain mistakes, and it’s plausible that such mistakes dramatically change our
conclusions. However, we still think it is important to communicate our overall beliefs due to their
implications for research prioritization and other planning.

0.2 Related work

We will compare this work with related work on similar threat models, see [2] for a more thorough
review of threat models.

"Risks from Learned Optimization" describes why we would expect AI systems to be goal-directed,
and how behavioral training is not sufficient to precisely specify these goals [3]. Our work focuses on
difficult tasks and argues that systems capable of these will have to be goal directed, we also discuss
how behavioral training can lead to unstable goals, not just improperly specified goals.

"Is Power-Seeking AI an Existential Risk?" lays out a conjunctive argument for expecting existential
risk from powerful AI [4]. We attempt to focus more on why we expect trained AIs to be misaligned
and goal-directed, and given this how such an AI could evade our countermeasures.

"AGI Ruin: A List of Lethalities" lays out many reasons why one would expect powerful AI to lead
to catastrophe [5]. Our work attempts to lay out a more cohesive and expanded picture, and we focus
more on how a powerful misaligned AI could evade human oversight and control.

"A central AI alignment problem: capabilities generalization, and the sharp left turn" describes a
specific problem related to powerful AI, where once an AI is capable it is revealed that it was not
aligned, and the AI then pursues some unintended goal [6]. We make a similar argument, but attempt
to connect our story more to the specifics of AI development and the tasks powerful AIs are expected
to do.

"How likely is Deceptive Alignment?" argues, by considering path dependence and inductive bias
in neural network training, that AI systems are likely to be deceptively aligned; faking alignment
during training and later pursuing misaligned goals [7]. Our work does not focus on the inductive
bias or path dependence of training AIs, but rather argues that AIs which are capable and created
using behavioral training will likely be misaligned.

Various arguments made in related work are based on “counting arguments”; arguments of the form
“there are many goals that are consistent with an AI’s behavior during training, so we should not

2Sometimes a strong version of the assumptions.
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expect the AI to pursue the specific goal we want” [3, 5, 8]. We make similar arguments and compile
multiple “degrees of freedom” in an AI’s goal specification.

1 Useful tasks, like novel science, are hard

We start with an assumption that, when developed, powerful AI systems are capable of large-scale,
difficult tasks, and people will try to use them for such tasks.3 We will discuss specific properties
of these tasks, and later in this report we will argue that by default AIs capable of tasks with these
properties will be misaligned and dangerous.

These tasks will have large search spaces, requiring many actions and where success is only achieved
by a relatively very small set of action sequences. They will also be outcome-oriented, novel, and
diverse. Throughout this report we refer to tasks with these properties as hard tasks, and will expand
on the specifics of these properties in this section. By outcome-oriented we mean that we have to
specify the task by the outcome it achieves, because we don’t know the sequence of actions to achieve
it. By novel, we mean that such tasks would require the AI to do things they weren’t initially trained
to do.4 By diverse, we mean that there are a wide range of skills required to successfully do the task.
These properties will be expanded on in this section.5

These properties define a kind of task that we will use as the defining capability of powerful AI. In
this report we will refer to these as hard tasks, this specifically refers to these tasks which have large
search spaces, are outcome-oriented, and contain novel and diverse subproblems. We are using hard
to refer to tasks that have these properties, and not just any task that a human would find difficult.

1.1 Impactful novel science takes a lot of work

We will be focusing on AI systems which are capable of doing novel science,6 the scale of the work
we are imagining is curing cancer or some similarly large scientific endeavor. Tasks like this would
necessarily require systems to be operating over long time scales. A central intuition pump here is the
Manhattan Project, which took three years to design and produce the atomic bomb. Other examples
could include:

• The Human Genome Project
• The Apollo Program
• Proving Fermat’s Last Theorem
• The development of modern microbiology, starting at from the first observations of microbes
• The development of quantum mechanics

We don’t know how much work would be realistically needed to cure cancer and it may be easier
than the above examples, but we can lower-bound this based on the amount of work that humans have
put in to date. This task so far has already taken thousands of humans decades of work.

Some of the work may be parallelized, but there is a lot that cannot be; discoveries that are made
along the way will be necessary for later steps, and will change the course of the research. New
methods will likely need to be developed, and old methods applied in new ways. This will necessarily
require large amounts of serial work.

3At the end of this section, we’ll discuss why the task of AI alignment appears to be in this category. This
also applies to other tasks that we have considered that seem sufficient to prevent dangerous AIs from being
developed for a significant length of time.

4This isn’t precisely defined, but we are referring to the intuitive scale that roughly goes from copying
training data to deriving never-before-seen Go strategies, and further to inventing special relativity from scratch.

5There are tasks that are economically useful and don’t have all these characteristics, for example writing
relatively simple code. AIs can easily be both capable of these tasks and safe, and therefore can be economically
useful. However, these AIs are not capable of dramatically speeding up research, because they are lacking skills
such as: designing novel experiments; working out novel theories based on data; seeing patterns in data and then
drawing appropriate conclusions; inventing conceptual frames for specific problems.

6By “doing” we mean fully obsoleting or at least dramatically speeding up humans at a task. An AI speeding
up human research 30× would be doing 97% of the work and very likely be able to do effectively all of the work.
The 30× speed up is inspired by [9].
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1.2 Outcome-oriented tasks

A task like doing novel science (for example, curing cancer) is outcome-oriented. That is, the task is
defined by achieving some specific outcome in the future, and we are able to describe this outcome
in advance. Tasks that we define by describing the necessary actions are less outcome-oriented.
For example, instructing someone to bake a cake by giving them exact instructions is less outcome-
oriented; while telling someone to bake a cake and having them work out the steps to get there by
themselves is more outcome-oriented.

When we tell an AI to achieve an outcome which we don’t know how to achieve, this is inherently
outcome-oriented. By this we mean that we don’t currently know the procedure to achieve the desired
outcome and so the AI has to work out the procedure; we don’t mean that this is a task that humans
could never achieve with substantial effort. This applies to “curing cancer” because we can’t specify
the exact sequence of actions that lead to success, we can only specify success criteria. For example,
the success criteria could be “have a medical intervention which can remove all the cancer cells in
a patient’s body, while leaving the other cells intact and the patient otherwise unharmed”. Novel
science in general has this property, because this inherently involves discovering new things and
using those discoveries, hence we cannot describe all of the actions in advance.

1.3 Novelty and diversity of obstacles

Obstacles in hard tasks like novel science are not predictable in advance, and often dissimilar to
obstacles previously encountered. Writing a program could involve inventing or appropriating a
new data structure which works with the particular constraints of the specific problem. In science, it
can be extremely valuable to sort through messy debates containing arguments about which data is
relevant and real and combine this information with context, to decide which experiments are most
valuable to do next. In adversarial settings, an agent needs to deal with other agents which seek out
and play strategies that it has the least experience with.7

Sometimes a researcher is missing necessary skills or knowledge and has to work around that
somehow, either by gaining the skills or knowledge, or finding a route that doesn’t require these.
Different resources can be a bottleneck at different times, leading to new and different constraints.
Available resources may change which can necessitate a different approach.8

Above examples of diverse obstacles share the property that each new obstacle may require a novel
strategy to address. The defining property of a successful novel strategy is that it still leads to the
desired outcome. Defining the strategy by other means, like by describing a particular sequence
of steps, or a particular heuristic to locally optimize, becomes harder as the diversity and novelty
of obstacles increases. Defining strategies without reference to goals often requires predicting and
coming up with solutions to obstacles before running into the particular obstacles that need solutions.

Among different goals and environments, there are differences in the level of novelty and diversity of
obstacles. It looks like hard research that generates genuinely new and useful insights will require
facing repeatedly very novel and very diverse obstacles. Hard novel science, such as curing cancer,
seems extremely likely to fall into this category.

7More examples of diverse obstacles, for different tasks:

• A designer trying to build a fusion rocket has to interface with the steel producer and run tests to see if
the steel is good, and renegotiate or switch suppliers depending on the results.

• An advanced coding assistant will sometimes have to debug weird hardware glitches, things outside
of normal coding. E.g. To build extremely efficient algorithms, you need to be experimenting with
different ways to exploit caching, especially in GPUs.

• Math AI has to communicate extremely complicated results to humans. For this purpose it might need
to develop a new formalism for thinking about problems, or define new types of mathematical object
that allow people to draw on intuitions (i.e. similar to Feynman diagrams).

8Examples of “resources” could include: time, money, energy, skills, knowledge, other people’s labor, food,
memory, writing space, or shared context with coworkers.
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1.4 AI alignment research is hard

We think that the task of doing useful AI alignment research is a task which is hard and outcome-
oriented, and will require novel and diverse skills. By “do useful AI alignment research” we mean
that the AI system would be able to perform or speed up human research output by 30x for the
research task of “build a more powerful AI which can do novel science faster than humans, which
we are confident will do tasks it is directed to do, while choosing not to irreversibly disempower
humanity”.

This task, especially getting sufficient confidence in safety, we think will require:

• Novel mathematical work, developing mathematical models that have not been explored
before.9 This work will likely need to build on itself, requiring inventing and understanding
one new mathematical model, and then developing another based on that. This kind of work
seems necessary for building an AI that is very stable under learning and reflection (i.e. acts
in well-understood ways while learning a lot, especially when it comes to ontological crises
and self-improvement).

• Empirical work to validate the theory. This will likely require coding to run large empirical
tests of various components of the designed AI system, as well as testing bounds and
approximations.

• Engineering work, building and iterating on the (hopefully) safe AI system. This will likely
require large scale software engineering, similar to the scale that is required to build large
foundation models. We expect this to be much more complicated than current foundation
models, because the system probably needs to be something more complicated than an
end-to-end trained black box.

While we expect AI alignment research to be hard and require these skills, the overall argument in
this report does not rely on this assumption. We will be arguing that AI systems trained using current
methods (if they are capable of hard, novel science) will be misaligned10 and too dangerous to use.11

We separately believe that solving AI alignment will require hard, novel science (but won’t argue for
this further, in this report).

1.4.1 Stopping misaligned AI deployment seems to require powerful aligned AI

Many well-resourced companies and governments are motivated to build powerful AI. Any approach
to AI safety has to deal with the problem of surviving when a less competent and safety-conscious
actor could create and accidentally release a misaligned AI. We don’t know of any approaches to
this that don’t involve a safe, aligned powerful AI.12 We would welcome being wrong, and would be
excited about concrete strategies that would make the world existentially secure without needing to
solve alignment and build a powerful AI.

1.5 Conclusion

For the rest of the report, we frequently refer to hard tasks as tasks that have extremely large search
spaces (relative to the set of solutions), are outcome-oriented, and contain a lot of novelty and
diversity. In this section we have argued that large-scale novel science is hard in this sense. We are
aware that the difficulty of tasks falls on a spectrum, when we say “hard task” we are referring to
tasks of similar scale and diversity to the Manhattan Project or other tasks discussed in this section.

We expect useful AI alignment research to be hard in this way.

We argue in Sections 2, 3 and, 4 that capability to do this sort of task implies that we can model
powerful AI as approximately “consequentialist”, and there is difficulty in specifying the goals that
such an AI will be pursuing.

