End-of-the-year fundraiser and grant successes

 |   |  News

Our winter fundraising drive has concluded. Thank you all for your support!

Through the month of December, 175 distinct donors gave a total of $351,298. Between this fundraiser and our summer fundraiser, which brought in $630k, we’ve seen a surge in our donor base; our previous fundraisers over the past five years had brought in on average $250k (in the winter) and $340k (in the summer). We additionally received about $170k in 2015 grants from the Future of Life Institute, and $150k in other donations.

In all, we’ve taken in about $1.3M in grants and contributions in 2015, up from our $1M average over the previous five years. As a result, we’re entering 2016 with a team of six full-time researchers and over a year of runway.

Our next big push will be to close the gap between our new budget and our annual revenue. In order to sustain our current growth plans — which are aimed at expanding to a team of approximately ten full-time researchers — we’ll need to begin consistently taking in close to $2M per year by mid-2017.

I believe this is an achievable goal, though it will take some work. It will be even more valuable if we can overshoot this goal and begin extending our runway and further expanding our research program. On the whole, I’m very excited to see what this new year brings.

In addition to our fundraiser successes, we’ve begun seeing new grant-winning success. In collaboration with Stuart Russell at UC Berkeley, we’ve won a $75,000 grant from the Berkeley Center for Long-Term Cybersecurity. The bulk of the grant will go to funding a new postdoctoral position at UC Berkeley under Stuart Russell. The postdoc will collaborate with Russell and MIRI Research Fellow Patrick LaVictoire on the problem of AI corrigibility, as described in the grant proposal:

Consider a system capable of building accurate models of itself and its human operators. If the system is constructed to pursue some set of goals that its operators later realize will lead to undesirable behavior, then the system will by default have incentives to deceive, manipulate, or resist its operators to prevent them from altering its current goals (as that would interfere with its ability to achieve its current goals). […]

We refer to agents that have no incentives to manipulate, resist, or deceive their operators as “corrigible agents,” using the term as defined by Soares et al. (2015). We propose to study different methods for designing agents that are in fact corrigible.

This postdoctoral position has not yet been filled. Expressions of interest can be emailed to alex@intelligence.org using the subject line “UC Berkeley expression of interest.”