Preamble:
(If you’re already familiar with all basics and don’t want any preamble, skip ahead to Section B for technical difficulties of alignment proper.)
I have several times failed to write up a well-organized list of reasons why AGI will kill you. People come in with different ideas about why AGI would be survivable, and want to hear different obviously key points addressed first. Some fraction of those people are loudly upset with me if the obviously most important points aren’t addressed immediately, and I address different points first instead.
Having failed to solve this problem in any good way, I now give up and solve it poorly with a poorly organized list of individual rants. I’m not particularly happy with this list; the alternative was publishing nothing, and publishing this seems marginally more dignified.
Three points about the general subject matter of discussion here, numbered so as not to conflict with the list of lethalities:
-3. I’m assuming you are already familiar with some basics, and already know what ‘orthogonality’ and ‘instrumental convergence’ are and why they’re true. People occasionally claim to me that I need to stop fighting old wars here, because, those people claim to me, those wars have already been won within the important-according-to-them parts of the current audience. I suppose it’s at least true that none of the current major EA funders seem to be visibly in denial about orthogonality or instrumental convergence as such; so, fine. If you don’t know what ‘orthogonality’ or ‘instrumental convergence’ are, or don’t see for yourself why they’re true, you need a different introduction than this one.
-2. When I say that alignment is lethally difficult, I am not talking about ideal or perfect goals of ‘provable’ alignment, nor total alignment of superintelligences on exact human values, nor getting AIs to produce satisfactory arguments about moral dilemmas which sorta-reasonable humans disagree about, nor attaining an absolute certainty of an AI not killing everyone. When I say that alignment is difficult, I mean that in practice, using the techniques we actually have, “please don’t disassemble literally everyone with probability roughly 1” is an overly large ask that we are not on course to get. So far as I’m concerned, if you can get a powerful AGI that carries out some pivotal superhuman engineering task, with a less than fifty percent change of killing more than one billion people, I’ll take it. Even smaller chances of killing even fewer people would be a nice luxury, but if you can get as incredibly far as “less than roughly certain to kill everybody”, then you can probably get down to under a 5% chance with only slightly more effort. Practically all of the difficulty is in getting to “less than certainty of killing literally everyone”. Trolley problems are not an interesting subproblem in all of this; if there are any survivors, you solved alignment. At this point, I no longer care how it works, I don’t care how you got there, I am cause-agnostic about whatever methodology you used, all I am looking at is prospective results, all I want is that we have justifiable cause to believe of a pivotally useful AGI ‘this will not kill literally everyone’. Anybody telling you I’m asking for stricter ‘alignment’ than this has failed at reading comprehension. The big ask from AGI alignment, the basic challenge I am saying is too difficult, is to obtain by any strategy whatsoever a significant chance of there being any survivors.
-1. None of this is about anything being impossible in principle. The metaphor I usually use is that if a textbook from one hundred years in the future fell into our hands, containing all of the simple ideas that actually work robustly in practice, we could probably build an aligned superintelligence in six months. For people schooled in machine learning, I use as my metaphor the difference between ReLU activations and sigmoid activations. Sigmoid activations are complicated and fragile, and do a terrible job of transmitting gradients through many layers; ReLUs are incredibly simple (for the unfamiliar, the activation function is literally max(x, 0)) and work much better. Most neural networks for the first decades of the field used sigmoids; the idea of ReLUs wasn’t discovered, validated, and popularized until decades later. What’s lethal is that we do not have the Textbook From The Future telling us all the simple solutions that actually in real life just work and are robust; we’re going to be doing everything with metaphorical sigmoids on the first critical try. No difficulty discussed here about AGI alignment is claimed by me to be impossible – to merely human science and engineering, let alone in principle – if we had 100 years to solve it using unlimited retries, the way that science usually has an unbounded time budget and unlimited retries. This list of lethalities is about things we are not on course to solve in practice in time on the first critical try; none of it is meant to make a much stronger claim about things that are impossible in principle.
That said:
Here, from my perspective, are some different true things that could be said, to contradict various false things that various different people seem to believe, about why AGI would be survivable on anything remotely remotely resembling the current pathway, or any other pathway we can easily jump to.
Section A:
This is a very lethal problem, it has to be solved one way or another, it has to be solved at a minimum strength and difficulty level instead of various easier modes that some dream about, we do not have any visible option of ‘everyone’ retreating to only solve safe weak problems instead, and failing on the first really dangerous try is fatal.
1. Alpha Zero blew past all accumulated human knowledge about Go after a day or so of self-play, with no reliance on human playbooks or sample games. Anyone relying on “well, it’ll get up to human capability at Go, but then have a hard time getting past that because it won’t be able to learn from humans any more” would have relied on vacuum. AGI will not be upper-bounded by human ability or human learning speed. Things much smarter than human would be able to learn from less evidence than humans require to have ideas driven into their brains; there are theoretical upper bounds here, but those upper bounds seem very high. (Eg, each bit of information that couldn’t already be fully predicted can eliminate at most half the probability mass of all hypotheses under consideration.) It is not naturally (by default, barring intervention) the case that everything takes place on a timescale that makes it easy for us to react.
Read more »