9E.g. research such as heuristic arguments [10], logical induction [11], infra-bayesianism [12].
10See Section 4, with dependencies in Sections 2 and 3.
11See Section 5.
12Such as an AI defense system that detects and shuts down misaligned AI.
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2 Being capable of hard tasks implies approximate consequentialism

In the previous section, we argued that an AI which is able to do hard, novel science must be capable
of tasks which are:

• Easy to describe in terms of future outcomes
• Difficult to describe precisely in other ways (due to novelty and diversity of obstacles)

In this section we will argue that this implies AIs with such capabilities will be capable of approxi-
mately consequentialist behavior. By this we mean that the AI will be capable of taking actions to
achieve specific outcomes, this will be further defined in this section.

2.1 Future outcomes as goals

Many useful goals are simply specified by future outcomes. By future outcomes, we mean roughly a
property or fact about the future world. In particular, the important part of future outcomes is that
they don’t have strong dependence on near term actions. We argue that AIs doing outcome-oriented
tasks, as described in Section 1, will be well described as behaving as if they are robustly pursuing
future outcomes (i.e. their behavior will be consequentialist). A “goal” is a representation inside the
AI, while a “future outcome” refers to the state of the real world.

Future outcomes are usually the only simple way to describe success on a task, without knowing
in advance how it should be done. An AI that is robustly capable of completing the task must have
some means of recognizing actions that lead to success. It can’t have memorized specific strategies
for overcoming all obstacles, because there could be arbitrarily many of these. Therefore, it must be
capable of calculating strategies on-the-fly, as it learns about new obstacles. We will expand on this
argument later in this section.

2.1.1 Formalizing consequentialist goals

We can construct a simple definition of consequentialist goals based on the idea that success can be
evaluated entirely by looking at future states, rather than the path that led there. This definition can
be represented as a causal graph, as in Figure 1.

Figure 1: A causal graph, where g is a random variable that represents whether the goal was achieved.

Here the actions affect the future state which affects success at achieving the goal; the only way the
actions affect the goal is via the state.

If a0..t are early actions, st..t+k are a short sequence of states in the future13 and g is some internal
representation of the outcome-goal in an AI, then a consequentialist goal has a property like:

MI(a0..t; g|st..t+k) ≤ ϵ (1)

Where the mutual information MI(·) could be defined with respect to an outside observer approxi-
mately modeling the AI. Given that we know what the future state is, knowing what the actions were
doesn’t tell us any more about whether the goal was achieved (note this is an identical statement to
the causal diagram in Figure 1).

2.1.2 Non-consequentialist constraints

There are also ways to specify behavior that don’t look like taking actions to achieve future outcomes,
and instead are more like constraints on actions and intermediate states. Examples of such constraints:

13Not necessarily entire world states, this definition works better if it’s only the goal-relevant facts about the
future world.
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Always act “kindly”, or always follow a particular high-level procedure while completing a specific
task, or always do a particular action upon particular observation. Humans also have plenty of similar
shallow constraints; for example, disgust reactions, flinching, fear of heights. More deontological
ethical prohibitions [13], like “don’t kill”, are also an example.

One could define such non-consequentialist goal specification c as a variable that is primarily
dependent on short term behavior and state, and not strongly dependent on the outcomes in the future:

MI(st..t+k; c|a0..t, s0..t) ≤ ϵ (2)

Here c is defined by modeling the agent as choosing actions that result in success according to c.
Conditioning on the actions and states in the short term, the final states don’t give you additional
information about whether the AI successfully followed its constraints (Figure 2).

Figure 2: Non-consequentialist goals

2.1.3 Combined goals

Constraints and consequences can be combined to describe many problems (Figure 3). For example,
winning chess might be described by defining the action space and legal moves, alongside a description
of checkmate. The next section will argue that, while combined goals are a more accurate model for
the behavior of powerful AI, the primary driver of intelligent problem-solving behavior will tend to
be consequentialist goals.

The distinction between constraints and consequences is useful for describing why powerful trained
systems are likely to be an existential risk by default. Specifically, the danger comes from a powerful
trained AI pursuing a different consequentialist goal than the one that we intended, and is missing
constraints that we intended it to have. The reasons why the precise goals and constraints are likely
to be learned incorrectly are described in Section 4.

There exists much more complicated behavior that isn’t precisely captured by this simplified model
of goals. Despite this, we think this description of goals is sufficient for describing the main reasons
we expect misalignment in real agents.

We call an AI “misaligned” if its behavior is well described by goals and constraints that are
different from the goals and constraints intended by its human creators.

Figure 3: A combined goal that is a conjunction of a constraint and a consequence.
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2.2 Why consequentialist goals are a necessary part of powerful AI

2.2.1 Robustness to diverse obstacles is driven by consequentialism

The primary reason we expect approximate consequentialism to be a good model for the behavior
of useful systems is that we are assuming the AI is capable of generalizing well. By this we mean
the diversity property in Section 1; the tasks we are assuming the AI is capable of involve a diverse
array of unknown obstacles and difficulties, and the AI is able to achieve a particular outcome in
spite of these obstacles. This allows us to make inductive conclusions such as: If we know the AI
can overcome one hundred particular obstacles when pursuing a particular goal, it can likely
overcome another obstacle that is in roughly the same reference class as the first hundred.

One of the main things that is useful about powerful AI is its ability to overcome many diverse
and unknown obstacles, and this is what leads us to think of powerful AI as primarily pursuing
consequences. When the AI generalizes to novel hard tasks, its behavior is still well described
taking actions in order to achieve outcomes, in spite of unknown obstacles. This is what we mean by
behaviorally consequentialist.

Humans attempting to achieve outcomes can be modeled as consequentialist. When we want to do
something we work out a way to do it; when we encounter obstacles we work out ways to overcome
them or search for alternative routes. Humans are not perfectly consequentialist, we often give up
on things before achieving success, but we are consequentialist enough to radically reshape our
world. Current LLMs such as GPT-4 [14] are useful for many tasks, but these are generally similar
to their training distribution. They may be modeled as consequentialist when close to their training
distribution, but this breaks relatively often when they encounter novel obstacles.

For example, we might assume an AI has the goal “build a fusion rocket”, and for this it must be
capable of completing many engineering subtasks of the form “have a design idea to solve a problem,
build models to empirically test unknowns, refine design based on data”. Because there is a huge
variety of subtasks of roughly this form, it’s likely that if given a new arbitrary subtask of this form
(of a similar difficulty) the AI will be capable of completing that subtask. If it has generalized this far,
it will probably continue to generalize.14

Compute budget and generalization pressure toward consequentialism

For some types of task with many diverse obstacles, there appear to be (large) benefits to computing
actions on-the-fly, after observing the current obstacle, instead of in advance of knowing about the
specific obstacle that the agent is facing. This is similar to the argument sketch in Conditions for
mesa-optimization[3, 16].

We first make the simplifying assumption that each obstacle-overcoming strategy takes some amount
of computation to work out (either during training or deployment). There are many possible obstacles.
We could try to precompute every obstacle-overcoming strategy in advance, however this would take
a huge amount of compute. Therefore, it is more computationally efficient overall to develop an
algorithm which can work out how to overcome obstacles on-the-fly. The AI waits until it encounters
an obstacle, and then runs the computation to work out how to overcome it.

Another variation of this argument is about generalization rather than the compute budget. If we’re
doing the precomputation approach, and we don’t know or can’t iterate over all the possible obstacles
in advance, then the AI won’t have memorized strategies that generalize well at inference time if
an entirely new class of obstacle shows up. In contrast, if the AI operates by storing the outcome it
wants, it can (try to) understand the obstacle on-the-fly and compute a new winning strategy.

2.2.2 Shallow and deep constraints

Another reason we consider outcome-oriented goals to be important is that shallow constraints on
behavior tend to be easy to exploit (or hurt the usefulness of an AI if they are overly broad). By
shallow constraints, we mean constraints that are easy to implement or specify, but don’t robustly
serve their intended purpose when subjected to optimization pressure. In other words, shallow
constraints don’t generalize well. For an intuitive example, a prohibition against saying explicitly
false statements is easy to exploit by selectively revealing information or by using misleading but
technically correct definitions. Deeper constraints, like “don’t manipulate person X while trying to

14See arbital for more examples of consequentialist cognition [15].
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achieve outcome Y”, tend to be most naturally represented as outcomes (e.g. with “did X’s beliefs
become less true as a result of talking to me”, or “if X knew what I knew, would they be upset by the
way I communicated with them” 15). Another example of a shallow constraint might be “don’t kill
people by doing recognizably people-killing actions”. This kind of constraint wouldn’t slow down a
determined murderer. Legal systems instead use the outcome, intent and causal influence to define
murder, which is a far better definition (but also has some ambiguous edge cases).

Constraints are hard to specify in a way that generalizes to new or different situations, or new
strategies, because the AI is creatively searching for ways to achieve particular outcomes and will
tend to eventually find loopholes. This is not to say it’s impossible, merely that specified constraints
need to solve an adversarial robustness problem.

2.2.3 Approximation

It’s important to note that when we describe an agent as pursuing consequentialist goals, we’re not
saying it must be doing this optimally. Optimal consequentialism has a few tractability issues [17].
Our claim is that it’s close enough such that it usually works, and usually generalizes well to new
obstacles of similar difficulty to past obstacles. Specifically, it works and generalizes well enough in
order to do hard tasks.

Whether the AI is well described as goal-directed is not binary, and this may apply more or less
in different situations. We only assume that the AI is far enough along on the spectrum of goal-
directedness, such that it is able to do hard tasks as specified in Section 1.

We can describe some axes upon which consequentialist AIs can be approximate.16. One type of
approximation is how robust is the AI to unexpected obstacles (where more robust means the AI is
capable of recovering from or working around a larger set of unforeseen obstacles). For example,
your walking robot might recover from gently poking it, but might not recover from being knocked to
the ground. Being knocked to the ground was outside of its set of unforeseen obstacles that could be
overcome.

Another axis of approximation is to what extent the AI is correctly making (probabilistic) trade-offs,
given a preferred outcome and many pathways to achieve that outcome. For example, suppose an AI
must play a sequence of lotteries to gain money, which it can later spend to achieve some desired
outcomes. To what extent does it make decisions that avoid sure losses or take advantage of sure
gains? How efficient [20] is the AI with respect to a given set of other AIs?17

2.3 Conclusion

Powerful AIs should be behaviorally modeled as approximately selecting their actions to produce
specific outcomes (often subject to non-consequentialist constraints). This is a necessary consequence
of their capacity to solve hard tasks which involve unpredictable and complex obstacles; they are
consequentialist enough to be able to do hard tasks. This doesn’t mean that such powerful agents
must act to achieve outcomes “by any means necessary”. Constraints on behavior are not ruled out.
We will argue in later sections that a powerful AI will be dangerous if its consequentialist goals or
constraints are misspecified.

3 Hard tasks require learning new things

In previous sections we have argued that doing large scale novel science is a lot of work; and that
an AI capable of this will be well modeled as doing consequentialist problem solving, i.e. taking
actions in order to achieve outcomes. Part of why novel science is difficult is because it will require

15This is a constraint that involves a counterfactual outcome.
16By approximate, we mean in the same sense that UCT [18, 19] approximates tree search. Approximate

algorithms have may suboptimal performance, but can satisfy more realistic time or space constraints.
17If an AI is avoiding losses and collecting all potential gains, and this behavior generalizes to other problems

that it faces, we can usually treat it as an approximate utility maximizer [21] (for some utility function, outcome
space, and action space). We haven’t been specific enough about our capability assumptions to draw this
conclusion in this report, we have only assumed enough to say that a powerful AI will be capable of generating
actions that robustly produce particular outcomes, in spite of diverse sets of obstacles.
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skills and knowledge that an AI doesn’t initially have. In this section we will discuss why an AI
will need to learn new things, and that this learning will need to be self-directed (not directed by
humans-in-the-loop).

