This post is an attempt to gesture at a class of AI notkilleveryoneism (alignment) problem that seems to me to go largely unrecognized. E.g., it isn’t discussed (or at least I don’t recognize it) in the recent plans written up by OpenAI (1,2), by DeepMind’s alignment team, or by Anthropic, and I know of no other acknowledgment of this issue by major labs.
You could think of this as a fragment of my answer to “Where do plans like OpenAI’s ‘Our Approach to Alignment Research’ fail?”, as discussed in Rob and Eliezer’s challenge for AGI organizations and readers. Note that it would only be a fragment of the reply; there’s a lot more to say about why AI alignment is a particularly tricky task to task an AI with. (Some of which Eliezer gestures at in a follow-up to his interview on Bankless.)
Caveat: I’ll be talking a bunch about “deception” in this post because this post was generated as a result of conversations I had with alignment researchers at big labs who seemed to me to be suggesting “just train AI to not be deceptive; there’s a decent chance that works”.
I have a vague impression that others in the community think that deception in particular is much more central than I think it is, so I want to warn against that interpretation here: I think deception is an important problem, but its main importance is as an example of some broader issues in alignment.
Caveat: I haven’t checked the relationship between my use of the word ‘deception’ here, and the use of the word ‘deceptive’ in discussions of “deceptive alignment“. Please don’t assume that the two words mean the same thing.
Investigating a made-up but moderately concrete story
Suppose you have a nascent AGI, and you’ve been training against all hints of deceptiveness. What goes wrong?
When I ask this question of people who are optimistic that we can just “train AIs not to be deceptive”, there are a few answers that seem well-known. Perhaps you lack the interpretability tools to correctly identify the precursors of ‘deception’, so that you can only train against visibly deceptive AI outputs instead of AI thoughts about how to plan deceptions. Or perhaps training against interpreted deceptive thoughts also trains against your interpretability tools, and your AI becomes illegibly deceptive rather than non-deceptive.
And these are both real obstacles. But there are deeper obstacles, that seem to me more central, and that I haven’t observed others to notice on their own.
That’s a challenge, and while you (hopefully) chew on it, I’ll tell an implausibly-detailed story to exemplify a deeper obstacle.
Read more »