February 2017 Newsletter

 |   |  Newsletters

Following up on a post outlining some of the reasons MIRI researchers and OpenAI researcher Paul Christiano are pursuing different research directions, Jessica Taylor has written up the key motivations for MIRI’s highly reliable agent design research.

 

Research updates

 

General updates

  • We attended the Future of Life Institute’s Beneficial AI conference at Asilomar. See Scott Alexander’s recap. MIRI executive director Nate Soares was on a technical safety panel discussion with representatives from DeepMind, OpenAI, and academia (video), also featuring a back-and-forth with Yann LeCun, the head of Facebook’s AI research group (at 22:00).
  • MIRI staff and a number of top AI researchers are signatories on FLI’s new Asilomar AI Principles, which include cautions regarding arms races, value misalignment, recursive self-improvement, and superintelligent AI.
  • The Center for Applied Rationality recounts MIRI researcher origin stories and other cases where their workshops have been a big assist to our work, alongside examples of CFAR’s impact on other groups.
  • The Open Philanthropy Project has awarded a $32,000 grant to AI Impacts.
  • Andrew Critch spoke at Princeton’s ENVISION conference (video).
  • Matthew Graves has joined MIRI as a staff writer. See his first piece for our blog, a reply to “Superintelligence: The Idea That Eats Smart People.”
  • The audio version of Rationality: From AI to Zombies is temporarily unavailable due to the shutdown of Castify. However, fans are already putting together a new free recording of the full collection.

 

News and links

  • An Asilomar panel on superintelligence (video) gathers Elon Musk (OpenAI), Demis Hassabis (DeepMind), Ray Kurzweil (Google), Stuart Russell and Bart Selman (CHCAI), Nick Bostrom (FHI), Jaan Tallinn (CSER), Sam Harris, and David Chalmers.
  • Also from Asilomar: Russell on corrigibility (video), Bostrom on openness in AI (video), and LeCun on the path to general AI (video).
  • From MIT Technology Review‘s “AI Software Learns to Make AI Software”:
    Companies must currently pay a premium for machine-learning experts, who are in short supply. Jeff Dean, who leads the Google Brain research group, mused last week that some of the work of such workers could be supplanted by software. He described what he termed “automated machine learning” as one of the most promising research avenues his team was exploring.