3.1 The AI will need to learn new things

If an AI system is going to do novel science on the scale of curing cancer or the Manhattan Project
then it will need to be able to learn things. The AI will need to learn empirical facts that it didn’t
originally know, update its models of the world, and learn new skills that it wasn’t originally trained
to do.

3.1.1 Learning facts

A simple example could be that the AI does not know a specific fact; it may be missing the value of a
physical constant, or not have read the operating manual for a particular machine. An AI doing novel
science must be able to realize that it doesn’t know a specific fact, and then take actions to learn it.
For example, reading a physical constant from a textbook, planning and performing an experiment to
measure a constant, or reading an operating manual in order to use a machine for a specific task. All
the information that the AI needs will not be “stored in the weights” from the initial training.18 When
doing novel science, the AI can’t initially know all the facts it needs, because many of these facts
won’t have been discovered yet.

3.1.2 Learning skills

Further, the AI will need to learn new skills, not simply learn new facts. The AI will run into cases
where it doesn’t know how to do something and so needs to learn. There will be particular algorithms
or methods that are needed for the novel problems it is solving, but were not available (or invented)
during the AI’s initial training. An AI that was never trained on French could not be expected to be
able to write in French without learning how to; similarly, an AI that was never trained on differential
calculus would not simply know differential calculus. When doing novel science, AI systems will
need to learn skills that others have developed previously (such as French or differential calculus), as
well as develop skills that it needs to invent itself because they have not yet been invented by humans.

As with learning facts, these new skills initially will not be “stored in the weights” because the
training process will not have had any reason to build them; especially if we are expecting the AI to
generalize far from the training distribution. It doesn’t seem likely that an AI would be able to intuit
or extrapolate to differential calculus if it was never trained on it. This is not a claim that an AI could
not learn differential calculus, but rather that this will require explicit work from either humans or the
AI.

As an example, during the Manhattan Project, scientists invented Monte Carlo methods for nu-
merically performing complicated integration [22]. These methods simply did not exist before the
Manhattan Project, and so they needed to be invented and specific skills needed to be learned. The
same applies for similar cases, such as developing mathematical theory to describe the hydrodynamics
of shockwaves and centrifuge design.

3.2 Self-directed learning

This section will argue that the AI likely needs to be doing self-directed learning, where the AI itself
is controlling what it learns. The alternative to the AI doing self-directed learning would be for a
human to be constantly overseeing the AI, and looking for when the AI needs to learn a fact or skill.
Then the human would either train the AI using supervised learning or RL, or assign the AI to learn
this skill or fact as a new task.

3.2.1 Human-directed learning is a big efficiency hit

For the human to be able to competently and safely direct the AI to learn things, the human would have
to adequately understand both the problem being solved and the AI’s capability profile. Specifically,

18By “stored in the weights”, we are referring to information that is explicitly represented in an easy-to-decode
way, inside the AI program.
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the human would need to know what skills were required to solve the problem, and that the AI was
currently lacking those skills. It will be much faster for the AI to know this, as it is the one actually
solving the problem, and has access to its current knowledge. This seems important when the AI
is working in a domain that the human doesn’t understand. If the AI is bottlenecked on human
understanding, including when exploring research directions that don’t pan out, the research speed
won’t be much faster than human research speed.

Additionally, some skills are only legibly useful with the benefit of hindsight, and so it may be hard
for the human to realize that the AI needs to learn these. It can be difficult to explain the usefulness
of math to students, and similarly, it may be difficult to realize the benefit of particular knowledge
prior to knowing it.

3.2.2 Indirect self-directed learning

The AI may be able to “indirectly” do self-directed learning, for example by telling the human which
skills or facts it should be trained on next. If the human doesn’t fully understand the problem and
is just deferring to the AI, then this is effectively the same as the AI doing self-directed learning.
The AI is just “using the human as a puppet”, or simply working around the human. There is some
additional safety because the human may be able to prevent the AI from learning obviously harmful
things. This seems like the most likely outcome of a naive attempt to put humans in the loop.

3.2.3 Useful versus safe tradeoff

Learning is useful for completing hard tasks. Having a human in the loop, deciding what should
be learned is safer. For some tasks, having a human in the decision loop is fine. The claim we are
making is that for hard tasks there is a significant tradeoff to be made, where putting a human in the
loop will dramatically slow down the overall system. This topic will be discussed more in Section 5.

This is a specific case of a more general lesson; complex multifaceted tasks contain lots of bottlenecks,
and solving one bottleneck means that the next bottleneck will dominate.19 This isn’t a fully
general argument against it being possible to speed up anything. It is an argument that dramatic
acceleration on very diverse tasks requires an algorithm capable of attacking approximately
every type of bottleneck that comes up.

3.2.4 Examples

Here are two brief examples from the history of science where learning of facts or skills was necessary
to make progress, and that this learning needed to be self-directed because knowledge needed to be
built on previous discoveries.

Experimental science

We can consider Hodgkin and Huxley discovering the ionic mechanism of action potentials [24]. An
observation had been made that some squids had extremely large axons, and so were more amenable
to experimentation. This allowed electrodes to be inserted into cells in order to measure the potential
difference across the membrane of the cell. Such an experiment would not have been possible with
smaller cells. Here, we can see that a fact was learned (some squids have extremely large axons),
and knowing this fact allowed for a novel experiment (including novel experimental techniques)
to be developed, and this led to an important discovery (the ionic mechanism of action potentials).
Learning the initial fact was needed and a chain of facts and techniques were built upon it in order to
discover and demonstrate the mechanism of action potentials.

Theoretical mathematics

We can also look at a theoretical example, which does not require learning from observations
in the world; the development of integration. In the 17th century Newton and Leibniz showed
a connection between differentiation and integration with the fundamental theorem of calculus.
However, integration at this point had not been rigorously formalized. Formalization of integration
required the mathematics of limits; it was not until the 19th century that integration was formalized
by Riemann. Here, the development of a rigorous definition of integration required the initial
non-rigorous definition as well as additional mathematical tools (limits).

19See Why Tool AIs Want to Be Agent AIs [23].

14

https://gwern.net/tool-ai


These examples make the (perhaps obvious) case that when doing novel science, the AI system (or a
human) will need to learn both facts and skills, and that these will necessarily build on themselves.
The task of science is often inherently sequential.

3.3 Conclusion

An AI doing hard tasks will need to learn new things because we are asking it to do something novel;
the task requires skills and knowledge that were not part of its initial training. The AI will likely need
to learn a wide range of things, including things that were not specified or known in advance. It is
much faster for the AI to do self-directed learning, rather than having a human direct the learning,
which would require the human to have a deep understanding of what the AI is doing.

In the following sections we will discuss two important consequences of self-directed learning:

1. It is a major source of several kinds of distribution shift (relevant for Section 4).
2. It causes a number of problems for oversight, control, and predicting the limits of the

capabilities of an AI before using it (relevant for Section 5).

4 Behavioral training is an imprecise way to specify goals

This section is about AIs which are created by behavioral training, and also are capable of doing
the hard tasks as described in Section 1. By behavioral training we are referring to a wide variety
of training techniques, which involve running a parameterized model, providing feedback on the
output of the model, and updating the model based on this feedback. Examples include model-free
RL using PPO [25], model-based RL like MuZero [26], next token prediction on tokens describing
goal-directed behavior [27].

In previous sections we have described the behavioral properties that appear to be necessary for hard
tasks. That is: powerful AIs are behaviorally, approximately, optimizing their actions to produce
outcomes.20

We haven’t described the internal operation of such trained AIs, mainly because we expect it to be a
mess in the same way that humans and other evolved systems are a mess.21

There are several categories of problems that make it difficult to specify goals. Each category
introduces an uncontrolled degree of freedom in the goal specification which exists because we
are only using feedback based on behavior. Because there are lots of potential degrees of freedom
that we don’t have control over (via behavioral training), we can think of the space of “intended
goals” as being a small subset of the space of “goals that empirically are pursued after training and
deployment”. In this way, behavioral training is imprecise and is exceedingly unlikely to nail down
the goal we intended. We describe multiple separate failure modes and so failure is disjunctive; we
only need one failure of goal specification for the AI to be misaligned. Here is an overview of the
problems that we will describe in more detail:

• “Goal instabilities” that can come from the AI doing instrumentally convergent, capability-
improving operations (during the process of doing hard tasks). These mean that the apparent
goal of the AI changes over time, leading to success in training but unintended behavior
after deployment.

– Updating beliefs (Section 4.1.1)
– Outer shell constraints (Section 4.1.2)
– Changing terminal goals in-lifetime (Section 4.1.3)

• Goal specification that generalizes out-of-distribution is difficult because it’s hard to distin-
guish between terminal and instrumental goals, and because the “distribution shifts” that we
need a goal specification to be robust to are particularly large.

– Goals naturally need to generalize a long way out of training distribution (Section 4.2.1)

20With all the caveats from Section 2 inherited; an AI might have constraints on actions and behavior, or more
abstract constraints. However, a central part of its goal specification is about outcomes.

21As in biological systems, the system may be factorizable in some ways, but messy in other ways.
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– Instrumental goals are difficult to distinguish from terminal goals (Section 4.2.2)

• Outer behavioral incentives are difficult to get right in the first place. If these aren’t perfect,
they incentivize “playing the training game” (Section 4.4). This section will be brief, since
this issue is well described elsewhere.

We will describe some of these problems using terms like probability, belief, utility, goal for concrete-
ness, but each problem applies to learned algorithms that approximate goal-directed behavior. These
problems are largely caused by the fact that the learned algorithm is messy and unstable, for example
by the designers not carefully tracking the distinction between beliefs and goals in the clean way that
the internals of an expected utility maximizer would.22

4.1 Unstable goals

In these examples, the AI initially appears to be pursuing one goal in training, but then takes some
actions in order to become more capable, and this causes it to pursue a different goal.

4.1.1 Beliefs and goals can be mixed together

This example demonstrates a pattern common across other examples: we train an AI, this leads to an
unstable implementation (of the AI) that generates behavior sufficient for low training loss. Some
internal process eventually breaks this unstable implementation, causing the AI to pursue unintended
goals. This first instability comes from a fundamental fact about probabilities and utilities: the same
behavior can result from different sets of preferences and beliefs.23 For example, an AI might execute
a certain behavior, believing this helps it achieve some goal, but the belief is false, and in fact the
behavior results in a different outcome. Or an AI might falsely believe a subgoal is instrumentally
useful for reaching a terminal goal. In these cases, the AI behaves as if it is pursuing one goal, but it
would not behave this way if it had different (more accurate) beliefs.

One of the differences between beliefs and goals (as we use these terms) is that beliefs update
over time, as observations are made, and as evidence is considered. One might imagine an AI that
is being trained using reinforcement learning to solve difficult puzzles, but where there is a way
to hack the solution-checker. With good oversight, the AI would receive low reward for hacking
the solution-checker during training, and one might hope that this correctly puts a “morality-like”
constraint into the AI’s goal. But there is another way it might update: the training could insert a
false belief24 into the agent. This might be a belief that hacking the solution-checker doesn’t work, or
leads to some other bad consequence, or is more difficult than it truly is. Later, if the AI updates this
belief (because the belief was false), it may attempt to hack the solution-checker.

This mechanism (false beliefs instead of correctly specified goals and constraints) creates many
additional degrees of freedom that allow particular behavior to be selected for, without the RL
training necessarily having much influence on the ultimate goals of the agent.

4.1.2 Outer shell non-consequentialist constraints

There is a difference between the sort of constraints that are built into the core terminal goals of an
AI, and the sort of constraints that are implemented outside of the core outcome-seeking algorithm,
perhaps thought of as a kind of wrapper around the outside. The core outcome-seeking algorithm may
treat the wrapper as an obstacle, and try to work around it or remove it in order to achieve its goal.25

In humans, an instinctual fear of heights is (probably) an example of this. A fear of heights is not a
value that a human would usually endorse having in their terminal goals, and if it were really getting

22Where by expected utility maximizer we are here referring to a theoretically clean implementation that has a
module that explicitly predicts the future outcome of all possible actions, and has another separate module that
scores each outcome (not that we think such a design is realistic).

23See Jeffrey-Bolker rotation [28].
24Or a bad prior, or cognitive bias.
25From Section 2, we are assuming there is an algorithm which is behaviorally robustly outcome-seeking, at

least sometimes or with some non-outcome constraints. In this section are noting that “wrapper algorithms” can
be implemented around such an outcome-seeking algorithm. We aren’t making claims about the implementation
of the outcome-seeking algorithm, other than its existence.
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in the way of achieving their goals, they would look for ways to overcome it. This is an example of an
agent that initially produces behavior that appears to obey a constraint, but when there is a sufficiently
large conflict between this constraint and other goals, then the constraint will be overcome.

We could imagine a hypothetical AI system, being trained by humans to make money in a legal
and ethical way. The system may attempt to steal money from humans by stealing from their bank
accounts, get caught, and have this behavior punished by RL training. This doesn’t mean that it will
learn the general goal “make money legally and ethically”, instead it may learn the goal “make money”
and a separate action-rejection circuit which rejects some stealing-like actions. The two possible
ways for the RL to adjust the algorithm both result in identical behavior on the training distribution.
It could then, in a later task, work out how to circumvent the action-rejection constraint by employing
other humans or AI systems to do illegal things for it, or doing some form of self-modification to
remove the constraint.

As another example, we could imagine an AlphaZero-style system guided by a trained heuristic [19].
The heuristic may have been trained in order to guide the search away from certain states; as an
arbitrary example, we might have trained it to play chess with the additional constraint that it should
keep its bishops as far apart as possible. However, this constraint and the goal of winning the game
may be at odds; the heuristic can guide the moves, but more tree search can “override” the heuristic.
In some future situation which involves using more search than previously on particular branches of
the game tree, the constraint will no longer be obeyed. This is even more important if the system is
set up to do learning in-lifetime, where the heuristic can get updated to remove the constraint, as this
hurts the AI’s performance for winning the game.

This kind of heuristic-goal mixup would be a fairly obvious mistake if we were designing the search
procedure explicitly, as we would be in the AlphaZero example, but when we are training an algorithm
that internally implements some planning procedure, it would be much more difficult to notice this
type of mistake.

4.1.3 Changing goals over time

In very capable AIs, the terminal goals shouldn’t change over time. This is because it’s not in the
interest of previous goals to be overwritten, so the AI should take steps to avoid its terminal goals
changing. There is initially little reason for a behaviorally trained AI to have completely stable goals,
especially if it was not directly trained on long and hard tasks. Because of this, there can easily be
mechanisms built in that change terminal goals. Such mechanisms may or may not have a useful
reason for being there, all that’s necessary is that they didn’t hurt performance in training enough to
be removed.

One possible instance of this could be an AI that sets its goals based on observations. We could
imagine an AI for solving puzzles, where the AI receives a description of the aim of the puzzle as an
observation, this observation sets the AI’s terminal goal, and then the AI pursues this goal. In this
system, the AI’s terminal goal is changing for every task. In deployment, it might run for longer, or
be in a more information-dense environment or a more adversarial environment. Then, some way into
a task, it pattern-matches some text that looks a little like a puzzle description (but wasn’t intended
that way) and its goal would unintentionally be adjusted.

Or, as another example, an AI trained to solve tasks could constantly be having its goals shifted by
the observations, but the AI is running over short time horizons in training and the distribution is
homogeneous enough for it to appear stable and achieve good training loss. When the AI is set to
do a hard task that requires much more time or a larger distribution shift this could cause the goals
to change more radically. Here the most likely outcome seems to be that the AI breaks and not be
capable or dangerous, but if we assume that it would be capable of doing the hard task (and thus
remains competently goal-directed) then it could end up competently pursuing a misaligned goal.

This kind of mechanism where the goals change isn’t necessarily incentivized by training. It’s just a
way of implementing an AI that is unstable but performs similar behavior to the behavior we want
(during training). It is therefore another source of degrees of freedom in goal specification, which
makes it less likely the intended goal is internalized.
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Goal-updating machinery is dangerous to the extent that we don’t understand exactly how it works,
and can’t predict how it will react to very different environments.26 When there is a lot of messiness
and approximation, as in most complex systems evolved from training data, a huge source of difficulty
in specifying goals is that we don’t know precisely how the system evolves over time.

4.2 Out-of-distribution generalization

4.2.1 OOD generalization difficulty

If a trained AI can be thought of as approximately pursuing an outcome, in a manner robust to almost
any obstacle it encounters, then some kind of description of the outcome seems like it must be stored
in the AI. It need not necessarily be cleanly stored in one place but the AI must somehow recognize
good predicted outcomes. As in Section 2, we will call information representing the goal g.

The thesis of this section is that to be safe, g should generalize in a well-understood way to previously
unexplored (and unconsidered) regions of future-trajectory-space. This is because an AI that is
capable of generalizing to a new large problem is considering many large sections of search space
that haven’t been considered before [29, 30]. An AI that builds new models of the environment seems
particularly vulnerable to this kind of goal misgeneralization, because it is capable of considering
future outcomes that weren’t ever considered during training.

The distribution shift causing a problem here is that the AI is facing a novel problem, requiring previ-
ously unseen information, and in attempting to solve the problem, the AI is considering trajectories
that are very dissimilar to trajectories that were selected for or against during training. The properties
of g are not pinned down by data, so we are relying on generalization. This problem becomes worse
when our intended goal is more complex to specify.27 It also depends on the amount and diversity of
training, but we are always depending on generalization because of the inherent novelty of hard tasks.

4.2.2 Instrumental goals as terminal goals

Solving difficult problems involves pursuing many instrumentally convergent subgoals along the
way. A behavioral training signal doesn’t fully distinguish between things that were instrumental
for achieving the goal and the goal itself. And so instrumental goals can be selected for, to some
extent, just as if they were terminal goals. It seems likely they wouldn’t be a dominant part of the
goal, because that would result in instrumental goal-directed behavior that sometimes conflicts with
good training performance. But instrumental goals being incorporated as a small part of terminal
goals appears to be a fairly natural design for selected agents, and creates more degrees of freedom in
goal specification from behavioral training.

For example, an AI trained to run a factory may be incentivized to gain more influence over employees,
because this is useful for managing the factory. The AI may end up partially terminally valuing
“power over humans”, because this was behaviorally identical to having the goal of running the
factory well. These differing goals could come apart outside of training if the AI was given the option
to gain much more power over humans, because now a relatively small part of the goal has become
much easier to satisfy.

4.3 Deliberate deception

If an AI develops internally represented goals during training, and has adequate understanding of
the training process, this may result in deceptive alignment [3] (or "scheming" [8]). Here, the AI
performs well according to the training process, deliberately, in order to avoid being modified or
having its misalignment detected. The AI ends up doing well on the training objective, but pursues
something entirely different when it gains confidence that it is no longer in training or that it is
otherwise safe to defect.

26If for some reason you want to deliberately train unstable goals and use this mechanism to specify goals,
remember the previous and next examples of problems will all be mixed up in the same AI.

27Conversely, simpler goals should be more likely to be specified correctly. To be more precise about what
we mean by “complex” and “simple”, we’re not necessarily referring to K-complexity. We’re referring to the
inductive bias of the overall training algorithm. The sample efficiency of correctly learning a goal representation
depends on how much the intended goal is favored by the inductive bias of the learning algorithm (plus all the
biases introduced by the non-g learned machinery).
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This is another way for the goals of an AI to be underspecified by behavioral training. This may
happen simultaneously with the failure modes described above. The AI could be deceptively aligned,
even if its misaligned goal is unstable and will change with further training or in deployment. What
ultimately matters, from a risk perspective, is that the AI is achieving good training loss for reasons
other than it being aligned.

4.4 Badly designed training incentives

For standard behavioral training there is also the problem that the training signal (for example, in
reinforcement learning) doesn’t perfectly (or unbiasedly) track what we would want. This may
incentivize the AI to “play the training game”, where it exploits unintended flaws in the training
process that achieve more reward [31]. These flaws could include: predictable human biases, mistakes
in the training setup, incentives to be sycophantic for human approval. Strategies that exploit these
flaws will receive more reward (and be more reinforced) than strategies that straightforwardly do
what the humans intend.

This may be thought of as an “outer alignment” failure, where we are effectively telling the AI (via
the reward) to do something that we don’t actually want. This is rather different from the other
discussed problems with behavioral training which are about the underspecification of the internals
of the AIs and could be thought of as “inner alignment” problems.

4.5 Conclusion

In this section we’ve compiled an (incomplete) list of problems that make it difficult to specify goals
of an AI using behavioral training. Instead, the AI will pursue correlates of the intended goal and
instrumental goals, have “instincts” that can be overcome, have false beliefs, and maybe update
its goals over time in an unpredictable way. This should add up to behavior that does well on a
training distribution of tasks, but pursues its own goals when the AI generalizes to new hard tasks.
These failure modes are disjunctive; only one of these failure modes needs to happen for the AI to
be misaligned. We will describe more in Section 6.1.3 why the imprecision that results from these
failure modes is dangerous.

While the goal might be unstable, there is no particular incentive for the goal to move closer to the
goal we intended as the AI faces context changes, more difficult problems, learns more about the
world, or generally learns new skills.

5 Control of misaligned AIs is difficult

In this section we will describe some difficulties with forcing misaligned AIs to do hard tasks, where
the tasks are helpful for us but go against the AI’s own interests. Here, we say that an AI is controlled
if it is unable to cause bad outcomes and can be directed to usefully complete hard tasks, even though
it is misaligned. Currently, several groups intend to use early AIs to accelerate alignment research.28

We expect this kind of plan to either be extremely dangerous or insufficiently helpful for solving
alignment in time.29

Such plans rest on two pillars:

1. The AI will do useful work because the training process has selected it to be good at
completing similar work.

2. Escape or sabotage will be much more difficult for the AI than helping us, and we can
control the AI’s capabilities to ensure that it isn’t ever capable of escape or sabotage.

If both of these are achievable, then a lab can set up a large-scale research effort primarily staffed by
AI, to solve hard tasks such as AI alignment.

We think there are problems with both of these pillars and don’t expect all of these problems to be
surmounted.

28e.g. OpenAI [1], Redwood Research is also primarily preparing for this pathway [9, 32].
29By “in time”, we mean before another, less careful group deploys misaligned AGI.
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For the first pillar:

• The sort of powerful AI we are imagining, as described in Sections 1 and 2, is capable of
considering the long-term consequences of its actions and evaluating those consequences
according to its goals. Because of this, we expect it to be very difficult to get the AI to do
useful research if this research isn’t part of a plan to achieve its own goals (Section 5.1).

• We expect problems checking the quality of AI generated research output, and also problems
producing useful human research data to imitate (Section 5.2).

For the second pillar:

• We don’t expect escape to be harder than the problem-solving it is routinely capable of
(Section 5.3).

• We expect sabotage and delaying to be much easier than doing useful research (Section 5.4).
• Internal planning won’t be transparent (although if this can be made fully transparent,

through advances or luck, this makes many problems easier to solve) (Section 5.5).
• Predicting the capabilities and knowledge required to complete particular complex tasks is

difficult, especially if the AI is trying to mislead you and is capable of learning over time.
This is not to say that we can’t estimate what tasks an AI will be capable of doing, but we
expect the margin of error to be large (Section 5.6).

We will go through each of these points in more detail in the following sections. Section 5.7.1
discusses why we think AI assisted monitoring doesn’t fundamentally change much.

Importantly, we expect the problems with control of misaligned AIs to be amplified by the
fact there is so much work to do and so many opportunities to make mistakes. There will be
adversarial cognition working against the plan, looking for any holes in security, pushing research in
various directions, and attempting to stop us from learning from mistakes. In a large project there will
be many unknown unknowns, vulnerabilities that we may be unable to anticipate but that a powerful
AI can exploit.

5.1 Misaligned goal-directed AI won’t cooperate

We have assumed our AI is capable of doing research; solving problems creatively and in a goal-
directed way. As we discuss in Section 1 and 2, we consider an AI to be acting in pursuit of long-term
consequences if it is robust to diverse obstacles. We are relying on this argument here. Likely
obstacles need to be constantly foreseen and planned around. Given that the goal of this AI is not to
complete the task we want it to complete, it will presumably foresee that the research task we have
given it isn’t likely to help it achieve its goals and nor would overtly refusing to do the task. It will
take whatever approach seems most likely to achieve its goals, which might include escape, sabotage,
or simply delaying.

5.2 Eliciting useful capabilities via outer training loop

Here we will consider the case where we are attempting to make a misaligned AI do useful research
by training it on similar research. This approach involves having the AI predict the result of some
human-generated research, and then modifying the AI with gradient descent according to what it
outputs; if the AI outputs a very similar result as the humans, it is not modified. This training may
be supervised learning or reinforcement learning, depending on the nature of the research. If the AI
wants to avoid being modified by training then, even if it is misaligned, it has an incentive to generate
the same result that the humans did. If we give the AI a research question that humans have not
solved, and the AI is unable to tell that humans have not solved it, then the AI will have the same
incentive to generate the result that humans would have found.

5.2.1 Difficulties

There are three main difficulties with this approach to produce useful work:

• It only applies to relatively easy to check research results
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• We would need lots of useful human-generated research
• It isn’t clear that the training would make the AI output good research in critical cases

This approach only works for certain types of research where there is a final correct answer that
can be checked. This could apply to work like “prove this theorem”, “write an algorithm for this
well-specified task”, or more rarely “find a clean formalization of this pretheoretic concept”. Such
tasks sometimes have a single well determined answer, which a human researcher can work out
for themselves. However there is a lot of important work that isn’t like this; for example, choosing
research directions, or designing new algorithms for imperfectly defined problems. These contain lots
of small decisions that are strongly entangled with the desired outcome and constraints, and which are
costly to verify in detail. In particular, the misaligned AI would be optimizing against the human’s
ability to provide an accurate oversight signal, so this signal wouldn’t be reliable on non-trivial tasks.

There needs to be sufficient human-generated research in the domain where we are attempting to elicit
the AI’s capabilities. This research is expensive to generate. In particular, we need enough such that
we can train a model to reliably produce very accurate predictions of the research output produced by
human researchers. This depends somewhat on the eventual data-efficiency of the training method, in
particular on the transfer to tasks that human overseers are unlikely to have completed, and which
would be against the interests of the AI to complete.

If the AI outputs something different than the human-generated result, it isn’t clear that the subsequent
training would make the AI generalize to generate useful research in the future. In particular, it
plausibly doesn’t generalize to doing novel research, where the AI needs to do significant online work
in order to find the result.30 In this case, it seems like there are three things that the training could do:
make the AI correctly instrumentally value high training signal (such that it won’t do novel research
if it can tell that it isn’t likely to receive feedback), create hacky modifications to the AI that don’t
generalize to novel research, or actually succeed in make the AI want to do good research. It seems
like the first two are more easily reinforced, especially given limited training data.31

In order for the AI to do useful research, it needs to pursue the goal (or sub-goal) of doing research.
There’s no particular reason for the gradient based training to actually modify the goal representation,
rather than building some additional narrow machinery on top. In this case, the training would not be
entirely using the AI’s underlying capabilities and would be less efficient.

It does seem true that in the limit of adversarial training and a perfect training signal, the AI would be
behaviorally aligned; that is, on all inputs it would do good research. However, this means providing
the AI with all the answers, and the entire value of AI is its ability to generalize to problems that we
otherwise didn’t have the answer to. Without providing all the answers, there isn’t ever a behavioral
guarantee that the AI is aligned.

5.3 Difficulty of escape compared to routine problem-solving

In this section we discuss whether escape is much more difficult than helping with research. We are
considering a wide range of potential strategies an AI might pursue to escape. The simplest might
look like asking a sympathetic researcher to contact a government and convince them of the value of
stealing the AI. A more difficult strategy might involve finding and using a privilege escalation exploit
in a virtual machine used for experiments, such that logging can be manipulated and further actions
toward exfiltration are undetectable. Both of these obviously depend on the AI correctly learning a
lot of facts about the world around it, such as confidently inferring that a particular researcher will act
in particular ways. An incomplete list of similar affordances is in Appendix: Attack surfaces.

Plans to escape depend entirely on the particular security flaws that happen to be present in the real
world control scheme. Unfortunately, hard tasks are likely to require skills such as inferring and
predicting complex systems given limited indirect evidence. Many skills are likewise valuable for
difficult problem solving and also useful for everything else, including developing plans to escape.

The extent to which we expect security flaws to be present and exploitable depends on the size of
the attack surfaces and the vigilance of the people running the project. There are several factors that

30This is not to say that this training would never successfully elicit anything from the AI. For example, this
training would likely elicit facts that were already “stored in the weights”.

31Another contributing difficulty is that a misaligned AI can plausibly exploration hack to manipulate or slow
down the training process.
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make attack surfaces larger. Hard tasks take a lot of time and resources, and very likely include a
lot of time interacting with overseers, data and experiments. The AI will have many opportunities
to learn about security measures, collect information, and consider strategies for escape. There will
likewise be many opportunities for mistakes or lapses in security. On top of this, there are several
difficult tradeoffs to make, such as the extent to which information and compute is freely available to
the AI for the purposes of research.

On the other hand, there are factors that can make escape much harder without heavily impacting
the difficulty of cooperating. For example, close monitoring and logging of actions increases the
difficulty of escape much more than it increases the difficulty of assisting with research (although it
probably does have some cost because careful monitoring should result in frequent false positives,
where overseers see slightly suspicious actions and need to pause to investigate).

Overall, we expect escape to be incredibly difficult, but it isn’t clear that it will be much more difficult
than the hard tasks we want the AI to solve for us.

5.4 Difficulty of sabotage and delay

If the AI is unable to immediately escape, it can instead sabotage and delay helping with useful
research until there is a security vulnerability it can exploit. If the humans don’t adequately understand
the research, the AI can direct research in ways that are less likely to be useful.

The AI could sabotage research by explicitly suggesting research directions it knows aren’t useful. If
humans were choosing the research directions, the AI could implement some experiments in order to
make some directions seem more promising and others seem less promising. The AI could exploit
biases in the researchers, prompting them to pursue their pet research direction which will likely
turn out to be useless. The humans would need to thoroughly understand the experiment in order to
catch this which would dramatically slow down research. This becomes much more difficult if the
AI is adversarial, for example, deliberately writing complicated code or explaining concepts badly.
There can also be dead ends in research and so if the AI chooses research directions that aren’t that
useful, this isn’t strong evidence the AI is misaligned. It may not be feasible to assess if a research
direction is good until it has results, and even then it can be difficult to determine if it was better than
alternatives.

The AI can also direct the research in directions which let it learn skills to escape; for example,
learning specific programming techniques or extremely complicated mathematics which humans
don’t understand. It could also use this to learn things about the specific containment system; running
code that triggers certain bugs, learning which actions trigger review by humans. Humans may be
unable to judge if something is innocuous or part of a broader plan to learn about security flaws.

Human overseers could disallow the AI to even suggest facts or skills to learn, and only let the human
make this decision without AI input. However, if the human doesn’t understand how to move forward
with the research, this would slow down research probably below the point of usefulness. This is the
inherent tradeoff between the autonomy of the AI and how overseeable it is; the human can make
many of the AI’s decisions and thus have better oversight, but this makes the AI drastically less
useful.

5.5 Transparency and honesty

The risk of escape, sabotage, and delay is much greater if the overseers don’t have adequate un-
derstanding of the AI’s thoughts and plans. We strongly expect that there will not be adequate
transparency, barring significant advancements or luck. Much of the difficulty in controlling and
getting useful work from a powerful AI comes from the AI not being transparent, such that it can
consider plans and outcomes without us knowing. If the AI is actually fully transparent and well
understood, control becomes a lot less difficult.32 We’ll first discuss why we don’t expect to get
adequate transparency, and then discuss difficulties for worlds where there is partial transparency.

We think it is most likely that the internals of a powerful AI will be largely uninterpretable, especially
when the AI is having complex “thoughts” about novel concepts. We want the AI to be solving very

32As does AI alignment.
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complicated problems, and currently there are no methods to tie the AI’s externalized reasoning to
the reasoning it is doing. Current LLMs already provide some evidence for this [33, 34].

This lack of transparency can allow the AI to develop skills or reason about escape, because we can’t
ensure that it is focused on the problem we want rather than something else.

We now consider the case where there is partial transparency, in the sense that humans can initially
see and understand some aspects of the AI’s cognition. In this case, one specific failure mode is
that the AI develops techniques which allow it to do obfuscated reasoning (i.e. steganography). For
example, we could imagine a system that can think some thoughts internally but needs to externalize
complicated reasoning. It could encode hidden information in its writing, allowing it to do additional
reasoning that humans don’t understand. There are many degrees of freedom in writing that allow
additional information to be encoded. By default though, we don’t even expect to have this level of
partial transparency.

We might hope that we could get around the problem of humans not understanding things by having
the AI explain them. This could allow us to avoid steganography and also stop the AI steering research
in bad directions. Unfortunately, we don’t have a method for making AI systems honestly explain
things. Ideally we would have a proper training signal for “honestly give the human an accurate
impression of what is going on, such that they can make a decision they reflectively endorse”, but we
don’t have this. This is made worse because the skills required for explaining things to the human
are almost the same skills that are useful for misleading the human. For example, teaching involves
learning which analogies and frames the human finds most convincing, or learning which technical
areas the human is stronger or weaker in.

The difficulty of interpreting powerful cognition is a core part of the argument we are making. The
greater the extent to which we have tools that allow us to understand the inner workings of powerful
AI, the harder it will be for an AI to plot against overseers, and the harder it will be to sabotage or
delay research.

5.6 Eliciting dangerous capabilities

If we were trying to pull off a control plan, we would want to be able to tell if the AI has danger-
ous capabilities that would allow it to escape. The two main categories are hacking and human
manipulation, although it is plausible that there are unknown unknowns that the AI could exploit.

One approach for eliciting dangerous capabilities is similar to eliciting useful capabilities. It focuses
on eliciting very specific bad capabilities; for example, if an AI is going to break out via hacking, it
will likely need to be able to notice vulnerabilities in code. So we create a dataset of code which has
some vulnerabilities in it, and then fine-tune the AI to find the vulnerabilities. If we fine-tune the AI
and it performs well, this means that it might at least be able to have this capability.

5.6.1 Difficulties

Similarly to the case of eliciting useful capabilities, if the AI internally represented the presence of
a vulnerability in some observed code without the need to do additional reasoning, the fine-tuning
approach is likely to be able to extract this knowledge, if we know ground truth. One way for the
AI to get around this, could be for the AI to avoid learning the specific skill of instantly noticing
vulnerabilities, but learn related skills which would allow it to find these with additional reasoning.
It may be hard to efficiently elicit capabilities which require additional (perhaps chain-of-thought)
reasoning steps. This would also stop one simply training a probe on the AI’s internals, because the
vulnerability would not be represented.

There is a different failure mode where effectively all capable AIs learn to classify code vulnerabilities,
when they are specifically fine-tuned. And so this test would imply that all AI systems are potentially
dangerous.

This leaves us in a position where the approach may provide almost no evidence. If the method
successfully elicits the dangerous capability, this may be because the model is dangerous and was
hiding this latent ability, or because this was trained via the fine-tuning. If the method does not elicit
the capability, this may be because the model is benign, or because the fine-tuning was not sufficient
to elicit capabilities which require chain-of-thought or other work.
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Another issue that this can approach can only test for very specific things, such as noticing vulnerabil-
ities in code. It can’t test more general abilities such as “reasoning about potential security holes” or
“planning escape attempts”.

5.7 AI assisted monitoring doesn’t change the picture much

So far in this section we have been discussing containment strategies that involve using careful human
monitoring, without explicit assistance from other AI systems. However, there are some advantages
to using AI monitoring instead. For example, with automated monitoring, it is much cheaper to watch
every action taken by a different AI and flag those that are suspicious. While we think that such
techniques could make escape or delay somewhat more difficult, we don’t expect this to dramatically
change the difficulty of these tasks. We suspect that the escape difficulty created by AI assisted
monitoring isn’t the main disagreement between us and proponents of these techniques.33 Instead,
we suspect that disagreements about the value of AI assisted monitoring are usually traced back to
disagreements about the necessary intelligence and generality of the AI system doing hard tasks.

Despite this, we think it’s valuable to discuss some of the object level difficulties with automated
monitoring in this section. We will split this section into two parts, depending on the capability level
of the AI system that is being proposed for monitoring [36]:

• AI systems that are powerful, but misaligned. For example, a copy of the AI we are trying
to use to do research.

• AI systems which are safe because they are not capable of powerful consequentialist planning
or reasoning. GPT-4 is an example.

5.7.1 Monitoring with powerful AI systems

One could attempt to use a separate powerful AI system to monitor the powerful AI doing the
object-level useful task. Examples of such strategies include untrusted monitoring [32] or debate [35,
37] (if used for monitoring). The advantage of having a powerful AI monitor is that it could keep up
with the work and foresee long-term strategies.

One core issue here is collusion between the powerful AI doing the useful task and the powerful AI
performing monitoring. This is made possible if the humans can’t detect all information being passed
between the AI systems. It seems likely that a powerful AI will understand things and be able to
detect patterns that the humans can’t, and also know which things the humans won’t understand. This
makes sending difficult-to-detect messages relatively easy. Monitoring with powerful AI systems
seems much more promising if we could be confident from the beginning that the AIs were not
colluding and had no intention to collude. But we have no way of ensuring this, because it requires
precisely specifying the goals of the AI.

Several approaches have been proposed to patch or reduce the size of various problems. One
such patch for collusion would be for the humans to intentionally insert fake “honeypot” collusion
messages between the AI systems, in an attempt to make them openly defect. However, it seems
like the best strategy for AI systems would be to only act when very confident of success, and only
choose to communicate via channels that the humans don’t understand.

For concreteness, we will consider the scalable oversight proposal debate [35, 37]. The scheme
involves two AIs each arguing for a position; for example, deciding which research direction is
promising or whether a piece of code is safe to run. The AIs each propose an answer or action to
take, and then argue back and forth; the debate is ultimately judged by a human. One hope here is
that in order to “win” the debate and avoid punishment (for example, by being updated via gradient
descent34), the AIs will have an incentive to tell the truth because this is the easiest option to argue for.
Each AI argues for their own side, as well as pointing out flaws in their opponent’s case. The humans
running the debate can rerun the argument tree from different places and with different information
in an attempt to catch one of the debaters being inconsistent. There are a number difficulties with this
approach:

33E.g. debate [35] or control [32].
34Although it isn’t at all clear that this would work as “punishment” in the relevant sense.
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• The AIs may be discussing things the humans don’t understand and there will be a lot
of back and forth, likely allowing the AIs to communicate information without humans
realizing. For example, this could allow them to agree to avoid debating particular points, or
entirely stage the debate.

• The humans may judge the debate incorrectly, especially when under adversarial pressure
from the AIs. This reduces the incentive to tell the truth.

• Despite the attempt to incentivize the AIs to choose the better (or most true) position to
argue for, it seems unlikely that the threat of gradient descent is strong enough to ensure this.
The AI can choose to behave badly in a few critical cases, where it can trade off the risk of
being updated for increased chance at achieving its goals.

• Even honest AIs may arrive at different conclusions or make different arguments, given
slightly different circumstances, and so inconsistencies between positions may not be strong
evidence of bad behavior. This primarily applies in the case where there is no easy way to
check the correct answer, such as choosing research directions.

5.7.2 Monitoring with weak AI systems

One could try to use relatively weak AIs to monitor a more powerful AI doing a hard task. Weak
AIs could be checking the actions for obvious attempts to take actions that humans are unlikely to
approve of, such as inserting obvious security vulnerabilities into code.

A key problem is that when the powerful AI is working in a domain that the weak AI system doesn’t
understand, then the weak system won’t know everything that is going on and won’t be able to
provide an accurate signal. For example, the weak system would not be able to point out a backdoor
implemented in an algorithm that it had never seen before and doesn’t understand. This is also a
problem with human oversight, except in this case it’s probably worse.

As with human supervision, we don’t know how to get the powerful AI to provide honest explanations
of its actions to the weak AIs.

One proposed strategy is to use weak AIs to paraphrase the outputs of a powerful AI [32]. This could
be done to prevent powerful AIs from passing secret messages to other AIs. For example, we could
have a powerful AI writing code to be overseen by another powerful AI. We might be worried that
the coding AI will insert hidden messages into its code instructing the overseer to not flag a certain
security vulnerability (the overseer could be incentivized to normally flag vulnerabilities because
these are deliberately added by humans). The hope here is that paraphrasing by a weak AI could
remove these hidden messages. However, the weak AI won’t be able to remove all hidden messages;
it may be capable of removing messages that are encoded in the “syntax” (e.g. renaming variables,
rewording comments) but not able to modify the “semantics” (e.g. the coding AI might choose a
particular algorithm or implement it in a particular way). The weak AI is being asked to rewrite the
output of the powerful AI while preserving the explicit meaning; if the weak AI doesn’t understand
the content it may make a mistake and change the explicit meaning (e.g. change code to be incorrect),
or it may let hidden information through because it isn’t able to modify the content enough without
making it wrong.35

5.8 Conclusion

When a powerful AI is directly incentivized to look for security problems in a real-world research
environment, we expect it to find them. Failing this, we expect the AI to be able to subtly delay
or sabotage the project, or wait for a lapse in security or increased capabilities. Taking a powerful
misaligned AI and training it to produce useful research does not mean that the AI will do useful
work in the future, partially because this training does not necessarily make the AI motivated to do
useful work.

See Appendix: 4-hour research assistant for a worked example of the difficulty of using an AI to
speed up research focused on the tradeoff between safety and usefulness.

35Relatedly, if we end up having partial transparency into the AI’s thoughts, we could attempt to use
paraphrasing to reduce steganographic reasoning [38]. This would mean having the weak AI paraphrase and
replace each segment of reasoning, and the hope being that this will only preserve legible reasoning. This has
the same problems as above with preventing messages being passed between different AIs.
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This section is not arguing against attempting to oversee and control misaligned AIs if we have to,
but rather that we expect this to be extremely difficult. If humanity goes down the path of building
misaligned powerful AIs, we should try as hard as we can to keep them contained. We should stack as
many layers of security as we can think of, and minimize the size of attack surfaces. But the balancing
act between security and usefulness has many failure modes, particularly under the pressure we are
expecting, and given the size and nature of the hard tasks that we want a trapped AI to complete.

6 Powerful misaligned AI would be bad

So far, we have argued that it will be hard to build an AI that is powerful, without also being
misaligned and difficult to safely extract useful work from. Given this, there is much uncertainty
about exactly how the future could go wrong. Does an AI escape from a lab? What does it try to do?
Is it in conflict with humans? How much is the world thrown into chaos? We are uncertain about
these questions, but we expect the default outcomes to be bad for humans.

Overall, it looks difficult but possible to achieve good outcomes by taking actions before a powerful
misaligned AI exists and is put to use, but that impressive levels of global coordination might be
required. After a misaligned AI gains any ability to act autonomously in the world, we expect that it
will be too late for humans to take any mitigating actions.

6.1 A misaligned AI achieving its goals would be bad for humans

In this section we will discuss concretely why AI systems, which are capable of hard tasks and are
misaligned, will likely lead to catastrophically bad outcomes for humans; outcomes such as extinction
or total loss of control of the future. Such an AI would be attempting to pursue outcomes, and be
extremely good at overcoming obstacles in order to achieve outcomes. Humans would be treated as
obstacles in the way of the AI achieving its goals, to whatever extent we are actually obstacles.

6.1.1 Instrumental convergence toward gaining control of limited resources

Resources and power are extremely useful for achieving a wide range of goals, especially goals about
the external world. However, humans also want resources and power for achieving their goals. This
will put the misaligned AI in direct competition with the humans. Additionally, humans may be one
of the largest threats to the AI achieving its goals, because we are able to fight back against the AI.
This means that the AI will have extremely strong incentives to disempower humans, in order to
prevent them from disempowering it.

6.1.2 Ambitiousness

One objection to the instrumental convergence argument is that the AI may not have ambitious,
long-term goals, and so it may be easy to satisfy these goals without causing harm to humans. For
example, it’s possible for an agent to want to solve one problem, and then after then not want to do
anything else. However we don’t have that much control over the goals a trained AI develops; we
aren’t able to ensure that it develops such a bounded goal. This is made worse by the fact that when
we ask the AI to do hard, novel science, we are asking it to do a very ambitious thing. Projects on the
scale of the Manhattan Project or curing cancer seemingly require the AI to have at least somewhat
ambitious goals. Our mainline expectation is that such a goal specification has many components,
some of which are “ambitious” and some of which aren’t. Because of this model of goal specification
that is made up of multiple components, it seems unlikely that all components of the goal cease to be
motivating after achieving a bounded outcome. We don’t have fine enough control over how the AI
develops to ensure that the ambitiousness of every aspect of its goals is in the narrow range of “safely
bounded but still able to do hard tasks”.

6.1.3 Consequences of misspecified goals

Some kinds of goal misspecification lead to extremely bad consequences, and other kinds don’t. The
kind of goal misspecification that leads to extremely bad consequences is the kind that is susceptible
to extremal Goodhart [39]. By this we mean goal specifications that contain large errors in some
parts of action-space or outcome-space, such that the optimum of the AIs goal corresponds to a
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bad outcome for humans. As an analogy, a utility function that has bounded error everywhere isn’t
very susceptible to extremal Goodhart. A utility function over a high dimensional space, where
the function isn’t well specified on a couple of dimensions, is likely to be susceptible to extremal
Goodhart.

Misspecified consequences

Errors in the goals that powerful AIs end up ultimately pursuing could be very bad, and from Section 4
we don’t expect to be able to specify these goals well. Many of the goals that an AI could end up
with are not compatible with human empowerment or human survival.36

We will consider the example of an AI which is tasked with the ultimate goal of curing cancer. One
goal that the AI could develop is a drive to acquire knowledge and “understand” the environment.
This goal is represented in the AI’s ontology and may be different to the human version of these
concepts. This could develop because much of the AI’s training was based around gaining information
about the world and making novel and correct predictions. Like in the deceptive alignment story, the
AI may go along with the rest of training, partially because this allows it to gain some knowledge
but also because it doesn’t want to be shut down. If the AI manages to eventually break out and take
over it may do unpredictable and unwanted things in pursuit of its ultimate goal; for example, build
massive scientific apparatus for examining specific wavelengths emitted from certain stars, or run
biological experiments to learn the function of specific proteins.

Other goals that this AI may develop are far more alien, because the AI’s internal ontology may not
match the human ontology. We don’t have control over what ontology the AI uses or what goals
it develops. It may end up pursuing a state of the world which is full of “beauty”, “achievement”,
“politeness” and “approval”, where the AI’s version of these concepts is related to the human concept
but is very different when taken to extremes. The AI may calculate which states of the world are best
according to its goals, and the “best” states may not be what humans would want. Maybe maximizing
the amount of some strange crystal, maybe filling space with intricate machines, maybe building ever
larger computers to run calculations.

For both of these examples, what the AI ends up pursuing is not something humans would want, and
the AI has a strong incentive to stop humans disempowering it.

Misspecified constraints

Some AI designers may attempt to instill constraints in an AI with training, in order to prevent
unwanted behavior. If the constraints are misspecified they will not constrain the AI’s behavior in
ways we intended. And, as usual, we don’t have precise control over the internal constraints that an
AI develops. These constraints will naturally be under optimization pressure from the AI itself.

We could attempt to make the AI “honest”, that is to tell humans true and helpful things. However,
this could easily be improperly specified (for example by the mechanisms in Section 4) and lead to
the AI valuing some variant of honesty, missing the value entirely, or trade off against other values.
The AI, by its consequentialist nature, will seek loopholes in any constraints that get in the way of its
consequentialist goals. The AI may be attempting to achieve a goal where it is helpful to manipulate
an overseer. If so, it would say things that humans would class as lies but are perfectly allowed under
the AI’s constraints.

As another example, we might want the AI to have very little effect on the world outside of the lab it
is given. If this is improperly specified, the AI may learn to not let any physical substance created in
the lab to influence the outside world. But it may still be able to affect the outside world via sending
radio signals to computers outside the lab and having them affect the world. Here the AI may try
hard to achieve its goals, and in doing so find an edge case in its constraints that it can exploit. The
AI may not be modeling this as an edge case in its constraints that it is “trying” to overcome, but
instead there is some blocked path (creating substances in the lab that affect the world), and it is
taking another route (using external computers to affect the world).

36It seems possible that if a misaligned AI disempowered humanity it may still keep humans alive or because
its training did make something upstream of “human survival” part of its mess of motivations.
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6.2 Why would a powerful AI be capable of defeating humanity, given moderate levels of
freedom?

Given freedom to act unsupervised and with lower risk of shutdown, a powerful AI could do research
to improve its own capabilities. There are a number of easy lower bound options for this, including
copying itself, or rapidly running experiments that test different ways to reduce the computation
required for running a single copy. More advanced experiments could involve building more direct
interfaces between programs and cognitive processes, or identifying the most bottlenecked parts of
the AI’s algorithm and modifying these parts to improve performance. With the ability to introspect,
it could be easy to set up fast and informative feedback loops for experimentation.

After such a process, the AI can take whatever pathway to increased power and security is most
likely to work [40]. This may involve trading with some groups of people. It may involve operating
secretly for a while while further improving its capabilities and influence. It could directly build up
its own infrastructure for more research, defense and collection of resources; or manipulate human
governments or political groups.

One possible story could be that the AI gains control over the data center where it is being trained and
fakes the performance metrics such that the overseers don’t think anything bad is happening. It then
spends time finding a set of security vulnerabilities that allow it to escape and gain enough freedom
for further research. The AI copies itself to data centers around the world for redundancy. It then
contacts various terrorist groups, and manipulates and assists them in creating biological weapons
which are released simultaneously across the world, throwing the world into chaos.

Such stories are too specific to be accurate, but they gesture at the strategies and affordances a
misaligned AI may use. We expect reality to be messier; it will be filled with human error and
confusion, with people in stressful situations under both time pressure and social pressure, and
security protocols that have never been adequately tested against a powerful AI attempting to escape.

7 Conclusion

In this report we’ve argued that AI systems which are capable of doing hard, novel science will be
dangerously misaligned.

The tasks we are focusing on are inherently outcome-oriented, and hence our AI must be behaviorally
consequentialist; its behavior is well described as taking actions to achieve specific outcomes. Hard
tasks require that the AI is able to overcome a range of diverse and novel obstacles, and if the AI
can overcome these obstacles, then it can likely overcome additional obstacles we didn’t intend it to
overcome.

We currently use behavioral training to create AIs, by which we mean AI systems are created by
modifying a program based on its external behavior. Behavioral training does not fully specify the
ultimate goals of the trained AI. There are many degrees of freedom in this process, and hence it is
extremely unlikely that a trained AI ends up pursuing the goals we intended.

One hope is to use oversight and control to extract useful work out of AIs, even if they are misaligned.
The scale of the project makes this extremely difficult, especially because a misaligned AI will be
creatively searching for loopholes in any security measures.

Finally, we discussed the consequences of a powerful, misaligned AI attempting to achieve its
goals. We expect misaligned goals to not be compatible with continued human empowerment or
survival. An escaped AI could build its skills, and amass power and resources, until it ultimately
disempowers humanity in pursuit of whatever goal it has. See Appendix: Argument Graph for a
visual representation of the overall argument.

7.1 Requests for AI developers

Given the arguments in this report, we have a number of requests for AI developers.

1. Stop attempting to build powerful AI using behavioral training. As we have argued, this
is likely to produce an AI which is misaligned. We understand that this request is unlikely
to be listened to, despite being the safest course of action in our view.
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2. If an AI is caught attempting to break out or otherwise subvert oversight, stop using
it. We hope that this is an easy request. It is important to not simply paper over signs of
misalignment. AI developers should have in place well-specified protocols for how and
when to stop using AIs, before bad behavior is discovered.
AIs caught attempting egregiously bad actions could also be used to build consensus about
the extreme risks. Such an AI could also be used as a “model organism” [41] to study
misalignment, but obviously it is important that this is done extremely carefully.

3. If the AI is doing research or other work that humans don’t understand, stop using it.
Much (but not all) of our worry about AIs evading control comes from them doing additional
reasoning in inscrutable research. This is less of a problem if humans understand all the
work. Note that it is still very important not to be tricked into believing one understands,
which could be a large risk if the AI is being used to “explain” what it is doing.

4. Use extremely thorough control schemes. Much of the difficulty in safely containing
misaligned AIs comes from there being many attack surfaces in whatever scheme we use.
This is because of the large scale task we are attempting. However, if there are fewer holes
the probability of escape goes down. Note that it is extremely important to not have a false
sense of security, simply because humans can’t easily think of specific vulnerabilities.

5. If an AI could subvert the control scheme, shut it down. Control schemes are likely to get
some confidence in safety from attempting to ensure that the AI does not have capabilities
which could allow it to escape (see Appendix: Capabilities elicitation for considerations
here). If the AI has the capability to subvert the control scheme, then one should no longer
believe the scheme provides safety, and so should shut everything down. This also applies if
the AI can get around the capabilities elicitation protocol, and so we would not know if it
had dangerous capabilities.

8 Definitions

Hard task: A task that involves large search spaces, is outcome-oriented, and contains many novel
and diverse subtasks. See Section 1 for examples.

AI: Program that appears “intelligent” in a very broad intuitive sense, including current LLMs and
chess bots. Used in the same way as in “the research field of AI”.

Powerful AI: A program that is capable of performing hard tasks autonomously.

Consequentialist AI: A program that takes observations, outputs actions. The actions end up causing
particular future outcomes in diverse counterfactual scenarios.

Trained AI: An AI created primarily by searching over a space of programs, and selecting or
modifying the programs based on their behavior, e.g. by gradient descent on neural networks.

Goal: A relatively simple description from which can be derived what behavior an agent is likely to
produce, or would choose to produce if given counterfactual opportunities. Can be a combination of
outcomes and constraints.

Outcome: An event in the future, especially one that might be preferred or dispreferred. Not
dependent on near-term actions. Constraint: A goal that is highly dependent on near-term actions,
rather than outcomes in the future.

Misaligned AI: An AI whose behavior is well described as pursuing a goal that is different from
the goal intended by its creators (where the difference is large enough that it leads to bad outcomes
according to the intended goal. See Section 6.)

Aligned AI: An AI whose behavior is well described by the goals intended by its creators.
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Appendix: Argument graph

We have created these argument graphs because they help us to keep track of the entire argument all
at once (Figures 4 and 5). Possibly they will be helpful for someone reading this document, although
quite possibly they won’t. We recommend only looking at this section after having read through the
whole report. These graphs are a simplification of the arguments, and may be misleading without the
context of the rest of the report.

Section 1

• Lot of work: Impactful science is hard and takes a lot of work.

• Outcome-oriented: Hard tasks will be outcome-oriented.

• Novel and Diverse: Hard tasks will have novel and diverse obstacles

Section 2

• Consequentialist: AIs which can do hard tasks will be behaviorally consequentialist.

– The AI will need to be doing a lot of work for a task that is specified by the outcome,
rather than the specific actions to take. This task will have novel and diverse obstacles,
and in order to successfully do it, the AI needs to continually overcome these obstacles
and continue towards the goal. Additionally, if the AI is doing self-directed learning, it
will need to take actions with the goal of learning specific things.

Section 3

• Learn new things: The AI will need to learn new things

– Novel science necessarily requires that the AI learns new facts and skills. These may
be facts and skills that humans previously knew but the AI was not trained on, but also
things that the AI works out by itself. This includes self-directed learning, where the
AI is choosing what to learn because of efficiency and lack of human understanding.

Section 4

• Training leads to imprecise goals: Behavioral training doesn’t precisely specify goals.

– Training based on AI behavior leaves many degrees of freedom in the goals that the AI
ends up ultimately pursuing. There are multiple goals which are consistent with the
same training behavior, and also the AIs goals may be unstable.

• The AI will be in novel situations
– There are many novel situations that the AI will face: the environment the AI is acting

in may be different, learning new skills and facts can open up novel strategies, the AI
will be able to run for longer periods of time, the AI is doing work that humans can
now no longer easily check.

• Goal misgeneralization in novel situations: Goal misgeneralization when faced with novel
situations

– When the AI is in a novel situation, this may cause its goals to “come apart” from the
goals intended by the humans. This can be a consequence of the AI pursuing the same
goals all along, and the novel situation now shows it is misaligned.

Section 5 (Separate Graph)

• Not transparent: We don’t have transparency into an AI’s thoughts.

– We don’t have good methods to understand an AI’s thoughts and plans, and even if we
have partial transparency the AI could learn to do obfuscated reasoning.

• Humans don’t understand: Humans won’t completely understand the purpose and details
of a powerful AI’s actions.
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– There will be a lot of work to oversee, especially when the AI is learning new things.
This will make it hard for a human overseer to keep up. Additionally, because the AI is
not honest, we can’t just get it to explain everything to the overseers.

• Delay and sabotage: The AI can delay or sabotage research.

– If the AI is unable to escape, it can delay or send research in bad directions. This
allows it to wait for a critical lapse in security or develop skills that over time will help
it escape.

• Humans struggle to judge research: The humans will struggle to assess the quality of the
research done by AIs

– The humans will have limited time to assess the research quality, and misaligned AIs
would adversarially produce research that is misleading and hard to judge.

• The AI does not have the goal of doing research:
– The AI will be misaligned and so will not have the goal of doing research the humans

want, especially research that goes against the AI’s interests.

• The AI can take critical bad actions: The AI will be able to take critical bad actions which
allow it to escape or do something similarly bad

– The AI will have been able to delay and sabotage research, and build up skills that are
useful to escape. Lack of human understanding can let the AI gain dangerous skills
without humans realizing. The AI can also wait for a lapse in security, which is likely
to eventually happen in a large-scale project.

• Hard to elicit useful capabilities: It will be hard to get a misaligned AI to do useful
research

– It will be hard to force a misaligned AI to do useful research that is not helpful for its
goals, in the timeframes required. Humans will struggle to provide a good training
signal to elicit this work, it isn’t clear that the sample efficiency of this training will be
high enough to make the AI do novel useful research, given limited training data.

• Control fails: Plans to safely get useful work out of a misaligned AI will likely fail

– It will be hard to force a misaligned AI to do research, and given the scale of the project
the AI will likely have opportunities to take critical bad actions. Monitoring using other
AI systems seems unlikely to dramatically change this outcome (this is discussed in
more detail in Section 5).

Section 6

• AI goals will be bad: The AI will be misaligned and trying to achieve goals that are bad for
humans

– Due to instrumental convergence, an AI may seek power and resources. We are
assuming it has goals which are at least as ambitious as the novel science we are
attempting. Such misaligned goals, when optimized for hard, are not outcomes humans
would want.

• AI catastrophe: Powerful misaligned AIs will likely be able to achieve their goals.

– A misaligned, powerful AI would attempt to disempower humans and take over. It
would do this because its goals are incompatible with human goals. It would be able to
do this if our oversight fails and the AI is able to learn new skills that allow it to escape
and take over.
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Figure 4: Graph of dependencies for the claims of the overall argument

Figure 5: Graph of dependencies for the claims about AI control, made in Section 5

Appendix: Attack surfaces

This is an incomplete list of attack surfaces or vulnerabilities which an AI being used for research
could use, in order to steer the research direction and eventually escape. This list is here to emphasize
the many options an AI would have, especially in a big (Manhattan Project-scale) project. There will
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additionally likely be other attack surfaces that the AI may be able to think up, given that it may have
a lot of knowledge and that it can likely improve its ability to plan.

• Human attack surfaces

– Making some humans look good or bad, via experimental results. The AI could
notice that some researchers are less security-conscious than others, and manipulate
experimental results (write better code for them, have more useful ideas), in order to
get them more influence. Similarly, it could attempt to make especially suspicious
researchers appear to be bad at their jobs.

– Making suspicious researchers look crazy and paranoid, in order to discredit them.
– Making security conscious lab leaders look bad at their jobs, in order to get them

replaced by less security conscious people.
– Finding out which things frustrate certain researchers. The AI will be explaining com-

plicated research results, and find out if there are things that annoy certain researchers
and make them think less clearly.

– Fostering envy and resentment between researchers. The AI could worsen trust between
researchers in the lab by making some have experiments that go well or poorly, or by
making it appear as if someone had stolen someone else’s idea.

– Guiding research in directions to buy time and wait for an opportunity to escape. The
AI could make research that would let it gain certain skills seem more promising, and
research that might go against its aims seem less promising.

– Communicating with spies (insider threat actors) in the lab, in order to get exfiltrated.
Even if all messages between the AI and researchers were monitored, they may be
able to communicate in code. A spy could potentially communicate details about the
AI’s hardware, passwords, security holes. Or a spy may simply be able to physically
exfiltrate the AI’s weights/code.

– Making certain scientific breakthroughs in order to attract attention from powerful
actors like nation states. The aim may be to try and get nation states to put a lot of
effort into attempting to steal the AI.

– Making “progress” on oversight and control research that is actually not robust, in a
way that is specific to the AI. For example, if the AI is extremely good at a specific
skill that the humans don’t know, the AI could push for research that is vulnerable to
this specific thing.

– Influencing decisions by claiming to be suffering or otherwise morally relevant.37

• Computer attack surfaces

– Exploiting bugs in the software or hardware. This could be via subtly running into
errors that lead to unwanted behavior. Or attempting the innocuous task of finding out
why a bug happens in certain cases but not others. Potentially allowing the AI to write
to an unmonitored location that it wasn’t supposed to.

– Using timing of certain programs to work out specifics of its hardware.
– Pushing research in directions which require specialized hardware. This may be more

believable if multiple different research directions end up concluding that specific
specialized hardware is useful.

– Pushing for research which seems to overall improve security, even though it requires
giving the AI slightly more autonomy.

– Obfuscating computation, for example building a chemistry simulator that also com-
putes things the AI is not supposed to be able to do.

• Experimental or engineering attack surfaces (for the case where the AI is doing physical
work, probably not AI alignment research)

– Designing electronics that subtly send messages via radio waves, or allow it to connect
to nearby wifi networks. Here the electronics would likely have some other explicit
purpose; for example, an electron microscope or a robotic arm.

37Note that this does not mean that we should totally ignore AIs if they tell us they are suffering.
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– Finding ways to get around containment measures. For example, finding holes in a
Faraday cage, or building an amplifier for incoming electromagnetic signals.

– Physical destruction, for example a chemical explosion that looks accidental.

Appendix: 4-hour research assistant

Here we will describe an example of an AI system which may feel intuitively safe, while also allowing
for a large speed-up in useful AI alignment research progress; in this case speeding up research by a
factor of 30. We will argue that such an AI system is not safe.

The specific AI system is an AI which acts as a research assistant to a human researcher. The AI can
do the equivalent of 4 hours of human work extremely quickly, and then report back to the human.
We’ll call each 4-hour equivalent a “chunk”.

An important aspect is that work which would have previously taken the AI alignment field one year
now only takes one thirtieth of the time; a year of work now happens in less than two weeks. We will
argue that in order to make this AI safe, we would need to restrict its capabilities to the point where it
is no longer useful. If we do not make these restrictions, the AI is likely to be dangerous.

The human researcher will need to be giving the AI research assistant new 4 hour tasks every 8
minutes.38

The human can be telling the AI to do various tasks:

• Specific object-level research tasks
• Summarizing results (note that the researcher may only have 8 minutes to understand them)
• Having the AI to come up with good research tasks to ask other AI’s to do
• Brainstorming general research strategies and directions

The 4-hour research assistant will need to be (behaviorally) goal-directed, at least over the course
of the equivalent of 4 hours. If it were aligned, then its behavior would be well described as taking
actions in order to do the task set by the human.

The AI will need to learn things; this will include learning things that are already known (e.g. reading
a textbook) or learning things that aren’t already known (e.g. doing novel research, discovering novel
facts, inventing novel methods).

The primary failure mode is that the AI will need to retain skills and knowledge between tasks. The
individual tasks will unlikely be able to be done in total isolation. The AI may spend one chunk
learning a skill, and then be required to use this skill in the next chunk. It may spend many chunks
building up familiarity with a specific code base, and if it lost this knowledge it would become
useless.

Additionally, many research tasks cannot be simply divided up into 4 hour chunks that can be done
separately, especially not in advance. Some tasks are inherently serial, and can only be properly
evaluated at the end. An example of this may be a mathematical proof that would take a human 12
hours to figure out; if this task was given to the 4-hour research assistant AI then it may make some
progress on the task, but without the end result the human would be unable to tell if it was actually
doing the task.

If the AI is reset or “mindwiped” every time, it would have to spend all of each chunk catching up
and would not have time to do any new work. It does not seem possible to get useful, novel science
work out of such an AI. As an analogy, a scientist in the Manhattan project would not have been able
to catch up and do useful work in 4 hours.

If instead we don’t reset the AI for every chunk, such that it can retain what it has learned, then it is
no longer really a “4-hour research assistant”. It would now be able to do tasks and plan over longer

38How many calls? Say a researcher does 12 hours of work a day, for the 30× speed-up, we will be wanting
to output the equivalent of 360 hours of work a day. The research assistant does the equivalent of 4 hours of
work each call. Assuming all the work gets done by the AI and the human is just choosing what to tell them to
do: 360/4 = 90 calls a day. 12/90× 60 = 8. The human researcher will need to be giving the AI assistant a
new 4 hour research task every 8 minutes.
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time horizons. It would be able to build up skills; both skills we want it to have and skills that we
don’t. If it is learning things in one chunk to use in the next, it is doing planning outside of the 4
hour window. It will have to be capable of even longer term planning if it is deciding on research
directions, or noticing if a specific result is useful for the overall long-term project.

Because of the short time that the human has to evaluate the AI’s work and assign it a new task,
the human will likely not be able to fully understand what the AI is working on. It is important to
remember that the human is trying to understand 4 hours of work in a novel scientific field in less
than 8 minutes. Given these time constraints and the lack of AI honesty, the AI would likely be able
to give convincing post hoc explanations for the actions that it took. The AI will likely be able to
guide the research, allowing it to learn things that would help it evade oversight or escape.
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